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Abstract: Let X be a non-empty ground set and P(X) be its power set. A set-labeling (or a set-valuation) of
a graphG is an injective set-valued function f : V(G)→P(X) such that the induced function f∗ : E(G)→P(X)
is defined by f∗(uv) = f(u) ∗ f(v), where f(u) ∗ f(v) is a binary operation of the sets f(u) and f(v). A graph
which admits a set-labeling is known to be a set-labeled graph. A set-labeling f of a graph G is said to be
a set-indexer of G if the associated function f∗ is also injective. In this paper, we introduce a new notion,
namely, product set-labeling of graphs as an injective set-valued function f : V(G)→P(ℕ) such that the
induced edge-function f∗ : V(G)→P(ℕ) is defined as f∗(uv) = f(u) ∗ f(v) for all uv ∈ E(G), where f(u) ∗ f(v)
is the product set of the set-labels f(u) and f(v), whereℕ is the set of all positive integers and discuss certain
properties of the graphs which admit this type of set-labeling.

Keywords: Set-labeling of graphs, product set-labeling of graphs, uniform product set-labeling of graphs,
geometric product set-labeling of graphs
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1 Introduction
For all terms and definitions, not defined specifically in this paper, we refer to [2, 3, 5, 10]. Unless mentioned
otherwise, all graphs considered here are simple, finite, undirected and have no isolated vertices.

Let X be a non-empty set and P(X) be its power set. A set-labeling (or a set-valuation) of a graph G
is an injective function f : V(G)→P(X) such that the induced function f⊕ : E(G)→P(X) is defined by
f⊕(uv) = f(u) ⊕ f(v) for all uv ∈ E(G), where ⊕ is the symmetric difference of two sets. A graph Gwhich admits
a set-labeling is called a set-labeled graph (or a set-valued graph), see [1].

A set-indexer of a graph G is an injective function f : V(G)→P(X) such that the induced function
f⊕ : E(G)→P(X) is also injective. A graphGwhich admits a set-indexer is called a set-indexed graph (see [1]).

Several types of set-valuations of graphs have been introduced in later literature, and the properties and
structural characteristics of such set-valued graphs have been studied in a rigorous manner. A relevant and
important set-labeling, in this context, is the integer additive set-labeling of graphs which is defined as an in-
jective set-valued function f : V(G)→P(X) such that the induced edge function f+ : E(G)→P(X) is defined
by f+(uv) = f(u) + f(v) for all uv ∈ E(G), where X is a non-empty set of non-negative integers and f(u) + f(v)
is the sumset of the set-labels f(u) and f(v). Certain types of integer additive set-labeled graphs are studied in
[4, 7–9].

Motivated by these studies ondifferent types of set-valuations of graphs, in this paper,we introduce anew
type of set-labeling, namely, product set-labeling of graphs and study the properties and characteristics of the
graphs which admit this type of set-labeling.
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2 Product set-labeling of graphs
Let A and B be two sets of integers. Then the product set of A and B, denoted by A ∗ B, is the set defined by
A ∗ B = {ab : a ∈ A, b ∈ B}. Note that A ∗ 0 = 0 and A ∗ {0} = {0}. Also, if either A or B is a countably infinite
set, then their product set is also countably infinite. In view of these facts, we restrict our studies to the non-
empty finite sets of positive integers.

Analogous to the corresponding results on sumsets of sets of integers (see [6]), we have the following
result on the cardinality of the product set of two sets of positive integers.

Theorem 2.1. If A and B are two non-empty finite sets of positive integers, then |A| + |B| − 1 ≤ |A ∗ B| ≤ |A| |B|.

Theorem 2.2. For any two sets A and B of positive integers, |A ∗ B| = |A| + |B| − 1 if and only if A and B are
geometric progressions with the same common ratio.

Using the above mentioned concepts of product sets of sets of positive integers, we introduce the notion of
the product set-labeling of a graph as given below.

Definition 2.3. Let ℕ be the set of all positive integers and P(ℕ) be its power set. The product set-labeling
of a graph G is an injective set-valued function f : V(G)→P(ℕ) such that the induced edge-function
f∗ : V(G)→P(ℕ) is defined as f∗(uv) = f(u) ∗ f(v) for all uv ∈ E(G), where f(u) ∗ f(v) is the product set of the
set-labels f(u) and f(v). A graph G which admits a product set-labeling is called a product set-labeled graph.

Definition 2.4. A product set-labeling f : V(G)→P(ℕ) of a graph G is said to be a product set-indexer if the
induced edge-function f∗ : V(G)→P(ℕ), definedby f∗(uv) = f(u) ∗ f(v) for all uv ∈ E(G), is also an injective
function.

The cardinality of the set-label of an element (a vertex or an edge) of G is called label size of that element.
A product set-labeling f of a graph G is said to be a uniform product set-labeling if all edges of G have the same
label size under f . In particular, a product set-labeling f of a graph G is said to be k-uniform if |f∗(uv)| = k for
all uv ∈ E(G).

In view of Theorem 2.1, the bounds for the label size of edges of a product set-labeled graph G is given by

|f(u)| + |f(v)| − 1 ≤ |f∗(uv)| = |f(u) ∗ f(v)| ≤ |f(u)| |f(v)| for all uv ∈ E(G). (1)

The product set-labelings which satisfy the bounds of this inequality are of special interest. If the cardi-
nality of the vertex set-labels of G, under a product set-labeling f , attains the upper bound of inequality (1),
then f is called a strong product set-labeling of G. Before proceeding to investigate the conditions for the ex-
istence of a strong product set-labeling, we require the following notion.

Definition 2.5. Let A be a non-empty set of positive integers. Then the quotient set of the set A, denoted by
QA, is defined asQA = { ab : a, b ∈ A, a ≥ b}. That is,QA is the set of all rational numbers, greater than or equal
to 1, which is formed by the elements of the set A.

In viewof this notion,we establish anecessary and sufficient condition for a graphG to admit a strongproduct
set-labeling in the following theorem.

Theorem 2.6. A product set-labeling f of a graph G is a strong product set-labeling if and only if the quotient
sets of the set-labels of any pair of adjacent vertices of G are disjoint.

Proof. Let f be a product set-labeling of a graph G and let u and v be any two adjacent vertices in G.
First, assume that f is a strong product set-labeling of G. Then we have |f(u) ∗ f(v)| = |f(u)| |f(v)| for all

uv ∈ E(G). This is possible only when ac ̸= bd for any two distinct elements a, b ∈ f(u) and any two distinct
elements c, d ∈ f(v). That is, a

b ̸=
c
d . Since

a
b ∈ Qf(u) and c

d ∈ Qf(v), we have Qf(u) ∩ Qf(v) = 0.
If possible, let f be not a strong product set-labeling of G. Then |f(u) ∗ f(v)| < |f(u)| |f(v)| for some

uv ∈ E(G). That is, there exist at least two elements a, b ∈ f(u) and at least two elements c, d ∈ f(v) such
that ac = bd. That is, a

b =
c
d . Hence, Qf(u) ∩ Qf(v) ̸= 0. This completes the proof.
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By saying that a set is a geometric progression, we mean that the elements of that set is in geometric progres-
sion. If the context is clear, the common ratio of the set-label of an element (a vertex or an edge) in G may be
called the common ratio of that element.

In viewof Theorem2.2,we also note that the vertex set-labels inG, under the product set-labeling f which
attains the lower bound of inequality (1), are geometric progressions having the same common ratio. This fact
creates much interest in investigating the set-labels of the elements of G which are geometric progressions.
Hence, we have the following notion.

Definition 2.7. A product set-labeling f : V(G)→P(ℕ) of a graph G is said to be a geometric product set-
labeling if the set-labels of all elements (vertices and edges) of G with respect to f are geometric progressions.

The following theorem discusses the conditions required for a product set-labeling f of a graph G to be a geo-
metric product set-labeling of G.

Theorem 2.8. A product set-labeling f : V(G)→P(ℕ) of a graph G is a geometric product set-labeling of G if
and only if for every edge of G, the common ratio of one end vertex is a positive integral power of the common
ratio of the other end vertex, where this power is less than or equal to the label size of the end vertex having
smaller common ratio.

Proof. Let f be a product set-labeling of a graph G under which every vertex set-label is a geometric progres-
sion, and let u and v be any two adjacent vertices of G. Let ru and rv be the common ratios of u and v, respec-
tively, such that ru ≤ rv. Let the set-labels of u and v be given by f(u) = {ai = a(ru)i−1 : a ∈ℕ, 0 ≤ i ≤ |f(u)| = m}
and f(u) = {bj = b(rv)j−1 : b ∈ ℕ, 0 ≤ j ≤ |f(v)| = n}. Now, consider the following sets:

A0 = f(u) ∗ {b0} = {ab, abru , abr2u , . . . , ab(ru)m−1},
A1 = f(u) ∗ {b1} = {abrv , abrurv , abr2urv , . . . , ab(ru)m−1rv},

...
Aj = f(u) ∗ {bj} = {abr

j
v , abrur

j
v , abr2ur

j
v , . . . , ab(ru)m−1rjv},

...
An−1 = f(u) ∗ {bn−1} = {abrn−1v , abrurn−1v , abr2urn−1v , . . . , ab(ru)m−1rn−1v }.

Here we can see that f∗(uv) = ⋃n−1
j=0 Aj.

Now, assume that rv = (ru)k for some positive integer k ≤ |f(u)| = m. Then either some of the initial ele-
ments of the set Aj+1 coincides with some final elements of Aj or the ratio between the first element of Aj+1
and the final element of Aj is ru for 0 ≤ j ≤ n − 1. In both cases Aj ∪ Aj+1 is a geometric progression for all
0 ≤ j ≤ n − 1. Hence, f∗(uv) is a geometric progression for all edges uv ∈ E(G), and hence f is a geometric
product set-labeling of G.

If rv = (ru)k and k ≥ |f(u)|, then, for 0 ≤ j ≤ n − 1, we note the following facts:
(i) Aj and Aj+1 are geometric progressions with the same common difference ru,
(ii) Aj ∩ Aj+1 = 0,
(iii) Aj ∪ Aj+1 is not a geometric progression, as the ratio between the first element of Aj+1 and the final ele-

ment of Aj is not equal to ru.
Therefore, in this case, f∗(uv) is not a geometric progression, and hence f is not a geometric product set-
labeling of G.

Now, consider the case that rv ̸= (ru)k for any positive integer k. Then Aj and Aj+1 are geometric pro-
gressions with different common ratios, and hence it is clear that Aj ∪ Aj+1 is not a geometric progression.
Therefore, in this case also, f∗(uv) is not a geometric progression, and hence f is not a geometric product
set-labeling of G. This completes the proof.

The following result describes a necessary and sufficient condition for a complete graph to admit a geometric
product set-labeling.

Corollary 2.9. A complete graph Kn admits a geometric product set-labeling if and only if the common ratio of
every vertex is either an integral power or a root of the common ratios of all other vertices of Kn.
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Proof. Since any two vertices in Kn are adjacent to each other, the proof follows as an immediate consequence
of Theorem 2.8.

The characteristic index of an edge e = uv of a product set-labeled graph G is the number k ≥ 1, such that
rv = (ru)k, where ru and rv are the common ratios of the set-labels of the vertices u and v (or, equivalently, the
common ratios of u and v), respectively.

The following result discusses the label size of the edges of a graph G which admits a geometric product
set-labeling.

Proposition 2.10. Let f be a geometric product set-labeling of a graph G and let u and v be two adjacent ver-
tices in G with the common ratios ru and rv such that ru ≤ rv. Then the label size of the edge uv is given by
|f∗(uv)| = |f(u)| + k (|f(v)| − 1), where k is the characteristic index of the edge uv.
Proof. Since f is a geometric product set-labeling of G, by Theorem 2.8, for any adjacent vertices u and vwith
the common ratios ru and rv such that ru ≤ rv, we have rv = (ru)k, where k is a positive integer less than or
equal to |f(u)|. Let f(u) = {ari−1u : a ∈ ℕ, 0 ≤ i ≤ |f(u)|} and f(v) = {brj−1v : b ∈ ℕ, 0 ≤ j ≤ |f(v)|}. Thenwe have

f∗(uv) = {abri−1u rj−1v : a, b ∈ ℕ, 0 ≤ i ≤ m, 0 ≤ j ≤ n}

= {abri−1u (ru)k
j−1 : a, b ∈ ℕ, 0 ≤ i ≤ m, 0 ≤ j ≤ n}

= {abr(i−1)+k(j−1)u : a, b ∈ ℕ, 0 ≤ i ≤ m, 0 ≤ j ≤ n}.

Therefore, |f∗(uv)| = m + k(n − 1) = |f(u)| + k(|f(v)| − 1).
The following theorem describes a necessary and sufficient condition for a geometric product set-labeling of
a graph G to be a strong product set-labeling of G.

Theorem 2.11. A geometric set-labeling f of a graph G is a strong product set-labeling of G if and only if the
characteristic index of every edge of G is equal to the label size of its end vertex having smaller common ratio.

Proof. Let f be a geometric product set-labeling ofG and let u and v be twoadjacent vertices ofGwith common
ratios ru and rv, respectively, such that ru ≤ rv.

First, assume that f is also a strong product set-labeling of G. Then we have |f∗(uv)| = |f(u)| |f(v)| for all
uv ∈ E(G). But, by Proposition 2.10, we have |f∗(uv)| = |f(u)| + k(|f(v)| − 1). Therefore, from the above two
equations, we get |f(u)| |f(v)| = |f(u)| + k(|f(v)| − 1), and hence

k = |f(u)| |f(v)| − |f(u)|
(|f(v)| − 1) = |f(u)|.

Conversely, assume that the characteristic index of every edge of G is equal to the label size of its end
vertex having smaller common ratio. That is, let k = |f(u)|. Then we have

|f∗(uv)| = |f(u)| + k(|f(v)| − 1)
= |f(u)| + |f(u)|(|f(v)| − 1)
= |f(u)| |f(v)| for all uv ∈ E(G).

Therefore, f is a strong product set-labeling of G. This completes the proof.

When the set-labels of two adjacent vertices are geometric progressionswith the same common ratio, then the
characteristic index of the edge between them is 1. Invoking this fact, we define a particular type of geometric
product set-labeling as follows.

Definition 2.12. An isogeometric product set-labeling of a graph G is a product set-labeling of G with respect
to which the set-labels of all elements of G are geometric progressions with the same common ratio.

In view of Theorem 2.2, we note that for any graph G which admits an isogeometric product set-labeling,
the label size of every edge is one less than the sum of the label sizes of its end vertices. Note also that the
characteristic index of every edge of G is 1.
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The following is an obvious result on the admissibility of an isogeometric product set-labeling by any
given graph.

Theorem 2.13. Every graph admits an isogeometric product set-labeling.

Proof. Let V = {v1, v2, v3, . . . , vn} be the vertex set of the given graph G. Choose the following two sets:
A = {ai ∈ ℕ : 1 ≤ i ≤ |V| = n} and B = {mi ∈ ℕ : 1 ≤ i ≤ n}. Now, label the vertices of G by the geometric pro-
gression f(vi) = {ai , air, air2, . . . , airmi−1}, 1 ≤ i ≤ n, where r is a positive integer greater than 1. Then the
set-label of any edge vivj in G is given by

f∗(vivj) = {aiaj , aiajr, aiajr2, . . . , aiajrmi+mj−2},
which is also a geometric progression with the common ratio r. That is, the set-label of all elements of G
are geometric progressions with the same common ratio r. Hence, f is an isogeometric product set-labeling
of G.

In the following theorem, we discuss the condition required for an isogeometric product set-labeling of
a graph G to be a uniform product set-labeling of G.

Theorem 2.14. An isogeometric product set-labeling of a connected graph G is a uniform product set-labeling
if and only if any one of the following conditions holds.
(i) The label size of all vertices of G are equal.
(ii) G is bipartite with label size of vertices in the same partition being equal.

Proof. Let f be an isogeometric product set-labeling of a given graph G. If |f(v)| = m, a positive integer m for
all v ∈ V(G), then all edges of G have the label size 2m − 1. If there exist some vertices in V(G) such that
|f(v)| ̸= m, then assume that G is a bipartite graph with bipartition (X, Y) such that all vertices in X have the
label sizem and all vertices in Y have the label size n. Here, by Proposition 2.10, all edges of G have the label
size m + n − 1. In both cases, f is a uniform product set-labeling of G.

Conversely, assume that the isogeometric product set-labeling f is also a uniform product set-labeling
of G. If the label size of all vertices of G are equal, then the proof is complete. Hence, assume otherwise. Let u
be an arbitrary vertex of G which has the label sizem. Since f is a uniform geometric product set-labeling, all
vertices v in the neighbouring set N(u) of the vertex u must have the same label size, say n. Using the same
argument, all vertices in the neighbouring set of N(u) must have the label size m. Since G is a connected
graph, the vertex set V(G) can be partitioned in to two sets such that the vertices in the first partition have
the label size m and the vertices in the other partition have the label size n. Since m ̸= n, no two vertices in
the same partition are adjacent. Hence, G is a bipartite graph with vertices in the same partition having the
same label size.

We have already noticed that the characteristic index of all edges of a graph which admits an isogeometric
product set-labeling is 1. But, in general, the characteristic indices of all edges of a geometric product set-
labeled graph need not be the same. This fact creates a lot of interest in studying the structural properties
of a geometric product set-labeled graph, all whose edges have the same characteristic index greater than 1.
Hence, we have the following notion.

Definition 2.15. A geometric product set-labeling of a graph G is said to be a like-geometric product set-
labeling if all edges have the same characteristic index k > 1.

The following theorem discusses a necessary and sufficient condition for a graph G to admit a like-geometric
product set-labeling.

Theorem 2.16. A graph G admits a like-geometric product set-labeling if and only if it is bipartite.

Proof. Initially, assume that G is a bipartite graph with a bipartition (X, Y). Let X = {vi : 1 ≤ i ≤ m} and
Y = {uj : 1 ≤ j ≤ n}, where m, n ∈ ℕ. Choose the sets

M1 = {mi ∈ ℕ : mi ≥ 2, 1 ≤ i ≤ |X| = m}, M2 = {ai ∈ ℕ : 1 ≤ i ≤ m},
N1 = {nj ∈ ℕ : nj ≥ 2, 1 ≤ j ≤ |Y| = n}, N2 = {bj ∈ ℕ : 1 ≤ j ≤ n}.
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Let k = min{mi : 1 ≤ i ≤ m} and choose two positive integers r and s such that s = rk. Define a product set-
labeling f onGwhich assigns each vertex vi of X to a geometric progression f(vi) = {ai , air, air2, . . . , airmi−1},
1 ≤ i ≤ |X|, and each vertex uj of Y to a geometric progression f(uj) = {bj , bjs, bjs2, . . . , bjsnj−1}, 1 ≤ j ≤ |Y|.
Then, by Theorem 2.8, for every edge viuj in G, if exists, the set-label f∗(viuj) is a geometric progression
with common ratio r and the characteristic index of every edge in G will be k. Hence, the function f is
a like-geometric product set-labeling of G.

Next, assume that G is not a bipartite graph. Then G contains at least one odd cycle. Let Cn be such an odd
cycle in G. Now, choose two positive integers r and s such that s = rk. Label the vertices of Cn with odd sub-
scripts by distinct geometric progressions with common ratio r, and label the vertices with even subscripts
by distinct geometric progressions with common ratio s. Then all edges except vnv1 attain the characteristic
index k and the edge vnv1 has the characteristic index 1. In all other labeling of the vertices of G with geo-
metric progressions such that the maximum number of edges attains the characteristic index k, we can see
that at least one edge of Cn has the characteristic index kq for some positive integer q ̸= 1. In all these cases,
it is to be noted that f is not a like-geometric product set-labeling of G. This completes the proof.

The following proposition provides the condition required for a like-geometric product set-labeling of a
graph G to be a uniform product set-labeling of G.

Theorem 2.17. A like-geometric product set-labeling of a (bipartite) graph G is a uniform product set-labeling
of G if and only if the vertices in the same partition of G have the same label size.

Proof. Let f be a like-geometric product set-labeling of a connected graph G. Then, by Theorem 2.16, G is
bipartite. Let (X, Y) be a bipartition of G.

First, let all vertices in X have the same label size, say m, and all vertices in Y have the same label size,
say n. Then, by Proposition 2.10, the label size of all edges of G is m + k(n − 1), where k ≤ n. Hence, f is a
uniform product set-labeling of G.

Now, assume that f is also a uniform product set-labeling of G. Then, exactly as explained in the converse
part of the proof of Theorem 2.14, we can partition the vertex set of G in two subsets X and Y such that all
vertices in X have the same label size, say m, and all vertices in Y have the same set-label, say n, and such
that no two vertices in the same partition are adjacent to each other. This completes the proof.

A necessary and sufficient condition for a like-geometric product set-labeling of a graph G to be a strong
product set-labeling of G is provided in the following result.

Theorem 2.18. A like-geometric product set-labeling f of a graph G is a strong product set-labeling of G if and
only if all vertices in one partition have the same label size.

Proof. Let f be a like-geometric product set-labeling of G. Clearly, by Theorem 2.16, G is bipartite. Let (X, Y)
be a bipartition of G.Without loss of generality, label all vertices in X by distinct geometric progressions of the
same cardinality, say m, and the same common ratio r, where r is any positive integer greater than 1. Now,
label the vertices in Y by distinct geometric progressions with common ratio rm. Then, by Theorem 2.11,
|f∗(uv)| = |f(u)| |f(v)| for all uv ∈ E(G). Therefore, f is a strong product set-labeling of G.

Conversely, assume that f is a strong product set-labeling of G. Then the characteristic index k of every
edge of G is equal to the cardinality of the set-label of its end vertex having smaller common ratio. Since f is
a like-geometric product set-labeling, the characteristic index of every edge of G is the same and is equal to
the minimum label size of the vertices having smaller common ratio. Hence, the label size of all vertices in
the corresponding partition are the same. This completes graph.

In view of the above two theorems, we have the following result.

Corollary 2.19. A like-geometric product set-labeling f of a graph G is a strongly uniform product set-labeling
of G if and only if all vertices in the same partition have the same label size.

Proof. The proof immediately follows from Theorem 2.17 and Theorem 2.18, by taking the value k = m in
the respective proofs.
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3 Conclusion
In this paper, we have discussed the characteristics and properties of the graphs which admit different types
of product set-labeling. There are several open problems in this area. Some of the open problems that seem
to be promising for further investigations are the following.

Problem 3.1. Characterise the product set-labeled graphswhose vertex set-labels are geometric progressions
but the edge set-labels are not.

Problem 3.2. Characterise the product set-labeled graphs whose edge set-labels are geometric progressions
but the vertex set-labels are not.

Problem 3.3. Discuss the conditions required for an arbitrary geometric product set-labeling of a graph G to
be a uniform product set-labeling of G.

Problem 3.4. Discuss the admissibility of different types of product set-labelings by different graph opera-
tions, graph products and graph powers.

Problem 3.5. Characterise the product set-labeled graphs in which the label size of its edges are equal to the
label sizes of one or both of their end vertices.

Further studies onother characteristics of product set-labeled graphs corresponding todifferent types of prod-
uct set-labelings are also interesting and challenging. All these facts highlight the scope for further studies
in this area.

Acknowledgment: The author would like to dedicate this work to Professor (Dr.) T. Thrivikraman, who has
been his mentor, motivator and the role model in teaching as well as in research.
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