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A study on total irregularities of certain graphs and 
digraphs
Johan Kok1 and Naduvath Sudev2*

Abstract: The total irregularity of a simple undirected graph G is denoted by irr
t
(G) 

and is defined as irr
t
(G) =

1

2

∑
u,v∈V(G)

�d(u) − d(v)�. In this paper, we introduce the no-

tion of edge-transformation in relation to total irregularity of simple graphs with at 
least one cut edge as well as an edge-joint between two graphs. We also introduce 
the notion of total irregularity with respect to in-degree and out-degree in directed 
graphs. We also introduce the concept of total irregularity in respect of in-degree 
and out-degree in simple directed graphs. These invariants are called total in-irreg-
ularity and total out-irregularity, respectively. In this paper, we initiate a study on 
these parameters of given simple undirected graphs and simple digraphs.
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1. Introduction
For general notations and concepts in graph theory, we refer to Bondy and Murty (1976), Harary 
(1969), West (2001) and for digraph theory, we further refer to Chartrand and Lesniak (2000), Jensen 

*Corresponding author: Naduvath 
Sudev, Department of Mathematics, 
Vidya Academy of Science & 
Technology, Thalakkottukara, Thrissur 
680501, India 
E-mail: sudevnk@gmail.com

Reviewing editor:
Lishan Liu, Qufu Normal University, 
China

Additional information is available at 
the end of the article

ABOUT THE AUTHORS
Johan Kok is registered with the South African 
Council for Natural Scientific Professions (South 
Africa) as a professional scientists in both Physical 
Science and Mathematical Science. His main 
research areas are in Graph Theory and the 
reconstruction of motor vehicle collisions. He has 
been endorsed by international peers as skilled in 
a wide range of combinatorica disciplines. Johan 
has a keen interest in mathematics education as 
well.

Naduvath Sudev has been working as a 
professor (Associate) in the Department of 
Mathematics, Vidya Academy of Science and 
Technology, Thrissur, India, for the last 15 years. 
His primary research areas are Graph Theory and 
Combinatorics. He is a reviewer of Mathematical 
Reviews and Zentralblatt MATH and reviewer 
of more than 15 journals. He has more than 40 
publications in different international journals.

PUBLIC INTEREST STATEMENT
Major real world applications of irregularities of 
graphs are in chemical graph theory, biological 
and economical systems. Results stemming from 
operations between graphs or structurally changing 
a graph, are enhanced through this study related to 
branch-transformation and the introduction of an 
edge joint. The immediate application of edge-joint 
is to gain an understanding of stringing of graphs 
and many biological structures can be modelled 
as graphs stringed sequentially. With regards to 
directed graphs the field of study is wide open. 
Directed graphs allow the analysis of the influence 
a vertex (the tail) has over a neighbour (the head). 
Applications lies in the initial modelling of directed 
graphs as null-graphs with vertices carrying 
floating out-arcs seeking heads. A vertex with zero 
floating out-arcs can only be a head of one or more 
vertices, hence resembles a black hole in cosmic 
space. Modelling cosmic systems as null-graphs 
with vertices carrying floating out-arcs seeking 
heads is regarded as a promising new application.

Received: 19 October 2015
Accepted: 13 April 2016

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution 
(CC-BY) 4.0 license.

Page 1 of 10

http://crossmark.crossref.org/dialog/?doi=10.1080/23311835.2016.1179708&domain=pdf
mailto:sudevnk@gmail.com
http://creativecommons.org/licenses/by/4.0/


Page 2 of 10

Kok & Sudev, Cogent Mathematics (2016), 3: 1179708
http://dx.doi.org/10.1080/23311835.2016.1179708

and Gutin (2007). All graphs mentioned in this paper are simple, connected and finite graphs, unless 
mentioned otherwise. Also, except for Section 4, all the graphs mentioned here are undirected 
graphs.

A graph G is said to be regular if the degree of all vertices are equal. A graph that is not regular is 
called an irregular graph. The total irregularity of a given simple connected graph is defined in 
Albertson (1997) as follows.

Definition 1.1 (Albertson, 1997) The imbalance of an edge e = uv in a given graph G is de-
fined as |d(u) − d(v)|. The total irregularity of a graph G, denoted by irrt(G), is defined as 
irrt(G) =

1

2

∑
u,v∈V(G)

�d(u) − d(v)�.

If the vertices of a graph G on n vertices are labelled as vi , i = 1, 2, 3,… ,n, then the definition 

may be irrt(G) =
1

2

n∑
i=1

n∑
j=1

�d(vi) − d(vj)� =
n∑
i=1

n∑
j=i+1

�d(vi) − d(vj)� or 
n−1∑
i=1

n∑
j=i+1

�d(vi) − d(vj)�. For a 

graph on a singular vertex (1-null graph or K
1
), we define irrt(G) = 0. Clearly, irrt(G) = 0 if and only if 

G is regular.

If an edge e is a cut-edge of the graph G and a component of G − e is a tree T, then T is called a 
hanging tree of G. The notion of branch-transformation of a graph has been introduced in Zhu, You, 
and Yang (in press) as follows.

Definition 1.2 (Zhu et al., in press) Let G be a graph with at least two pendant vertices. Without 
loss of generality, let u be a vertex of G with dG(u) ≥ 3, T be a hanging tree of G connecting to u with 
|V(T)| ≥ 1 and v be a pendant vertex of G with v ∉ T. Let G′ be the graph obtained from G by deleting 
T from vertex u and attaching it to vertex v. We call the transformation from G to G′ a branch-trans-
formation on G from vertex u to vertex v.

Certain studies on irregularities and total irregularities of given graphs and the properties graphs 
related to these irregularities have been done in Abdo, Brandt, and Dimitrov (2014), Abdo, Cohen, 
and Dimitrov (in press), Abdo and Dimitrov (2014), Albertson (1997), Dimitrov and Škrekovski (2015), 
Henning and Rautenbach (2007), Zhu et al. (in press). There are many specific results in respect of 
cut vertices and cut-edges in the studies on various concepts in graph theory. Many applications rely 
on either the existence of cut-vertices or cut edges as well. Where stringing of graphs is required 
through linking graphs pairwise through adding a single edges between pairs of vertices, multiple 
cut-edges exist in the resultant stringed graph. The order of stringing may, in some instances, not 
obey the commutative property with respect to certain invariants. For directed graphs, orientated 
stringing is generally more complex and may require extremal graph theoretic analysis.

Motivated from these observations, in this paper, we introduce the notion of edge-transformation 
in relation to total irregularity of simple graphs with at least one cut edge as well as an edge-joint 
between two graphs. We also introduce the notion of total irregularity with respect to in-degree and 
out-degree in directed graphs and initiate a study on certain types of total irregularities of given 
classes of directed and undirected graphs.

2. Total irregularity resulting from edge-joints
Consider a graph G on n vertices with two connected components G

1
 and G

2
. Therefore, G = G

1
∪ G

2
. 

Hence, the total irregularity of G is given by irrt(G) = irrt(G1) + irrt(G2) +
r∑
i=1

s∑
j=1

�d(ui) − d(vj)�, where 

ui ∈ V(G1), vj ∈ V(G2) and r = |V(G
1
)| and s = |V(G

2
)|.

The concept of an edge-joint between two simple undirected graphs G and H is defined below.
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Definition 2.1 The edge-joint of two graphs G and H is the graph obtained by adding one edge, say 
uv, where u ∈ V(G), v ∈ V(H), and is denoted by G⇝uv H.

Remark 2.2 It is to be noted that G⇝uv H = G ∪ H + uv and G⇝uv H ≃ H ⇝vu G.

Let G be a graph on n vertices with two connected components G
1
 and G

2
 whose vertex sets are 

V(G
1
) = {ui :1 ≤ i ≤ r} and V(G

2
) = {vj :1 ≤ j ≤ s}. We fix the vertices u

1
 from G

1
 and v

1
 from G

2
. 

Now, we define the vertex subsets V
1
= {ux:dG

1

(ux) ≤ dG
1

(u
1
), x ≠ 1}; V

2
= {uy :dG

1

(uy) > dG
1

(u
1
)} 

and let |V
1
| = a and |V

2
| = b. Then, choose V

3
= {vx:dG

2

(vx) ≤ dG
1

(u
1
)} and 

V
4
= {vy :dG

2

(vy) > dG
1

(u
1
)}, where |V

3
| = a∗ and |V

4
| = b∗. Similarly, let 

V
5
= {vz:dG

2

(vz) ≤ dG
2

(v
1
), z ≠ 1} and V

6
= {vw :dG

2

(vw) > dG
2

(v
1
)} where |V

5
| = c and |V

6
| = d 

and choose V
7
= {uz:dG

1

(uz) ≤ dG
2

(v
1
)} and V

8
= {uw :dG

1

(uw) > dG
2

(v
1
)} where |V

7
| = c∗ and 

|V
8
| = d∗.

Define the variables b = r − a, d = s − c = n − r − c, b∗ = r − a∗ and d∗
= s − c∗ = n − r − c∗.

Theorem 2.3 Let G be a graph on n vertices with two connected components G
1
 and  

G
2
, where V(G

1
) = {ui :1 ≤ i ≤ r} and V(G

2
) = {vj :1 ≤ j ≤ s}. Let G�

= G
1
⇝u

1
v
1
G
2
. Then, we 

have irrt(G
�
) = irrt(G1) + irrt(G2) +

r∑
i=1

s∑
j=1

�dG
1
(ui) − dG

2
(vj)� + 2n − 2(b + b

∗
+ d + d∗

) − 2 or 

irrt(G
�
) = irrt(G1) + irrt(G2) +

r∑
i=1

s∑
j=1

�dG
1
(ui) − dG

2
(vj)� + 2(a + a

∗
+ c + c∗) − 2n + 2.

Proof Clearly, for the graph G = G
1
∪ G

2
, we have irrt(G) = irrt(G1) + irrt(G2) +

r∑
i=1

s∑
j=1

�dG
1
(ui) − dG

2
(vj)� 

with |V(G
1
)| = r and |V(G

2
)| = s.

By increasing dG
1
(u
1
) by 1 we increase the partial sum 

∑a

j = 1

wj ∈ V1

�dG
1

(u
1
) − dG

1

(wj)� by ex-

actly (a − 1). It also reduces the partial sum 
∑b

j = 1

wj ∈ V2

�dG
1

(u
1
) − dG

1

(wj)� by exactly b. It also in-

creases the partial sum 
∑a∗

j = 1

wj ∈ V3

�dG
1

(u
1
) − dG

2

(wj)� by exactly a∗ and decreases the partial sum 

∑b∗

j = 1

wj ∈ V4

�dG
1

(u
1
) − dG

2

(wj)� by exactly b∗. Furthermore, by increasing dG
2
(v
1
) by 1, we increase 

the partial sum 
∑c

j = 1

wj ∈ V5

�dG
2

(v
1
) − dG

2

(wj)� by exactly (c − 1). It also reduces the partial sum 

∑d

j = 1

wj ∈ V6

�dG
1

(u
1
) − dG

2

(wj)� by exactly d. It also increases the partial sum 
∑c∗

j = 1

wj ∈ V7

�dG
1

(u
1
) − dG

1

(wj)� 

by exactly c∗ and decreases the partial sum 
∑d∗

j = 1

wj ∈ V8

�dG
1

(u
1
) − dG

1

(wj)� by exactly d∗.

Hence, we have an interim result as follows.

By substituting the variables b,d, b∗ and d∗ as defined in Definition the final result is as follows.

irrt(G
�
) = irrt(G1) + irrt(G2) +

r∑
i=1

s∑
j=1

�dG
1
(ui) − dG

2
(vj)� + 2n − 2(b + b

∗
+ d + d∗

) − 2, or; 

irrt(G
�
) = irrt(G1) + irrt(G2) +

r∑

i=1

s∑

j=1

|dG
1

(ui) − dG
2

(vj)| + (a − 1) − b + a∗ − b∗ + (c − 1) − d + c∗ − d∗

= irrt(G1) + irrt(G2) +

r∑

i=1

s∑

j=1

|dG
1

(ui) − dG
2

(vj)| + (a − b) + (a∗ − b∗) + (c − d) + (c∗ − d∗
) − 2.

D
ow

nl
oa

de
d 

by
 [

16
3.

47
.1

2.
40

] 
at

 0
5:

34
 0

9 
M

ay
 2

01
6 



Page 4 of 10

Kok & Sudev, Cogent Mathematics (2016), 3: 1179708
http://dx.doi.org/10.1080/23311835.2016.1179708

irrt(G
�
) = irrt(G1) + irrt(G2) +

r∑
i=1

s∑
j=1

�dG
1
(ui) − dG

2
(vj)� + 2(a + a

∗
+ c + c∗) − 2n + 2, follows.  ✷

Clearly irrt(G
�
) is edge dependent in general but we have the following Corollary.

Corollary 2.4 Let the degree sequence of graphs G
1
 and G

2
 be 

(dG
1
(u
1
) ≤ dG

1
(u
2
) ≤ dG

1
(u
3
) ≤ … ≤ dG

1
(un)) and (dG

2
(v
1
) ≤ dG

2
(v
2
) ≤ dG

2
(v
3
) ≤ … ≤ dG

2
(vm)), respec-

tively. If dG
1
(ui) = dG

2
(vj) for some i,  j and dG

1
(uk) = dG

2
(vl) for some k,  l and G�

= G
1
⇝uivl

G
2
 and 

G��
= G

1
⇝ukvj

G
2
 then, irrt(G

�
) = irrt(G

��
).

Proof Begin the proof by choosing any vertex degree value t
1
 in the degree sequence of G

1
 and iden-

tify largest vertex index say, i for which dG
1
(ui) = t1. Similarly, choose any vertex degree value t

2
 in the 

degree sequence of G
2
 and identify largest vertex index say, l for which dG

2
(vl) = t2. Here, we have to 

consider the following cases.

Case-1: With respect to G�
= G

1
⇝uivl

G
2
, set the values as follows.

(i)  |V
1
| = a = i − 1,

(ii)  |V
2
| = b = n − i,

(iii)  |V
3
| = a∗ = j,

(iv)  |V
4
| = b∗ = m − j,

(v)  |V
5
| = c = l − 1,

(vi)  |V
6
| = d = m − l,

(vii)  |V
7
| = c∗ = k,

(viii)  |V
8
| = d∗

= n − k.

Therefore, we have 
2(n +m) − 2((n − i) + (m − j) + (m − l) + (n − k)) − 2 = 2(i + j + k + l − (n +m)) − 2.

Case-2: In respect of G��
= G

1
⇝ukvj

G
2
, set the values as follows.

(i)  |V
1
| = a = k − 1,

(ii)  |V
2
| = b = n − k,

(iii)  |V
3
| = a∗ = l,

(iv)  |V
4
| = b∗ = m − l,

(v)  |V
5
| = c = j − 1,

(vi)  |V
6
| = d = m − j,

(vii)  |V
7
| = c∗ = i,

(viii)  |V
8
| = d∗

= n − i.

Therefore, here we have 
2(n +m) − 2((n − k) + (m − l) + (m − j) + (n − i)) − 2 = 2(k + l + j + i − (n +m)) − 2.

Since Case-1 and Case-2 yield the same result, the result irrt(G
�
) = irrt(G

��
) follows from Theorem 2.3. ✷

An immediate consequence of Corollary 2.4 is that for regular graphs G
1
 and G

2
 we have 

irrt(G1 ⇝vu G2) u ∈ V(G
1
)v ∈ V(G

2
)
 is a constant. This result is proved in the following 

proposition.
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Proposition 2.5 For the regular graphs G
1
,G

2
 on n, m vertices, respectively, with dG

1
(u) ≥ dG

2
(v) we 

have

Proof The proof follows immediately from Corollary 2.4.  ✷

We note that if G
1
 and G

2
 are of equal k-regularity, then irrt(G1 ⇝uv G2) is independent of the k- 

degree of the vertices.

3. Total irregularity due to edge-transformation
Consider a graph G on n = l

1
+ l

2
 vertices and a cut edge u

1
v
1
. Let G = (G

1
∪ G

2
) + u

1
v
1
, 

u
1
∈ V(G

1
) = {ui :1 ≤ i ≤ l

1
} and v

1
∈ V(G

2
) = {vi :1 ≤ i ≤ l

2
}. Edge-transformation with respect to 

u
1
 will be the graph Guiv1 obtained by deleting the edge u

1
v
1
 and adding the edge uiv1 for any i ≠ 1. We 

call G
1
 the master graph and G

2
 the slave graph.

Let us now introduce the notion of edge-transformation partitioning of a vertex set of a given 
graph as follows.

Definition 3.1 The edge-transformation partitioning of the vertex set V(G) of a graph G on n 
vertices with at least one cut edge say u

1
v
1
, is defined to be Vh = {ui , vk:dG

1
(ui) = dG

1
(u
1
) − 1 

and dG
2
(vk) = dG

1
(u
1
) − 1} ∪ {u

1
},h = |Vh|, and Vs = {ui , vk:dG

1
(ui) > dG

1
(u
1
) − 1 and 

dG
2
(vk) > dG

1
(u
1
) − 1}, s = |Vs| and Vt = {ui , vk:dG

1
(ui) < dG

1
(u
1
) − 1 and dG

2
(vk) < dG

1
(u
1
) − 1}, t = |Vt|.

Invoking Definition 3.1, we now define certain vertex sets in G as given below. Let 
Vs

1

= {uj , vk:dG
1

(uj) ≤ dG
1

(ui) and dG
2

(vk) ≤ dG
1

(ui) and uj , vk ∈ Vs},m = |Vs
1

|, and 
Vs

2

= {uj , vk:dG
1

(uj) > dG
1

(ui) and dG
2

(vk) > dG
1

(ui) and uj , vk ∈ Vs}, l = |Vs
2

|, and 
Vt

1

= {uj , vk:dG
1

(uj) ≤ d(ui) and dG
2

(vk) ≤ dG
1

(ui) and uj , vk ∈ Vt},m1
= |Vt

1

|, and 
Vt

2

= {uj , vk:dG
1

(uj) > dG
1

(ui) and dG
2

(vk) > dG
1

(ui) and uj , vk ∈ Vt}, l1 = |Vt
2

|.

In view of the above notions, we propose the following theorem.

Theorem 3.2 For a graph G with a cut edge u
1
v
1
, let G − u

1
v
1
= G

1
∪ G

2
. After edge-transformation in 

respect of v
1
 we have

Proof If dG
1
(ui) = dG

1
(u
1
) − 1, then reducing dG

1
(u
1
) by 1, reduces the partial sum 

∑h

j = 1

wj ∈ Vh

�dG
1

(u
1
) − d(wj)� by exactly (h − 1). It increases the partial sum 

∑s

j = 1

wj ∈ Vs

�dG
1

(u
1
) − d(wj)� 

by exactly s and finally it reduces the the partial sum 
∑t

j = 1

wj ∈ Vt

�dG
1

(u
1
) − d(wj)� by exactly t.

Case 1: By increasing dG
1
(ui),ui ∈ Vh by 1, the partial sum 

∑h

j = 1

wj ∈ Vh

�dG
1

(ui) − d(wj)�  

increases by exactly (h − 1). It decreases the partial sum 
∑s

j = 1

wj ∈ Vs

�dG
1

(ui) − d(wj)� by exactly s and 

irrt(G1 ⇝uv G2) =

{
2(n +m) − 2, ifdG

1
(u) = dG

2
(v),

nm|dG
1
(u) − dG

2
(v)| + 2(n − 1), ifdG

1
(u) > dG

2
(v).

irrt(G
uiv1 ) =

⎧
⎪
⎨
⎪
⎩

irrt(G), ifdG
1
(ui) = dG

1
(u
1
) − 1,

irrt(G) + 2m, ifdG
1
(ui) > dG

1
(u
1
) − 1,

irrt(G) − 2(h + l1), ifdG
1
(ui) < dG

1
(u
1
) − 1.
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finally it increases the the partial sum 
∑t

j = 1

wj ∈ Vt

�dG
1

(ui) − d(wj)� by exactly t. Hence, the result, 

irrt(G
uiv1 ) = irrt(G) − (h − 1) + s − t + ((h − 1) − s + t) = irrt(G) follows.

Case 2: By increasing dG
1
(ui),ui ∈ Vs by 1, the partial sum 

∑h

j = 1

wj ∈ Vh

�dG
1

(ui) − d(wj)�  

increases by exactly h. It changes the partial sum 
∑s

j = 1

wj ∈ Vs

�dG
1

(ui) − d(wj)� by exactly (m − 1) − l and  

finally it increases the the partial sum 
∑t

j = 1

wj ∈ Vt

�dG
1

(ui) − d(wj)� by exactly t. Hence, the result, 

irrt(G
uiv1 ) = irrt(G) − (h − 1) + s − t + h + (m − 1) − l + t = irrt(G) + 2m  follows.

Case 3: By increasing dG
1
(ui), vi ∈ Vt by 1, the partial sum 

∑h

j = 1

wj ∈ Vt

�dG
1

(ui) − d(wj)� decreases by  

exactly h. It decreases the partial sum 
∑s

j = 1

wj ∈ Vt

�dG
1

(ui) − d(wj)� by exactly s and finally it changes 

the the partial sum 
∑t

j = 1

wj ∈ Vt

�dG
1

(ui) − d(wj)� by exactly (m
1
− 1) − l

1
.

Hence, the result irrt(G
uiv1 ) = irrt(G) − (h − 1) + s − t − (h − 1) − 2 − s + (m

1
− 1) − l

1
= irrt(G) − 2(h + l1) 

follows.  ✷

It is to be noted Theorem 3.2 provides an alternate proof for the following that lemma provided in 
Zhu et al. (in press).

Lemma 3.3 (Zhu et al., in press) Let G′ be the graph obtained from G by branch-transformation from 
u to v. Then irrt(G) > irrt(G

�
).

Theorem 3.2 can be extended to multi graphs also as explained in the following result.

Corollary 3.4 If multiple edges or loops are allowed in the graph or if edge-transformation is per-
formed in a simple graph without a cut edge to give Gwiv1

wi∈G
, then we have

Proof The proof of this theorem follows immediately as a consequence of Theorem 3.2.  ✷

4. Total irregularities of directed graphs
In this section, we extend the concept of total irregularities of graphs mentioned in above sections 
to directed graphs. Since the edges of a digraph D are directed edges and the vertices of D has two 
types of degrees, in-degrees and out-degrees, we need to define two types of total irregularities for 
a digraph, which are called total in-degree irregularities and total out-degree irregularities.

Let the vertices of a simple directed graph D→ on n vertices be labelled as v
i
; i = 1, 2, 3,… ,n and 

let d+

D→ (vi) = d
+
(vi) and d−

D→ (vi) = d
−
(vi). Then, the notion of total in-irregularity of a given directed 

graph is introduced as follows.

Definition 4.1 The total in-irregularity of a directed graph D with respect to the in-degree of all ver-
tices of D, denoted by irr−t (D

→

), is defined as irr−t (D
→

) =
1

2

n∑
i=1

n∑
j=1

�d−
(vi) − d

−
(vj)� =

n∑
i=1

n∑
j=i+1

�d−
(vi) − d

−
(vj)� 

irrt(G
uiv1 ) =

⎧
⎪
⎨
⎪
⎩

irrt(G), ifdG
1
(ui) = dG

1
(u
1
) − 1,

irrt(G) + 2m, ifdG
1
(ui) > dG

1
(u
1
) − 1,

irrt(G) − 2(h + l1), ifdG
1
(ui) < dG

1
(u
1
) − 1.
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or 
n−1∑
i=1

n∑
j=i+1

�d−
(vi) − d

−
(vj)�.

Similarly, the total out-irregularity of a digraph can also be defined as follows.

Definition 4.2 The total out-irregularity of a directed graph D with respect to the out-degree of all ver-

tices of D, denoted by irr+t (D
→

), is defined as irr+t (G
→

) =
1

2

n∑
i=1

n∑
j=1

�d+
(vi) − d

+
(vj)� =

n∑
i=1

n∑
j=i+1

�d+
(vi) − d

+
(vj)� 

or 
n−1∑
i=1

n∑
j=i+1

�d+
(vi) − d

+
(vj)�.

Re-orientation of an arc or arc-transformation of an arc will find application in most classical ap-
plications of directed graphs like tournaments, transportation problems, flow analysis or alike.

4.1. Total irregularities of directed paths and cycles
The total in-irregularity and the total out-irregularity of a directed path are determined in the follow-
ing proposition.

Proposition 4.3 For a directed path P→n  which is consecutively directed from left to right for which 
vertices v

1
, vn are called the start-vertex and the end-vertex, respectively, we have

(i)  irr−t (P
→

n ) = irr
+

t (P
→

n ) = n − 1,

(ii)  

(iii)  

Proof The proof is obvious from the definition of total in-irregularity and total out-irregularity of a 
given digraph.  ✷

The total in-irregularity and the total out-irregularity of a directed cycle are determined in the fol-
lowing proposition.

Proposition 4.4 For a directed cycle C→

n  which is consecutively directed clockwise we have

(i)  irr−t (C
→

n ) = irr
+

t (C
→

n ) = 0,

(ii)  irr−t (C
→

n ) = irr
+

t (C
→

n ) = 2(n − 1), if we reverse the orientation of any arc.

Proof The proof is obvious from the definition of total in-irregularity and total out-irregularity of a 
given digraph.  ✷

Through a simple change of Definition 3.1 the in-arc-transformation partitioning in respect of v
1
 

and the out-arc-transformation partitioning in respect of v
1
 can be defined.

Definition 4.5 The in-arc-transformation partitioning with respect to a vertex vi of the 
vertex set V(G) of a simple connected directed graph G→ on n vertices is defined to be 
Vh = {vi :d

−
(vi) = (d−

(v
1
) − 1)} ∪ {v

1
},h = |Vh|, and Vs = {vi :d

−
(vi) > (d−

(v
1
) − 1)}, s = |Vs| and 

Vt = {vi :d
−
(vi) < (d−

(v
1
) − 1)}, t = |Vt|.

irr−t (P
→

n ) =

⎧
⎪
⎨
⎪
⎩

n − 1, if the orientation of (v
1
, v
2
) is reversed,

3n − 5, if the orientation of (vi , vi+1), 2 ≤ i ≤ (n − 1)

is reversed

irr+t (P
→

n ) =

⎧
⎪
⎨
⎪
⎩

n − 1, if the orientation of (vn−1, vn) is reversed,

3n − 5, if the orientation of (vi , vi+1),≤ i ≤ n − 2

is reversed.
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In view of Definition 4.5, we define some vertex sets of a given digraph are defined as follows.

(i)  Vs
1

= {vj :d
−
(vj) ≤ d

−
(vi), vj ∈ Vs},m = |Vs

1

|,

(ii)  Vs
2

= {vj :d
−
(vj) > d

−
(vi), vj ∈ Vs}, l = |Vs

2

|,

(iii)  Vt
1

= {vj :d
−
(vj) ≤ d

−
(vi), vj ∈ Vt},m1

= |Vt
1

|,

(iv)  Vt
2

= {vj :d
−
(vj) > d

−
(vi), vj ∈ Vt}, l1 = |Vt

2

|.

Definition 4.6 The out-arc-transformation partitioning with respect to a vertex vi of the 
vertex set V(G→

) of a simple connected directed graph G→ on n vertices is defined to be 
Vh∗ = {vi :d

+
(vi) = (d+

(v
1
) − 1)} ∪ {v

1
},h∗ = |Vh∗ |, and Vs∗ = {vi :d

+
(vi) > (d+

(v
1
) − 1)}, s∗ = |Vs∗ | and 

Vt∗ = {vi :d
+
(vi) < (d+

(v
1
) − 1)}, t∗ = |Vt∗ |.

In view of Definition 4.5, we define some vertex sets of a given digraph are defined as follows.

(i)  Vs∗
1

= {vj :d
+
(vj) ≤ d

+
(vi), vj ∈ Vs},m

∗
= |Vs∗

1

|,

(ii)  Vs∗
2

= {vj :d
+
(vj) > d

+
(vi), vj ∈ Vs}, l

∗
= |Vs∗

2

|,

(iii)  Vt∗
1

= {vj :d
+
(vj) ≤ d

+
(vi), vj ∈ Vt},m

∗

1
= |Vt∗

1

|,

(iv)  Vt∗
2

= {vj :d
+
(vj) > d

+
(vi), vj ∈ Vt}, l

∗

1
= |Vt∗

2

|.

Analogous to Theorem 3.2, we propose the following result.

Proposition 4.7 Consider a simple connected directed graph G. After in-arc-transformation in  
respect of v

1
 we have

(i)  

 and

(ii)  

Proof The proof is similar to Theorem 3.2.  ✷

4.2. Total irregularities of directed complete graphs
In this section, we initiate a study on the two types of irregularities of directed complete graphs. 
Consider a complete undirected graph Kn and label the vertices v

1
, v
2
, v
3
,… , vn. Assign direction the 

edges of Kn to get a directed graph, with Kn as its underlying graph, in such a way that the edge vivj 
becomes the arc (vi , vj) of this directed graph if i < j. We denote this directed graph by K→

n . The fol-
lowing lemma discusses the two types of irregularities of K→

n .

Lemma 4.8 For the directed complete graph K→

n , the total irregularities are given by 

irr+t (K
→

n ) = irr
−

t (K
→

n ) =
n−1∑
i=1

i∑
j=1

j = 1

6
n(n2 − 1).

Proof The orientation results in an in-degree sequence (0, 1, 2,… , (n − 1)) and an out-degree se-

quence (n − 1,n − 2,n − 3,… , 0). Choose the k-th entry of the in-degree sequence. We know that the 

k-th term is given by 
n∑

j=k+1

�d−
(vk) − d

−
(vj)� =

n−(k+1)∑
i=1

i. Also, we have irr−t =
n−1∑
i=1

n∑
j=i+1

�d−
(vi) − d

−
(vj)� and 

irr−t (G
viu1 ) =

⎧
⎪
⎨
⎪
⎩

irr−t (G), ifd−
(vi) = d

−
(v
1
) − 1

irr−t (G) + 2m, ifd−
(vi) > d

−
(v
1
) − 1,

irr−t (G) − 2(h + l1), ifd−
(vi) < d

−
(v
1
) − 1

irr+t (G
viu1 ) =

⎧
⎪
⎨
⎪
⎩

irr+t (G), ifd+
(vi) = d

+
(v
1
) − 1,

irr+t (G) + 2m
∗, ifd+

(vi) > d
+
(v
1
) − 1,

irr+t (G) − 2(h
∗
+ l∗

1
), ifd+

(vi) < d
+
(v
1
) − 1.
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hence irr−t (K
→

n ) =
n−1∑
i=1

i +
n−2∑
i=1

i +…+
n−(n−1)∑
i=1

i =
n−1∑
i=1

i∑
j=1

j = 1

6
n(n2 − 1). Furthermore, since the out-degree 

sequence is a mirror image of the in-degree sequence and irr+t =
n−1∑
i=1

n∑
j=i+1

�d+
(vi) − d

+
(vj)�, the result 

follows similarly.  ✷

A general application of this study can be the following.

Consider any connected undirected graph G on n vertices and label its vertices randomly by 
v
1
, v
2
, v
3
,… , vn. Assign direction to the edges of the graph G to be arcs according to the condition 

mentioned above and refer to the directed graph as the root directed graph, G→

root−graph. Then, calcu-
late both irr+t (G

→

root−graph) and irr−t (G
→

root−graph). In a derivative graph G→

derivative identify all arcs which 
were re-oriented or subjected to arc-transformation and apply the applicable results to recursively 
determine the total in-irregularity and total out-irregularity.

Consider the complete bipartite graph K
(m,n) and call the m vertices in the first bipartition by left-

side vertices and the n vertices in the second bipartition by right-side vertices. Assign directions to the 
edges of Km,n strictly from left-side vertices to right-side vertices to obtain Kl→rm,n.

Proposition 4.9 For the directed graph Kl→rm,n, we have irr−t (K
l→r
m,n) = m

2n and irr+t (K
l→r
m,n) = mn

2.

Proof The orientation of the directed complete bipartite graph Kl→rm,n results in the in-degree se-
quence (0, 0,… , 0,

⏟⏞⏞⏞⏟⏞⏞⏞⏟

m−entries

m,m,… ,m
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

n−enties

) and the out-degree sequence (n,n,… ,n,
⏟⏞⏞⏞⏟⏞⏞⏞⏟

m−entries

0, 0,… , 0
⏟⏞⏞⏟⏞⏞⏟

n−enties

). Here, we have 

the following cases.

Case 1: For the above-mentioned in-degree sequence of Kl→rm,n, we have the sum 
(m+n)−1∑
i=1

(m+n)∑
j=(i+1)

�d−
(vi) − d

−
(vj)� results in the value m, (mn times) and 0, ((m + n) − 2 times). Hence, 

irr−t (K
l→r
(m,n)) = m

2n.

Case 2: For the above-mentioned out-degree sequence of Kl→rm,n, we have the sum 
(m+n)−1∑
i=1

(m+n)∑
j=(i+1)

�d+
(vi) − d

+
(vj)� results in the value n, (mn times) and 0, ((m + n) − 2) times). Hence, 

irr+t (K
l→r
(1,n)) = mn

2. This completes the proof.  ✷

Invoking from Proposition 4.9, we note that for the directed bipartite graph Kl→r
1,n , we have 

irr−t (K
l→r
1,n ) = n and irr+t (K

l→r
(1,n)) = n

2 and irr−t (K
l→r
m,1) = m

2 and irr+t (K
l→r
m,1) = m.

The following is a challenging and interesting problem in this context.

Problem 4.10 Describe an efficient algorithm to determine irr−t (G
→

derivative) and irr+t (G
→

derivative) from 
irr−t (G

→

root−graph) and irr+t (G
→

root−graph).

5. Conclusion
In this paper, we have studied certain types of total irregularities of certain graphs and digraphs. 
More problems in this area still remain unsettled. More studies on different types of irregularities for 
different graph classes, graph operations, graph products and on certain associated graphs such as 
line graphs and total graphs of given graphs and digraphs remain open. All these facts indicate that 
there is a wide scope for further investigations in this area.
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