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 On Certain Types of Product
Set-Labeling of Graphs

SUDEV NADUVATH

Abstract

The product set of two sets A and B of integers, denoted by A*B, is the set A*B =
{ab : a ∈ A, b ∈ B}. For X ⊆ N, a product set-labeling (PS-labeling) of a graph G is an
injective function ƒ : V (G) → P(X) such that the induced function f* : V (G) → P(X) is
defined as ƒ*(uv) = ƒ(u)*ƒ(v)≤ uv ∈ E(G), ƒ(u) *ƒ(v) being the product set of ƒ(u)  and
ƒ(v). The PS-labeling of a graph can be classified into certain types in two ways: in
accordance with the cardinalities of the set-labels and according to the nature of the
collection of set-labels of elements of the graph G. This paper discusses different
types of PS-labeling of graphs.

Keywords: Product set-labeling of graphs, GPS-labeling, SPS-labeling, exquisite
PS-labeling, TPS-Labeling.

MSC 2010: 05C78.

1. INTRODUCTION :

For the terms and definitions, which are not introduced in this paper, we refer to [2, 4, 9].
Unless stated otherwise, the graphs we consider in this paper are simple, finite, undirected and
connected.

A set-labeling or a set-valuation of a graph G is a one to one mapping under which
the vertices of G assumes the subsets of a non-empty ground set X as their labels and the
edges of G has the labels obtained by some binary operations of the labels of their end
vertices (see [1]). A set-labeled graph (or a set-valued graph) is a graph G with a set-
labeling defined on it.

Many graph theorists have comprehensively and extensively studied various types of
set-valuations of graphs and a significant number of innovative research papers have been
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published thereafter. Among these, some interesting studies dealt with structural properties
and characteristics of such set-valued graphs in a much rigorous manner.

A significant deviation from the typical studies on set-labeled graphs was the introduction
of a particular set-labeling namely integer additive set-labeling of graphs (see [3, 6]). In this
type, the set-labels of the vertices of graphs are non-empty finite sets of non-negative integers
and the set-label of each edge is the sumset of the set-labels of its end vertices (see [3]). Some
interesting types of integer additive set-labelings have been done in [3, 6, 7, 8].

Following the studies on integer additive set-labeling of graphs, a new type set-labeling,
namely, the product set-labeling (PS-labeling) of graphs has been introduced in [5]. Motivated
by these studies, in this paper, we discuss certain types of PS-labeling of graphs, and investigate
the structural properties of the graphs which admit the PS-labelings and characteristics of the
set-labels of vertices and edges of graphs with respect to these PS-labelings.

2  PRODUCT SET-LABELING OF GRAPHS

Let N be the set of all positive integers and X ⊆ N. The product set-labeling (PS-labeling) of

graphs was introduced in [5] as an injective function an injective set-valued function ƒ : V (G)

→ P(X) such that the induced edge-function ƒ∗ : V (G) → P(X) is defined as ƒ∗(uv) = ƒ(u)∗

ƒ(v)≤ uv ∈ E(G), where ƒ(u) * ƒ(v) = {ab : a ∈ ƒ(u); b ∈ ƒ(v)}, the product set of the set-

labels ƒ(u) and ƒ(v). Certain types of PS-labelings have also been discussed in [5].

2.1 Preliminaries

A PS-labeling may be called a k-uniform PS-labeling if |ƒ∗(uv)| = k, where k ∈ N. For uv ∈

E(G), note that |ƒ(u)| + |ƒ(v)| – 1 ≤ |ƒ(uv)| ≤ |ƒ∗(uv)| ≤ |ƒ(u)||ƒ(v)|. When |ƒ(u)| + |ƒ(v)| – 1 =

|ƒ∗(uv)|, then both ƒ(u) and ƒ(v) are geometric progressions and the corresponding PS-labeling

of G is called a geometric product set-labeling (GPS-labeling). If |ƒ∗(uv)| = |ƒ(u)||ƒ(v)|, the

corresponding set-labeling of G is called a strong product set-labeling (SPS-labeling)

(see [5]).

A necessary and sufficient condition for a PS-labeling ƒ : V (G) → P(X); X ⊆ N has been

established in [5] as follows:

Theorem 2.1. [5] A PS-labeling f : V (G) → P(N) of a graph G is a GPS-labeling of G

if and only if for every edge of G, the common ratio of one end vertex is a positive integral
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power of the common ratio of the other end vertex, where this power is less than or equal to

the label size of the end vertex having smaller common ratio.

The following result was on the label size (cardinality of the set-label) of the edges of a
graph G which admits a GPS-labeling.

Theorem 2.2. [5] Let ƒ be a GPS-labeling of a graph G and let u and v be two adjacent
vertices in G with the common ratios r

u
 and r

v
 such that r

u
 ≤ r

v
.  Then, the label size of the edge

uv is given by |ƒ∗(uv)|  = |ƒ(u)| + k |ƒ(v)| – 1), where k is the characteristic index of the edge
uv.

If the context is clear, the common ratio of the set-label of an element of G may be called
the common ratio of that element. The characteristic index of an edge e = uv of a product
set-labeled graph G is the number k ≥ 1, such that r

v
 = (r

u
)k, where r

u
 and r

v
 are the common

ratios of the vertices u and v (or equivalently, the common ratios of u and v) respectively. An
isogeometric product set-labeling (IPS-labeling) is a geometric set-labeling of G, where the
characteristic index of all edges of G are the same.

It can be easily verified that every graph admits a GPS-labeling (and IPS- labeling) for
some suitable choices of the ground set X.

The following theorem discusses a necessary and suficient condition for a GPS- labeling
ƒ of a graph G to be a uniform PS-labeling.

Theorem 2.3. A GPS-labeling of a connected graph G is a uniform PS-labeling of G if
and only if G is a bipartite graph or all its vertices have the same label size.

Proof. Let ƒ be a GPS-labeling of a given graph G. First assume that |ƒ(v)| = t ≤ v ∈ V
(G). Then, by Theorem 2.2, every edge of G has the set-label ´ = t + k(t –1), where k is the
characteristic index of edges in G. Therefore, ƒ is an ´-uniform PS-labeling of G.

Next, assume that G is bipartite with the bipartition (V
1
; V

2
). Then, for suitable choice of

the ground set X, we can label all vertices in V
1
 by distinct geometric progressions of the same

size, say n
1
 and the common ratio, say r

1
 and can label all vertices of V

2
 by distinct geometric

progressions of the same size, say n
2
 and common ratio, say r

2
 such that r

1 
≤ r

2
. Then, by

Theorem 2.2, every edge of G has label size ´ = n
1
 + k(n

2
 – 1), where k ≤ n

1
 is the characteristic

index of the edges in G. Hence, this GPS-labeling of G is an l -uniform PS-labeling.

Conversely, let ƒ be an ´-uniform GPS-labeling of G. If |ƒ(v)| =  for all v ∈ V (G), then

the proof is complete. Hence, assume that not all vertices of G have the same label size. Let
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V
1
 be a (maximal) independent set of G and label all vertices of V

1
 by geometric progressions

with common ratio r and label size m. Then, every vertex w
j
 in V

2
 which is adjacent to any

vertex V
i
 in V

1
, must be labeled by a geometric progression with common ratio r

j
 and size 

+1 such that r = , where k
i
 is the characteristic index of the edge v

i
w

j
 . Since G is ´ -

uniform, it can be observed that these vertices in V
2
 can be adjacent only to the vertices in V

1

and not among them. Therefore, (V
1
, V

2
) is a bipartition of G. This completes the proof.

Let us call an ´-uniform set-labeled graph whose vertices also have the same label size
m, an (m, ´ )-uniform set-labeled graph. Then, we have

Theorem 2.4. Let ƒ be a GPS-labeling of G whose vertices have the same label size,
say m, and let ´ be an even integer. Then, f is an ´-uniform PS-labeling of G if and only if both
m and the characteristic index k of all edges of G are simultaneously even.

Proof. Since ƒ is a uniform GPS-labeling of G, with ƒ(v) = m for all v ∈ V(G), we have
ƒ(e) = m + k (m–1) ≤ e ∈ E(G). Then, the result follows from the following table.

m is even m is odd

k is even m + k(m – 1) is even m + k(m – 1) is odd

k is odd  m + k(m – 1) is odd m + k(m – 1) is odd

The result given below is a necessary and suficient condition for a strong GPS- labeling
ƒ of a graph G to be a uniform PS-labeling.

Theorem 2.5. A strong GPS-labeling f of a given connected graph G is an ´-uniform PS-
labeling of G if and only if either G is bipartite or every vertex of G has the same label size
m, where m

2
 = ´.

Proof. Let ƒ be an SPS-labeling of a given graph G. If all vertices of G has the same
label size, say m, then ƒ is an ´-uniform PS-labeling of G, where m

2
 = ´. Next, assume that G

is bipartite with bipartition (V
1
, V

2
). We can choose two positive integers m and n such that

mn = ´. Label all vertices in V
1
 by distinct geometric progressions of size m and label all

vertices in V
1
 by distinct geometric progressions of size n so that all edges in G have the same

label size ´. That is, f is an ´-uniform PS-labeling of G.

Conversely, let ƒ be a strongly l-uniform PS-labeling of G. If |ƒ(v)| = m ≤ v ∈ V(G), then
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the proof is complete. Hence, assume that not all vertices of G have the same label size. Then,

take an arbitrary vertex v of G and label it by a geometric progression of size m. Choose any

vertex u adjacent to v in V (G). The label size of u must be , where m ≠ . Since ƒ is a

strongly uniform PS-labeling, every vertex w adjacent to u must have the label size m so that

the label size of the edge uw is ´. Hence, we notice that the set-label of any vertex in G is either

m or . Let V
1
 be the set of vertices having the label size m and V

2
 be the set of vertices

having the label size . Clearly, V
1
 ∪ V

2
 = V (G). Since m2 ≠  = ´, no two vertices in V

1
 and

no two vertices in V
2
 are adjacent to each other. That is, (V

1
, V

2
) is a bipartition of G, completing

the proof.

Remark 2.6. In view of Theorem 2.5, we have the following immediate observations.

(i) If ƒ is an ´-uniform SPS-labeling of a graph G, where ´ is not a perfect square, then G
is bipartite.

(ii) An SPS-labeling ƒ of G can be an (m, l)-uniform PS-labeling if and only if m2 = ´

3 EXQUISITE PRODUCT SET-LABELING

It is to be noted that A and B need not be the subsets of their product set A ∗ B in general. Hence,

it is interesting to determine the conditions for the set-labels of the end vertices of an edge of a

graph G to be the subsets of the set-label of that edge. In view of this problem, we define:

Definition 3.1. An exquisite product set-labeling (EPS-labeling) is a PS-labeling

ƒ : V (G) → P(X) with the induced function ƒ : E(G) → P(X) defined by ƒ ∗(uv) = ƒ(u) ∗

ƒ(v), uv ∈ E(G), such that ƒ(u), ƒ(v) ⊆ ƒ∗(uv) for all adjacent vertices u, v ∈ V (G).

Then, a necessary and sufficient condition for a PS-labeling to be an EPS- labeling is

given below.

Theorem 3.1. A PS-labeling f of a graph G is an EPS-labeling if and only if the set-label

of every vertex must contain 1.

Proof. The proof is immediate from the fact that a set of positive integers A ⊂ N is a

subset of the product set AB if and only if 1 ∈ B, where B ∈ N.
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Figure 1 depicts a graph which has an EPS-labeling.

Fig. 1: An illustration to an EPS-labeled graph.

Note that the quotient-set of a set A is the set defined by Q
A
 = {  : a, b ∈ A, a ≥ b}. The

following result describes a necessary and sufficient condition for an EPS-labeling of G to be
an SPS-labeling of G.

Theorem 3.2. An EPS-labeling ƒ of a graph G is an SPS-labeling of G if and only if Q
f(u)

∩ Q
f(v)

 = φ and ƒ(u) ∩ ƒ(v) = {1}, for any two adjacent vertices u and v in G.

Proof. Let ƒ is also an EPS-labeling of G. First assume that f is an SPS-labeling of G. In
[5] it is proved that a PS-labeling ƒ of G is an SPS-labeling if and only if Q

f(u)
 ∩ Q

f(v)
 = φ for all

uv ∈ E(G). Hence, it remains to show that ƒ(u) ∩ ƒ(v) = {1}. Since f is an EPS-labeling, by
Theorem 3.2, the set-label of every vertex must contain the element 1. Therefore, 1 is a
common element of both ƒ(u) and ƒ(v). If ƒ(u) and ƒ(v) contains another common element x,

then the difference  = x belongs to both Q
f(u)

 and Q
f(v)

, contradicting the fact that Q
f(u)

 ∩ Q
f(v)

= φ. Therefore, ƒ(u) ∩ ƒ(v) = {1}.

Conversely, assume that f is an EPS-labeling such that Q
f(u)

 ∩ Q
f(v)

 = φ and ƒ(u) ∩ ƒ(v) =

{1}, for all uv 2 E(G). Then, all terms of the product set ƒ(v) * ƒ(v) will be distinct and hence
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we have |ƒ*(uv)| = |ƒ(u)| |ƒ(v)| for all uv ∈ E(G). Hence, ƒ is an SPS-labeling of G. This

completes the proof.

4 TOPOLOGICAL PRODUCT SET-LABELING OF GRAPHS

Two sets A and B of positive integers are said to be the factor sets of another set C of positive
integers if A ∗ B = C.

Definition 4.1. A product set-labeling ƒ : V (G) → P(X) –{φ}, defined on a graph G is

said to be a topological product set-labeling (TPS-Labeling) of G if  ƒ(V) ∪ {φ} is a topology

on the ground set X.

The following theorem discusses a necessary and sufficient condition for a PS-labeling
to be a TPS-labeling.

Theorem 4.1. A connected graph G has a TPS-labeling if and only if G has some
pendant edges.

Proof. First assume that ƒ is a TPS-labeling of G. Then, by Definition 4.1, ƒ(V) ∪ {φ} is

a topology on the ground set X. Therefore, X ∈ ƒ(V). We claim that X can be the set-label of
a pendant vertex. Note that {1} and X itself are the only factor sets of the ground set X. Then,
X can be the set-label of a vertex which can be adjacent to the vertex having set-label {1} only
and hence the vertex with set-label X will be a pendant vertex of G. Also, if x

r
 is the maximal

element in X, then the vertices, whose set-labels contains the element x
r
, can be adjacent to the

vertex having set-label {1} only. Hence, G has at least one pendant vertex.

Fig. 2: An illustration to a TPS-labeled graph.
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Let G be a graph obtained by attaching an edge from an external vertex v to an arbitrary

vertex, say v
1
, of a complete graph K

n
. The edge vv

1
 is a pendant edge of G. Let v

2
, v

3
, ..., v

n

be the remaining vertices of K
n
 in G. Let X = {1, k; k2,..., k2n–3} be the ground set, where k is

any positive integer greater than 1. Label the vertex v by the ground set X itself and the vertex

v
2
 by the set {1}. Now, label the vertex by the set {1, k}, label v

3
 by {1, k; k2} and in general

label the vertex V
i
 by the set {1, k; k2,..., ki–1}. (see Figure 2 for illustration). It can be seen

that the collection of these vertex set-labels in G, together with the set {φ}, forms a topology

on X. Hence, the labeling mentioned above is a topological labeling of  G.

This labeling can be extended to the graphs obtained by joining one end vertex of a path

to one vertex of a complete graph (as seen in Figure 3), establishing the existence of a TPS-

labeling for G.

We also note that these labelings are TPS-labelings of any spanning subgraphs with
exactly one pendant edge of the two graphs described above. Hence, the labeling mentioned
above is a topological labeling of G. For the graphs having more than one pendant vertex, we
can choose a pendant vertex arbitrarily for assigning the set-label X and can extend this
labeling procedure. This completes the proof.

5 CONCLUSION

In this paper, we have discussed different types of PS-labeling of graphs and the properties
set-labels and the characteristics of graphs which admit these types of set-labelings. There

Fig. 3: An illustration to TPS-labeling of a graph
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are several open problems in this area. Some of the open problems that seem to be promising
for further investigations are following.

Problem 1. Characterise the product set-labeled graphs whose vertex set-labels are
geometric progressions but the edge set-labels are not.

Problem 2. Characterise the product set-labeled graphs whose edge set-labels are
geometric progressions but the vertex set-labels are not.

Problem 3. Discuss the conditions required for an arbitrary PS-labeling of a graph to be
a set-graceful (and set-sequential) type PS-labeling of G.

Problem 4. Discuss the conditions required for an arbitrary PS-labeling of a graph to be
a bitopological type PS-labeling of G.

Problem 5. Discuss different types of PS-labelings for certain derived graphs such as
line graphs, middle graphs and total graphs of given product set-labeled graphs.

Problem 6. Discuss the hypergraphs and signed graphs associated with the product set-
labeled graph and study their properties.

Further studies on other characteristics of product set-labeled graphs corresponding to
different types of PS-labelings are also interesting and challenging. All these facts highlight the
scope for further studies in this area.
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