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Generalised colouring sums of graphs
Johan Kok1, N.K. Sudev2* and K.P. Chithra3

Abstract: The notion of the b-chromatic number of a graph attracted much research 
interests and recently a new concept, namely the b-chromatic sum of a graph, 
denoted by ��

(G), has also been introduced. Motivated by the studies on b-chromatic 
sum of graphs, in this paper we introduce certain new parameters such as �-chro-
matic sum, �+-chromatic sum, b+-chromatic sum, �-chromatic sum and �+-chromatic 
sum of graphs. We also discuss certain results on these parameters for a selection of 
standard graphs.
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1. Introduction
For general notations and concepts in graph theory and digraph theory, we refer to Bondy and Murty 
(1976), Chartrand and Lesniak (2000), Chartrand and Zhang (2009), Gross and Yellen (2006), Harary 
(1969), West (2001). Unless mentioned otherwise, all graphs mentioned in this paper are non-trivial, 
simple, connected, finite and undirected graphs.

Graph colouring has become a fertile research area since its introduction in the second half of 
nineteenth century. It has numerous theoretical and practical applications. Let us first recall the fact 
that in a proper colouring of a graph G, no two adjacent vertices in G can have the same colour. The 
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minimum number of colours in a proper colouring of a graph G is called the chromatic number of G, 
denoted by �(G).

Consider a proper k-colouring of a graph G and denote the set of k colours by  = {c
1
, c
2
, c
3
,… , c

k
}. 

Also, consider the disjoint subsets of V(G), defined by V
c
i

= {v
j
:v
j
↦ c

i
, v
j
∈ V(G), c

i
∈ }, 1 ≤ i ≤ k. 

Clearly, we can see that V(G) =
k⋃
i=1

V
c
i

.

The notion of the b-colouring of a graph and the parameter b-chromatic number, �(G), of a graph 
G(V, E), has been introduced in Irving and Manlove (1999) as follows. Let G be a graph on n vertices, 
say v

1
, v
2
, v
3
,… , v

n
. The b-chromatic number of G is defined as the maximum number k of colours 

that can be used to colour the vertices of G, such that we obtain a proper colouring and each colour i, 
with 1 ≤ i ≤ k, has at least one element x

i
 which is adjacent to a vertex of every colour j, 1 ≤ j ≠ i ≤ k. 

Such a colouring is called a b-colouring of G (see Effatin & Kheddouci, 2003; Irving & Manlove, 1999).

The concept of b-chromatic number has attracted much attention and many studies have been 
made on this parameter (see Effatin & Kheddouci, 2003; Irving & Manlove, 1999; Kok & Sudev, in 
press; Kouider & Mahéo, 2002; Vaidya & Isaac, 2014, 2015; Vivin & Vekatachalam, 2015).

2. General colouring sum of graphs
The notion of the b-chromatic sum of a given graph G, denoted by ��

(G), has been introduced in Lisna 
and Sunitha (2015) as the minimum of sum of colours c(v) of v for all v ∈ V in a b-colouring of G using 
�(G) colours. Some results on b-chromatic sums proved in Lisna and Sunitha (2015), which are rel-
evant and useful results in our present study, are listed below.

Theorem 2.1   (Lisna & Sunitha, 2015) The b-chromatic sum of a path P
n
 , n ≥ 2 is

Theorem 2.2   Lisna & Sunitha, 2015 The b-chromatic sum of a cycle C
n
 is given by

Theorem 2.3   Lisna & Sunitha, 2015 The b-chromatic sum of a wheel graph W
n+1

 is

Theorem 2.4   (Lisna & Sunitha, 2015) For a complete bipartite graph K
m,n

 assume without loss of 
generality that m ≥ n, then ��

(K
m,n

) = m + 2n.

This interesting new invariant motivates us for studying similar concepts in graph colouring. This 
leads us to define the concept of the general colouring sum of graphs as follows.

Definition 2.5  Let  = {c
1
, c
2
, c
3
,… , c

k
} allows a b-colouring  of a given graph G. Clearly, there are k! 

ways of allocating the colours to the vertices of G. The colour weight of colour, denoted by �(c
i
), is the 

number of times a particular colour c
i
 is allocated to vertices. Then, the colouring sum of a colouring 

 of a given graph G, denoted by �(), is defined to be �() =
k∑
i=1

i �(c
i
).

�
�
(P
n
) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

3

2
(n − 1) + 3, if n ≥ 5,n is odd,

3n

2
+ 1, if n ≥ 6,n is even,

4, if n = 3,
3n

2
, if n ∈ {2, 4}.

�
�
(C
n
) =

⎧
⎪
⎨
⎪⎩

3n

2
+ 3, if n is even,n ≠ 4,

3

2
(n − 1) + 3, if n is odd,

6, if n = 4.

�
�
(W

n+1
) =

⎧
⎪
⎨
⎪⎩

3(n−1)

2
+ 7, if n is odd,

3n

2
+ 7, if n is even,n ≠ 4,

9, if n = 4.
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In view of the above definition, the b-chromatic sum of a graph G can be viewed as 

�
�
(G) = min

�
k∑
i=1

i �(c
i
)

�
, where this sum varies over all b-colourings of G.

In view of Definition 2.5, in this paper we introduce certain other colouring sums of graphs similar 
to the b-chromatic sum of graphs.

3. χ-Chromatic sum of certain graphs
The notion of the �-chromatic sum of a graph G with respect to a proper k-colouring of G is intro-
duced as follows.

Definition 3.1  Let  = {c
1
, c
2
,… , c

k
} be a proper colouring of a graph G. Then, the �-chromatic sum 

of G, denoted by � �
(G), is defined as � �

(G) = min

�
k∑
i=1

i �(c
i
)

�
 where the sum varies over all minimum 

proper colourings of G.

In the following discussion, we investigate the �-chromatic sum of certain fundamental graph class-
es. First, we determine the �-chromatic sum of path graphs in the following theorem.

Theorem 3.2   The �-chromatic sum of a path P
n
 is given by

Proof  Being a bipartite graph, the vertices of a path graph P
n
 can be coloured using two colours, say 

c
1
 and c

2
. Then, we need to consider the following cases.

(1) � Assume that n = 1. Then, P
n
≅ K

1
 with a single vertex say v

1
. Colour this vertex by the colour c

1
. 

Hence, �(c
1
) = 1. Therefore, � �

(P
n
) = 1.

(2) � Let n be an even integer. Then, the vertices of path P
n
 can be coloured alternatively by the 

colours c
1
 and c

2
 and hence �(c

1
) = �(c

2
) =

n

2
. Therefore, � �

(P
n
) = 1 ⋅

n

2
+ 2 ⋅

n

2
=

3n

2
.

(3) � Let n > 1 be an odd integer. Without loss of generality, label the vertices of P
n
 with odd sub-

scripts by the colour c
1
 and the vertices with even subscripts by the colour c

2
. Then, �(c

1
) =

n+1

2
 

and �(c
2
) =

n−1

2
. Therefore, � �

(P
n
) = 1 ⋅

n+1

2
+ 2 ⋅

n−1

2
=

3n−1

2
.� □

In a similar way, the �-chromatic sum of a cycle graph C
n
 can be determined as follows.

Theorem 3.3   The �-chromatic sum of a cycle C
n
 is � �

(C
n
) = 3 ⌈ n

2
⌉.

Proof  Let  be a proper colouring of the cycle C
n
. If n is even,  must contain at least two colours, 

say c
1
 and c

2
 and if n is odd, then  must contain at least three colours, say c

1
, c
2
 and c

3
. Then, we 

consider the following cases.

(1) � Let n be an odd integer. Now, we can assign the colour c
1
 to the vertices having odd subscripts 

other than n, the colour c
2
 to the vertices having even subscripts and the colour c

3
 to the vertex 

v
n
. Hence �(c

1
) = �(c

2
) =

n−1

2
 and �(c

3
) = 1. Therefore, � �

(G) = 1 ⋅
n−1

2
+ 2 ⋅

n−1

2
+ 3 ⋅ 1 = 3 ⋅

n+1

2
.

(2) � Let n be an even integer. Then, as explained in the previous result, we can assign the colour c
1
 

to the vertices having odd subscripts and the colour c
2
 to the vertices having even subscripts. 

Hence �(c
1
) = �(c

2
) =

n

2
. Therefore, � �

(C
n
) = 1 ⋅

n

2
+ 2 ⋅

n

2
= 3 ⋅

n

2
. Combining the above two cas-

es, we have � �
(C
n
) = 3 ⋅ ⌈ n

2
⌉. � □

A wheel graph, denoted by W
n+1

, is defined to be the join of a cycle C
n
 and a trivial graph K

1
. That is, 

W
n+1

= C
n
+ K

1
. The �-chromatic sum of a wheel graph is determined in the following theorem.

�
�
(P
n
) =

1, if n = 1,
3n

2
, if n is even,

3n−1

2
, if n is odd.
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Theorem 3.4  The �-chromatic sum of a wheel graph W
n+1

 is given by

Proof  Let us denote the central vertex of the wheel W
n+1

 by v and the vertices of the outer cycle 
of W

n+1
 by v

1
, v
2
, v
3
,… , v

n
. Let  be a minimal proper colouring of W

n+1
. Then,  must contain three 

colours, say c
1
, c
2
, c
3
, if n is even and it must contain four colours, say c

1
, c
2
, c
3
, c
4
, if n is odd. Hence, 

we have the following two cases.

(1) � Let n be an even integer. Then, in the outer cycle, n
2
 vertices have colour c

1
 and the other n

2
 ver-

tices have the colour c
2
. But the central vertex being adjacent to all vertices of the outer cycle 

must be coloured using a new colour say c
3
. Therefore, �(c

1
) = �(c

2
) =

n

2
 and �(c

3
) = 1. Hence, 

�
�
(G) = 1 ⋅

n

2
+ 2 ⋅

n

2
+ 3 =

3n+6

2
.

(2) � Let n be an odd integer. Then, in the outer cycle C
n
, n−1

2
 vertices have colour c

1
 and n−1

2
 vertices 

have the colour c
2
 and the remaining one vertex has the colour c

3
. As mentioned in the above 

case, the central vertex v must be coloured using a new colour say c
4
. Therefore, 

�(c
1
) = �(c

2
) =

n−1

2
 and �(c

3
) = �(c

4
) = 1 and hence � �

(G) = 1 ⋅
n−1

2
+ 2 ⋅

n−1

2
+ 3 + 4 =

3n+11

2
.� □

The following result describes the �-chromatic sum of a complete graph K
n
.

Proposition 3.5  The �-chromatic sum of a complete graph K
n
 is � �

(K
n
) =

n(n+1)

2
.

Proof  We know that in a proper colouring of K
n
, every vertex has distinct colours. That is, �(K

n
) = n. 

Therefore, �(c
i
) = 1, for all 1 ≤ i ≤ n. Hence, we have � �

(K
n
) =

n∑
i=1

i =
n(n+1)

2
.� □

The �-chromatic sum of a complete bipartite graph is determined in the following result.

Proposition 3.6  The �-chromatic sum of a complete bipartite graph K
m,n

, m ≥ n is � �
(K

m,n
) = m + 2n.

Proof  Assume that G be the complete bipartite graph with a bipartition (X, Y) such that |X| ≥ |Y|. As 
a bipartite graph, G is 2-colourable. Since |X| ≥ |Y|, label every vertex in X by the colour c

1
 and every 

vertex of Y by the colour c
2
. Hence, �(c

1
) = |X| and �(c

2
) = |Y|. Therefore, � �

(G) = |X| + 2|Y|.� □

Let us now recall the definition of a Rasta graph defined in Kok, Sudev, and Sudev (in press) as 
follows.

Definition 3.7  (Kok et al., in press) For a l-term sum set {t
1
, t
2
, t
3
,… , t

l
} with 

 t
1
> t

2
> t

3
> … > t

l
> 1, define the directed graph G(l) with vertices V(G(l)

) = {v
i,j
:1 ≤ j ≤ t

i
, 1 ≤ i ≤ l} 

and the arcs, A(G(l)
) = {(v

i,j
, v

(i+1),m
):1 ≤ i ≤ (l − 1), 1 ≤ j ≤ t

i
 and 1 ≤ m ≤ t

(i+1)
}.

In Kok and Sudev (in press), it is shown that for a Rasta graph R corresponding to the underlying 

graph of G(l) the chromatic number �(R) = 2. Assume, without loss of generality, that 
⌈ l

2
⌉∑

i=i

t
(2i−1)

≥

⌈ l

2
⌉∑

i=i

t
2i

 

if l is even and 
⌈ l

2
⌉∑

i=i

t
(2i−1)

≥

⌊ l

2
⌋∑

i=i

t
2i

 if l is odd. Then, the �-chromatic sum of R is determined in the fol-

lowing theorem.

Theorem 3.8   The �-chromatic sum of a Rasta graph R is given by

�
�
(W

n+1
) =

3n+11

2
, if n is odd,

3n+6

2
, if n is even.

�
�
(R) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

l

2∑
i=1

t
(2i−1)

+ 2

l

2∑
i=1

t
2i
, if l is even,

⌈ l

2
⌉∑

i=1

t
(2i−1)

+ 2

⌊ l

2
⌋∑

i=1

t
2i
, if l is odd.
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Proof   

(1) � Let l be an even integer. Since all vertices corresponding to t
(2i−1)

, 1 ≤ i ≤
l

2
 are non-adjacent 

and hence we can colour these vertices by c
1
. Also, the remaining vertices, corresponding  

to t
2i

, 1 ≤ i ≤
l

2
 are also non-adjacent among themselves and these vertices can be coloured 

using the colour c
2
. That is, �(c

1
) =

l

2∑
i=1

t
(2i−1)

 and �(c
2
) =

l

2∑
i=1

t
2i

. Therefore, in this case 

�
�
(G) =

l

2∑
i=1

t
(2i−1)

+ 2

l

2∑
i=1

t
2i

.

(2) � Let l be an odd integer. Then, as explained in the above case, the ⌈ l

2
⌉ vertices corresponding to 

t
(2i−1)

; 1 ≤ i ≤ ⌈ l

2
⌉ are non-adjacent among themselves and hence we can colour these vertices 

by c
1
. The remaining ⌊ l

2
⌋ vertices corresponding to t

2i
; 1 ≤ i ≤ ⌊ l

2
⌋ are also non-adjacent 

among 
themselves and hence we can colour these vertices by c

2
. Therefore, �(c

1
) =

⌈ l

2
⌉∑

i=1

t
(2i−1)

 
and 

�(c
2
) =

⌊ l

2
⌋∑

i=1

t
2i

 and hence � �
(G) =

⌈ l

2
⌉∑

i=1

t
(2i−1)

+ 2

⌊ l

2
⌋∑

i=1

t
2i

.		�   □

4. The χ+-chromatic sum of certain graphs
We now define a new colouring sum, namely �+-chromatic sum of a given graph G as follows.

Definition 4.1  Let  = {c
1
, c
2
,… , c

k
} be a proper colouring of a graph G. Then, the �+-chromatic sum 

of a graph G, denoted by �+
(G), is defined as �+

(G) = max

�
k∑
i=1

i �(c
i
)

�
, where the sum varies over all 

minimum proper colourings of G.

Analogous to the studies on �-chromatic sum of certain graphs, here we study the �+-chromatic 
sum of the corresponding graphs.

Theorem 4.2   For n ≥ 1, the �+-chromatic sum of a path P
n
 is given by

Proof  If n = 1, we can assign c
1
 to its unique vertex, which shows that �+

(P
n
) = 1. Hence, let n > 1. 

As stated earlier, every path P
n
, n ≥ 2 is 2-colourable. Then, we have to consider the following cases.

(1) � If n is even, as mentioned in Theorem 3.2, the vertices can be coloured alternatively by the 
colours c

1
 and c

2
 and hence in this case, �+

(P
n
) =

3n

2
.

(2) � If n is odd, then the mutually non-adjacent n−1
2

 vertices are coloured by c
1
 and the remaining 

mutually non-adjacent n+1

2
 vertices can be coloured by the colour c

2
. Therefore, 

�
+
(P
n
) = 1 ⋅

n−1

2
+ 2 ⋅

n+1

2
=

3n+1

2
.This completes the proof.� □

The following is an immediate consequence of Theorem 3.2 and Theorem 4.2.

Corollary 4.3  For a path P
n
, n ≥ 1 it follows that, �+

(P
n
) = �

�
(P
n
) if n = 1 or even, else 

�
+
(P
n
) = �

�
(P
n
) + 1.

In the following result, let us determine the �+-chromatic sum of cycles.

Theorem 4.4   The �+-chromatic sum of a cycle C
n
 is given by

�
+
(P
n
) =

⎧
⎪
⎨
⎪⎩

1, if n = 1,
3n

2
, if n is even,

3n+1

2
, if n is odd.

�
+
(C
n
) =

{
3n

2
, if n is even,

5n−3

2
, if n is odd.
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Proof  As stated earlier, if n is even, then C
n
 is 2-colourable and if n is odd, C

n
 is 3-colourable. Then, 

we have to consider the following cases.

(1) � Let n be an even integer. Then, the vertices of C
n
 can be alternatively coloured by two colours 

c
1
 and c

2
. We can see that exactly n

2
 vertices in C

n
 have the colours c

1
 and c

2
 each. Therefore, 

�(c
1
) = �(c

2
) =

n

2
. Therefore, �+

(C
n
) =

3n

2
.

(2) � Let n be an odd integer. Then, we can assign colour c
3
 to n−1

2
 vertices, colour c

2
 to n−1

2
 vertices and 

colour c
1
 to one vertex, which provides a 3-colouring such that �(c

1
) = 1, �(c

2
) = �(c

3
) =

n−1

2
. 

Therefore, �+
(C
n
) = 5 ⋅

n−1

2
+ 1 =

5n−3

2
.� □

The following theorem describes the �+-chromatic sum of a wheel graph W
n+1

.

Theorem 4.5   The �+-chromatic sum of a wheel graph W
n+1

 is given by

Proof  Let v
1
, v
2
, v
3
,… , v

n
 be the vertices of the outer cycle the wheel graph and v be its central ver-

tex. We have already mentioned in Theorem 3.4 that if n is even, then W
n+1

 is 3-colourable and if n is 
odd, then W

n+1
 is 4-colourable. Then, we have the following cases.

(1) � Let n be an even integer. Then, we can assign the colour c
3
 to n

2
 vertices of the outer cycle, the 

colour c
2
 to the remaining n

2
 vertices of the outer cycle and the colour c

1
 to the central vertex. 

Hence, �(c
3
) = �(c

2
) =

n

2
 and �(c

1
) = 1. Therefore, �+

(W
n+1

) = 3 ⋅
n

2
+ 2 ⋅

n

2
+ 1 =

5n+2

2
.

(2) � Let n be an odd integer. Then, we can assign colour c
3
 to the n−1

2
 non-adjacent vertices, assign 

colour c
3
 to the n−1

2
 non-adjacent vertices, colour c

3
 for the remaining single vertex and colour 

c
4
 to the central vertex, so that we get �(c

3
) = �(c

4
) =

n−1

2
, �(c

2
) = 1 and �(c

1
) = 1. Therefore, we 

have � �
(W

n+1
) = 4 ⋅

n−1

2
+ 3 ⋅

n−1

2
+ 2 ⋅ 1 + 1 ⋅ 1 =

7n−1

2
.� □

The following result is an obvious and straightforward result on the �+-chromatic sum of com-
plete graphs.

Proposition 4.6  The �+-chromatic sum of a complete graph K
n
 is given by �+

(K
n
) = �

�
(G) =

n(n+1)

2
.

Proof  Note that �(K
n
) = n and hence as mentioned in Theorem 3.8, all vertices have distinct colours. 

That is, we have �(c
i
) = 1; for all 1 ≤ i ≤ n. Hence, �+

(K
n
) =

n∑
i=1

i =
n(n+1)

2
. � □

An obvious and straightforward result on the �+-chromatic sum of complete bipartite graphs is 
given below.

Theorem 4.7  Consider the �+-chromatic sum of a complete bipartite graph K
m,n

, m ≥ n ≥ 1, 
�

+
(K

m,n
) = 2m + n.

Proof  Since n ≥ m the maximum sum is obtained by allocating colour c
2
 to the n non-adjacent verti-

ces and c
1
 to the m non-adjacent vertices. So �(c

1
) = n and �(c

2
) = m. Therefore, �+

(K
m,n

) = 2m + n. □

The �+-chromatic sum of Rasta graph can be determined as in the following theorem.

Theorem 4.8   The �+-chromatic sum of Rasta graph R is given by

�
+
(W

n+1
) =

{
5n+2

2
, if n is even,

7n−1

2
, if n is odd.

�
+
(R) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

2

l

2∑
i=1

t
(2i−1)

+

l

2∑
i=1

t
2i
, if l is even,

2

⌈ l

2
⌉∑

i=1

t
(2i−1)

+

⌊ l

2
⌋∑

i=1

t
2i
, if l is odd.
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Proof   

(1) � Let l be an even integer. Since all n
2
 vertices, corresponding to t

(2i−1)
, for all 1 ≤ i ≤

l

2
 are non- 

adjacent, these vertices can be coloured using the colour c
2
. By the same reason, the colour c1  

is allocated to the vertices corresponding to t
2i

, 1 ≤ i ≤
l

2
. Hence, �(c

1
) =

l

2∑
i=1

t
2i

 and �(c
2
) =

⌈ l

2
⌉∑

i=1

t
(2i−1). 

Hence, �+
(R) = 2

l

2∑
i=1

t
(2i−1)

+

l

2∑
i=1

t
2i

 for the even values of n.

(2) � If l is an odd integer, then the n+1
2

 mutually non-adjacent vertices can be coloured using c
2
 and 

the remaining n−1

2
 mutually non-adjacent vertices can be coloured using c

1
. Hence, 

�
+
(R) = 2

⌈ l

2
⌉∑

i=1

t
(2i−1)

+

⌊ l

2
⌋∑

i=1

t
2i

, for the odd values of n.� □

5. b+-Chromatic Sum of Certain Graphs
Analogous to the �-chromatic sum and �+-chromatic sum of graphs, we can also define the b+ 
chromatic sum as follows.

Definition 5.1  The  b+-chromatic sum of a graph G, denoted by �+
(G), is defined as �+

(G) = max{
k∑
i=1

i �(c
i
)}, 

where the sum varies over a minimal b-colouring using �(G) colours.

Now, for determining the respective values of �+ for different graph classes, we use the proof tech-
niques followed in Lisna and Sunitha (2015). Reversing the colouring pattern explained in Lisna and 
Sunitha (2015), we work out the b+-chromatic sum of given graph classes. Hence, we have the fol-
lowing results.

Theorem 5.2  The b+-chromatic sum of a path P
n
,n ≥ 2 is given by

Proof  We know that a b-colouring of a path P
n
 requires at most three colours. If 1 < n ≤ 4, the  

b-chromatic number of P
n
 is 2. In this context, the following cases are to be considered.

(1) � Let n be even. That is, n = 2, 4. If n = 2, then, one of its two vertices has colour c
1
 and the other 

vertex has colour c
2
. Hence, the b+-chromatic sum of P

2
 is 2 ⋅ 1 + 1 ⋅ 1 = 3. If n = 4, Let 


1
= {v

2
, v
4
} and 

2
= {v

1
, v
3
} be the colour classes of the colours c

1
 and c

2
, respectively, so that 

 = {c
1
, c
2
} is a b-colouring of P

n
. Then, the b+-chromatic sum of P

4
 is given by 2 ⋅ 2 + 1 ⋅ 2 = 6. 

Combining these two cases, it follows that ��
(P
n
) = �

+
(P
n
) =

3n

2
, for n = 2, 4.

(2) � Let n = 3. Then, let 
1
= {v

2
} and 

2
= {v

1
, v
3
}, so that  = {c

1
, c
2
} is a b+-colouring of P

n
. Then, 

the b+-chromatic sum of P
4
 is given by 2 ⋅ 2 + 1 ⋅ 1 = 5. If n ≥ 5, the b-chromatic number of a 

path P
n
 is 3. Hence, we have to consider the following cases.

(3) � Let n ≥ 5 and n be odd. Now, let  = {c
1
, c
2
, c
3
} be a colouring on P

n
 such that 

1
= {v

3
} be the 

colour class of the colour c
1
, 

2
= {v

2
, v
5
, v
7
,… , v

n
} be the colour class of the colour c

2
 and 


3
= {v

1
, v
4
, v
6
,… , v

n−1
} be the colour class of colour c

3
. Clearly, this colouring is a b+-colouring 

of P
n
. Then, we have �(c

1
) = 1, �(c

2
) =

n−1

2
 and �(c

3
) =

n−1

2
. Hence, for n ≥ 5 and n is odd, 

�
+
(P
n
) =

3

2
(n − 1) +

2

2
(n − 1) + 1 =

5n−3

2
.

(4) � Let n ≥ 5 and n be even. Here, assume that  = {c
1
, c
2
, c
3
} be a colouring on P

n
 such that the 

colour classes 
1
,

2
 and 

3
 are exactly as defined in the previous case. This colouring is obvi-

ously a b+ colouring of P
n
. Then, it follows that �(c

1
) = 1, �(c

2
) =

n−2

2
 and �(c

3
) =

n

2
. Hence, for 

n ≥ 6, k is even, �+
(P
n
) = 3 ⋅

n

2
+ 2 ⋅

n−2

2
+ 1 =

5n−2

2
.� □

�
+
(P
n
) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

5n−3

2
, if n ≥ 5, n is odd,

5n−2

2
, if n ≥ 6, n is even,

5, if n = 3,
3n

2
, if n ∈ {2, 4}.
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Similarly, the b+-chromatic sum of a cycle C
n
 is determined in the following theorem.

Theorem 5.3  The b+-chromatic sum of a cycle C
n
 is given by

Proof  First, let n = 4. It is to be noted that the b-chromatic number of the cycle C
4
 is 2, where the 

vertices v
1
 and v

3
 have colour c

1
 and the vertices v

2
 and v

4
 have the colour c

2
. Therefore, the b+-chro-

matic sum of C
4
 is 2 ⋅ 2 + 2 ⋅ 1 = 6.

Next, assume that n ≠ 4. We know that the b-chromatic number of a cycle C
n
,n ≠ 4 is 3. Let 

 = {c
1
, c
2
, c
3
} be a b-colouring of a given cycle C

n
. Here, we have to consider the following cases.

(1) � Let n be odd. Now a b-colouring which forms the colour classes, 
1
= {v

3
}, 

2
= {v

1
, v
4
, v
6
,… , v

n−1
} 

and 
3
= {v

2
, v
5
, v
7
,… , v

n
}, yield the desirable b-colouring such that �(c

1
) = 1, �(c

2
) =

n−1

2
 and 

�(c
3
) =

n−1

2
. Therefore, here the b+-chromatic sum is given by 3 ⋅ n−1

2
+ 2 ⋅

n−1

2
+ 1 ⋅ 1 =

5n−3

2
.

(2) � Let n be even. Now, a b-colouring which forms the colour classes, 
1
= {v

3
, v
n
}, 


2
= {v

1
, v
4
, v
6
,… , v

n−2
} and 

3
= {v

2
, v
5
, v
7
,… , v

n−1
}, yield the desirable b-colouring such that 

�(c
1
) = 2, �(c

2
) =

n−2

2
 and �(c

3
) =

n−2

2
. Therefore, we have �+

(C
n
) = 3 ⋅

n−2

2
+ 2 ⋅

n−2

2
+ 2 =

5n−6

2
.This 

completes the proof. � □

Now, the b+-chromatic sum of a wheel graph W
n+1

 is determined in the following result.

Theorem 5.4   The b+-chromatic sum of a wheel graph W
n+1

 is given by

Proof  We have already stated that the b-chromatic number of the cycle C
4
 is 3. Therefore, a b-co-

louring of W
5
= C

4
+ K

1
 must contain 3 colours, say c

1
, c
2
 and c

3
. Let the corresponding colour classes 

be 
1
= {v},

2
= {v

1
, v
3
} and 

3
= {v

2
, v
4
}, where v is the central vertex of the wheel graph. Then, 

�(c
1
) = 1, �(c

2
) = 2 and �(c

3
) = 2. Hence, �+

(W
5
) = 1 ⋅ 1 + 2 ⋅ 2 + 3 ⋅ 2 = 11. Next, assume that n ≠ 4. 

Then, every b-colouring of W
n+1

 must contain 4 colours. Let  = {c
1
, c
2
, c
3
, c
4
} be the required colour-

ing of G. Then, we have to consider the following cases.

(1) � Assume that n is odd. Then, colour the vertices of W
n+1

 using the colours in  in such a way that 
the corresponding colour classes are 

1
= {v}, 

2
= {v

3
}

3
= {v

1
, v
4
, v
6
,… , v

n−1
} and 


4
= {v

2
, v
5
, v
7
,… , v

n
}. Therefore, we have �(c

1
) = �(c

2
) = 1 and �(c

3
) =

n−1

2
 and �(c

4
) =

n−1

2
. 

Then, we have �+
(W

n+1
) = 4 ⋅

n−1

2
+ 3 ⋅

n−1

2
+ 2 + 1 =

7n−1

2
.

(2) � Assume that n is even. Colour the vertices of W
n+1

 in such a way that the corresponding colour 
classes are 

1
= {v}, 

2
= {v

3
, v
n
}

3
= {v

1
, v
4
, v
6
,… , v

n−2
} and 

4
= {v

2
, v
5
, v
7
,… , v

n−1
}. Then, we 

have �(c
1
) = 1, �(c

2
) = 2 and �(c

3
) = �(c

4
) =

n−2

2
. Hence, 

�
+
(W

n+1
) = 4 ⋅

n−2

2
+ 3 ⋅

n−2

2
+ 2 ⋅ 2 + 1 =

7n−4

2
.� □

The following theorem describes the �+-chromatic number of a complete bipartite graph.

Theorem 5.5   The b+-chromatic sum of a complete bipartite graph K
m,n
, m ≥ n is �+

(K
m,n

) = 2m + n.

Proof  The result follows directly from the proof of Theorem 4.7.� □

�
+
(C
n
) =

⎧
⎪
⎨
⎪⎩

6, if n = 4,
5n−3

2
, if n is odd,

5n−6

2
, if n is even, n ≠ 4.

�
+
(W

n+1
) =

⎧
⎪
⎨
⎪⎩

11, if n = 4,
7n−1

2
, if n is odd,

7n−4

2
, if n is even,n ≠ 4.
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The b-chromatic sum and the b+-chromatic sum of Rasta Graph R is determined in the theorem 
given below.

Theorem 5.6   The b-chromatic sum of a Rasta graph R is given by

and the b+-chromatic sum of R is given by

Proof  The proof follows directly from the proofs of Theorem 3.8 and 4.8.� □

6. Two Thue chromatic sums of a path
A finite sequence S = (q

1
,q

2
, q

3
,… ,q

t
) of symbols of any alphabet is known to be non-repetitive if 

for all its subsequences (r
1
, r
2
, r
3
,… , r

2m
); 1 ≤ m ≤

t

2
, the condition r

i
≠ r

2i
,∀1 ≤ i ≤ m, holds.

Let G be a simple undirected graph on n vertices and let a minimum set of colours  allow a proper vertex 
colouring of G. If the sequence of vertex colours of any path of even and finite length in G is non-repetitive, 
then this proper colouring is said to be a Thue colouring of G (see Alon, Grytczuk, Hauszczak & Riordan, 2002).

The Thue chromatic number of G, denoted �(G), is defined as the minimum number of colours  
required for a Thue colouring of G.

It is known that �(P
1
) = 1, �(P

2
) = �(P

3
) = 2 and for n ≥ 4, �(P

n
) = 3. Determining ��

(P
n
) is a 

hard problem, hence the problem is very hard for graphs in general.

The following lemma is the motivation for our further discussions in this paper.

Lemma 6.1  Škrabul’áková, in press Up to equivalence, there is exactly one non-repetitive 3-colouring 
of the cycle C

11
.

In view of this lemma, we restrict our further discussion to the path P
11

. Let the vertices of P
n
 be 

labelled from left to right to be v
1
, v
2
, v
3
,… v

11
. Recall that the colouring sum of a colouring  is  

defined by �() =
k∑
i=1

i �(c
i
). The possible minimum Thue colourings of P

11
 are listed below.

(1) � 
1
= (c

1
, c
2
, c
1
, c
3
, c
1
, c
2
, c
3
, c
1
, c
3
, c
2
, c
3
) and �(

1
) = 22

(2) � 
2
= (c

1
, c
2
, c
1
, c
3
, c
1
, c
2
, c
3
, c
2
, c
1
, c
2
, c
3
) and �(

2
) = 21

(3) � 
3
= (c

1
, c
2
, c
1
, c
3
, c
2
, c
1
, c
2
, c
3
, c
2
, c
1
, c
3
) and �(

3
) = 21

(4) � 
4
= (c

1
, c
2
, c
1
, c
3
, c
2
, c
3
, c
1
, c
3
, c
2
, c
1
, c
3
) and �(

4
) = 22

(5) � 
5
= (c

1
, c
2
, c
1
, c
3
, c
1
, c
2
, c
3
, c
1
, c
3
, c
2
, c
1
) and �(

5
) = 20

(6) � 
6
= (c

1
, c
2
, c
1
, c
3
, c
2
, c
3
, c
1
, c
3
, c
2
, c
1
, c
2
) and �(

6
) = 21

�
�
(R) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

⌈ l

2
⌉∑

i=1

t
(2i−1)

+ 2

⌈ l

2
⌉∑

i=1

t
2i
, if l is even,

⌈ l

2
⌉∑

i=1

t
(2i−1)

+ 2

⌊ l

2
⌋∑

i=1

t
2i
, if l is odd,

�
+
(R) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

2

⌈ l

2
⌉∑

i=1

t
(2i−1)

+

⌈ l

2
⌉∑

i=1

t
2i
, if l is even,

2

⌈ l

2
⌉∑

i=1

t
(2i−1)

+

⌊ l

2
⌋∑

i=1

t
2i
, if l is odd.
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(7) � 
7
= (c

2
, c
1
, c
2
, c
3
, c
2
, c
1
, c
3
, c
2
, c
3
, c
1
, c
3
) and �(

7
) = 23

(8) � 
8
= (c

2
, c
1
, c
2
, c
3
, c
2
, c
1
, c
3
, c
1
, c
2
, c
1
, c
3
) and �(

8
) = 21

(9) � 
9
= (c

2
, c
1
, c
2
, c
3
, c
1
, c
2
, c
1
, c
3
, c
1
, c
2
, c
3
) and �(

9
) = 21

(10) � 
10

= (c
2
, c
1
, c
2
, c
3
, c
1
, c
3
, c
2
, c
3
, c
1
, c
2
, c
3
) and �(

10
) = 23

(11) � 
11

= (c
2
, c
1
, c
2
, c
3
, c
2
, c
1
, c
3
, c
2
, c
3
, c
1
, c
2
) and �(

11
) = 22

(12) � 
12

= (c
2
, c
1
, c
2
, c
3
, c
1
, c
3
, c
2
, c
3
, c
1
, c
2
, c
1
) and �(

12
) = 21

(13) � 
13

= (c
3
, c
2
, c
3
, c
1
, c
3
, c
2
, c
1
, c
3
, c
1
, c
2
, c
1
) and �(

13
) = 22

(14) � 
14

= (c
3
, c
2
, c
3
, c
1
, c
3
, c
2
, c
1
, c
2
, c
3
, c
2
, c
1
) and �(

14
) = 23

(15) � 
15

= (c
3
, c
2
, c
3
, c
1
, c
2
, c
3
, c
2
, c
1
, c
2
, c
3
, c
1
) and �(

15
) = 23

(16) � 
16

= (c
3
, c
2
, c
3
, c
1
, c
2
, c
1
, c
3
, c
1
, c
2
, c
3
, c
1
) and �(

16
) = 22

(17) � 
17

= (c
3
, c
2
, c
3
, c
1
, c
3
, c
2
, c
1
, c
3
, c
1
, c
2
, c
3
) and �(

17
) = 24

(18) � 
18

= (c
3
, c
2
, c
3
, c
1
, c
2
, c
1
, c
3
, c
1
, c
2
, c
3
, c
2
) and �(

18
) = 23

(19) � 
19

= (c
1
, c
3
, c
1
, c
2
, c
1
, c
3
, c
2
, c
1
, c
2
, c
3
, c
2
) and �(

19
) = 21

(20) � 
20

= (c
1
, c
3
, c
1
, c
2
, c
1
, c
3
, c
2
, c
3
, c
1
, c
3
, c
2
) and �(

20
) = 22

(21) � 
21

= (c
1
, c
3
, c
1
, c
2
, c
3
, c
1
, c
3
, c
2
, c
3
, c
1
, c
2
) and �(

21
) = 22

(22) � 
22

= (c
1
, c
3
, c
1
, c
2
, c
3
, c
2
, c
1
, c
2
, c
3
, c
1
, c
2
) and �(

22
) = 21

(23) � 
23

= (c
1
, c
3
, c
1
, c
2
, c
1
, c
3
, c
2
, c
1
, c
2
, c
3
, c
1
) and �(

23
) = 20

(24) � 
24

= (c
1
, c
3
, c
1
, c
2
, c
3
, c
2
, c
1
, c
2
, c
3
, c
1
, c
3
) and �(

24
) = 22From the above list, we note 

that ��
(P
11
) = 20 and �+

(P
11
) = 24. We strongly believe that the next conjecture holds. 

Conjecture 6.2 For a path P
n
, n ≥ 4, there is a unique permutation over all proper b-colourings 

for which �+
(P
n
) is obtained, and exactly two permutations for which ��

(P
n
) is obtained.

The following general result is of importance for all variations of colouring sums discussed thus far. 
It holds for improper colourings as well. A general colouring which meets some general colouring 
index is called the �-chromatic number of G and denoted, �(G).

Theorem 6.3 (Makungu’s Theorem1) If the set of colours  = {c
j
:1 ≤ j ≤ k} allows a general colouring, 

 :f (v
i
) = c

l
, l ∈ {1, 2, 3,… , k} of G, such that �() = �

�
(G) = min{

k∑
i=1

i ⋅ �(c
i
):∀-colourings of G}, then 

�
+
(G) =

k∑
i=1

i ⋅ �(c
(k+1)−i

).

Proof  Since for a
1
≥ a

2
 it follows that 1 ⋅ a

1
+ 2 ⋅ a

2
≤ 2 ⋅ a

1
+ 1 ⋅ a

2
, it follows through immediate in-

duction that if a
1
≥ a

2
≥ a

3
≥ ⋯ ≥ a

k
 then for permuted one-on-one allocations of the elements in 

b
i
∈ {1, 2, 3,⋯ , k} to form 

k∑
i=1

a
i
b
i
 we have, min{

k∑
i=1

a
i
b
i
} =

k∑
i=1

i ⋅ a
i
 and max{

k∑
i=1

a
i
b
i
} =

k∑
i=1

i ⋅ a
(k+1)−i

. Hence, 

if a �-colouring of G is allowed by  = {c
1
, c
2
, c
3
,… , c

k
} such that, �(c

1
) ≥ �(c

2
) ≥ �(c

3
) ≥ … ≥ �(c

k
) 

then, ��
(G) =

k∑
i=1

i ⋅ �(c
i
) and �+

(G) =
k∑
i=1

i ⋅ �(c
(k+1)−i

).�  □
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