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Abstract
Let X be a non-empty set and let Σ be a signed graph, with corresponding underlying graph G and the signature
σ . An injective function f : V (Σ)→P(X) is said to be a set-labeling of Σ if f is a set-labeling of the underlying
graph G and the signature of Σ is defined by σ(uv) = (−1)| f (u)⊕ f (v)|. A signed graph Σ together with a set-labeling
f is known as a set-labeled signed graph and is denoted by Σ f . In this paper, we discuss the characteristics of
certain signed graphs associated with given set-valued signed graphs.
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1. Introduction
For all terms and definitions, not defined specifically in

this paper, we refer to [5, 9, 18] and and for the topics in signed
graphs we refer to [19, 20]. Unless mentioned otherwise, all
graphs considered here are simple, finite, connected and have
no isolated vertices.

Let X be a non-empty set and P(X) be its power set. A
set-labeling (or a set-valuation) of a graph G is an injective
function f :V (G)→P(X) such that the induced function f⊕ :
E(G)→P(X) is defined by f⊕(uv) = f (u)⊕ f (v) ∀ uv ∈
E(G), where ⊕ is the symmetric difference of two sets. A
graph G which admits a set-labeling is called an set-labeled
graph (or a set-valued graph)(see [1]). A set-indexer of a
graph G is an injective function f : V (G)→P(X) such that
the induced function f⊕ : E(G)→P(X) is also injective. A

graph G which admits a set-indexer is called a set-indexed
graph (see [1]).

An edge of a graph G having only one end vertex is known
as a half edge of G and an edge of G without end vertices is
called loose edge of G.

A signed graph (see [19, 20]), denoted by Σ(G,σ), is a
graph G(V,E) together with a function σ : E(G)→ {+,−}
that assigns a sign, either + or −, to each ordinary edge in G.
The function σ is called the signature or sign function of Σ,
which is defined on all edges except half edges and is required
to be positive on free loops. An edge e of a signed graph Σ is
said to be a positive edge if σ(e) = + and an edge σ(e) of a
signed graph Σ is said to be a negative edge if σ(e) =−. The
set E+ denotes the set of all positive edges in Σ and the set
E− denotes the set of negative edges in Σ. A simple cycle (or
path) of a signed graph Σ is said to be balanced (see [3, 10]) if
the product of signs of its edges is +. A signed graph Σ is said
to be a balanced signed graph if it contains no half edges and
all of its simple cycles are balanced. It is to be noted that the
number of all negative signed graph is balanced if and only if
it is bipartite.

Balance or imbalance is the basic and the most important
property of a signed graph. The following theorem, popularly
known as Harary’s Balance Theorem, establishes a criteria
for balance in a signed graph.
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Theorem 1.1. [10] The following statements about a signed
graph are equivalent.

(i) A signed graph Σ is balanced.

(ii) Σ has no half edges and there is a partition (V1,V2) of
V (Σ) such that E− = E(V1,V2).

(iii) Σ has no half edges and any two paths with the same
end points have the same sign.

A signed graph Σ is said to be clusterable or partitionable
(see [19, 20]) if its vertex set can be partitioned into subsets,
called clusters, so that every positive edge joins the vertices
within the same cluster and every negative edge joins the
vertices in the different clusters. If V (Σ) can be partitioned
in to k subsets with the above mentioned conditions, then the
signed graph Σ is said to be k-clusterable. In this paper, we
study the 2-clusterability of signed graphs only.

Note that 2-clusterability always implies balance in a
signed graph Σ. But, the converse need not be true. If all
edges in Σ are positive edges, then Σ is balanced but not
2-clusterable.

we define the notion of a set-labeling of a signed graph as
follows.

Definition 1.2. [4] Let X be a non-empty set and let Σ be a
signed graph, with corresponding underlying graph G and the
signature σ . An injective function f : V (Σ)→P(X) is said
to be a set-labeling (or set-valuation) of Σ if f is a set-labeling
of the underlying graph G and the signature of Σ is defined
by σ(uv) = (−1)| f (u)⊕ f (v)|. A signed graph Σ together with a
set-labeling f is known as a set-labeled signed graph (or set
valued signed graph) and is denoted by Σ f .

Definition 1.3. [4] A set-labeling f of a signed graph Σ is said
to be a set-indexer of Σ if f is a set-indexer of the underlying
graph G.

If the context is clear, we can represent a set-valued signed
graph or a set-indexed signed graph simply by Σ itself. In
this section, we discuss the 2-clusterability and balance of
set-valued signed graphs.

The following are some of the important and relevant
results proved in [4].

Theorem 1.4. [4] An edge e of a set-labeled signed graph is
a positive edge if and only if the set-labels of its end vertices
are of the same parity.

Theorem 1.5. [4] A set-valued signed graph is 2-clusterable
if and only if at least two adjacent vertices in Σ have opposite
parity set-labels.

2. Associated graphs of set-valued
signed graphs

We say that two vertices (or edges) of a set-valued graph
(or signed graph) are of the same parity if their set-labels are of

even cardinality or odd cardinality simultaneously. Otherwise,
we say that the vertices are of different parity. Using this
terminology, in this section, we discuss the admissibility of
induced set-labeling by certain signed graphs associated with
the set-labeled signed graphs.

If some new vertices of degree 2 are added to some of
the edges of a graph G, the resulting graph H is called a
subdivision or expansion of G (see [17]). In the following
theorem, we discuss whether the subdivision of a set-labeled
signed graph admits an induced set-labeling.

Theorem 2.1. A subdivision Σ′ of a set-labeled signed graph
Σ is a balanced signed graph under induced set-labeling if
and only if Σ is balanced.

Proof. Let Σ be a balanced set-labeled signed graph and C be
a cycle in Σ. Here, note that the number negative edges in C
is even. Take any edge e = uv in C. Subdivide the edge uv by
introducing a new vertex w to it. Then, let Σ′ be the revised
signed graph and C′ = (C−{uv})∪{uw,vw} be the cycle in
Σ′ corresponding to C in Σ. Here, the vertex w in Σ′ gets the
same set-label of the edge uv in Σ. Now, we have to consider
the following cases.

Case-1: Let u and v are same parity vertices. Then, by
Theorem 1.4, the edge uv is a positive edge. Then, the edge uv
will be removed and two edges uw and vw are created instead
in the reduced graph. Here, we need to consider the following
two cases.

Subcase-1.1: If w is of the same parity to u and v, then the
new edges uw and vw are also positive edges. This will not
affect the number of negative edges in the modified cycle C′

in Σ′.
Subcase-1.2: If w is of the different parity to u and v, then

the new edges uw and vw are negative edges. Therefore, note
that each such subdivision generates two negative edges in
place of a positive edges which keeps the number of negative
edges even in the modified cycle C′ in Σ′.

Case-2: Let u and v are different parity vertices. Then,
by Theorem 1.4, the edge uv is a negative edge. Then, in C′,
the vertex w will be of same parity with exactly one of the
vertices u and v. Then, exactly one of uw and vw is a positive
edge (and the other is a negative edge). In all such cases, one
negative edge and one positive edge are created in the revised
cycle C′. This clearly ensures that the number of negative
edges in C′ is also even always.

In all the above cases, we can find that the number of
negative edges either remain unchanged or increase by an
even number, indicating that the number of negative edges
in C′ is always even if the number of edges in C is even.
Therefore, Σ′ is balanced.

Conversely, assume that the subdivision Σ′ of the set-
labeled signed graph Σ is balanced with respect to an induced
set-labeling of the set-labeling of Σ. Take an edge uv of a
cycle C in Σ such that uv is subdivided by a vertex w in Σ′.
Clearly, the set-label of uv in Σ and the set-label of w in Σ′ are
the same. Now, Consider the following cases.
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Case-1: If the edges uw and vw in C′ are positive, then we
have u,v and w are of the same parity and hence the edge uv
in C is also positive. Then, the number of negative edges in
C′ and C are the same even number.

Case-2: If the edges uw and vw in C′ are negative, then
we have u and v are of same parity which is different from the
parity of w. In this case, the edge uv in C is positive. Then,
the number of negative edges in C is decreased by 2 from that
of C′. Hence, the number of negative edges in C is also an
even number.

Case-3: If exactly one of the edges uw and vw in C′ is
negative, then we have u and v are of different parity, where
exactly one of them have the same parity that of w. In this case,
the edge uv in C is negative. Then, the number of negative
edges in C is decreased by 2 from that of C′. Then, the number
of negative edges in C′ and C are the same even number.

Form all the above cases, we note that the number of
negative edges in any cycle C of Σ is even, provided the
number of negative edges in the corresponding cycle C′ in Σ′

is even. Hence, Σ is balanced, completing the proof.

A signed graph Σ′ is said to be homeomorphic to another
signed graph Σ if Σ′ is obtained by removing a vertex v with
d(v) = 2 and is not a vertex of any triangle in Σ, and joining
the two pendant vertices thus formed by a new edge. This
operation is said to be an elementary transformation on Σ. The
following theorem discusses the balance of a signed graph
that is homeomorphic to a given balanced set-valued signed
graph Σ.

Theorem 2.2. Let Σ′ be signed graph which is homeomorphic
to a balanced set-valued signed graph Σ. Then, Σ′ is balanced
with respect to induced set-labeling if and only Σ is balanced.

If Σ′ is a signed graph obtained from the signed graph by
applying finite number of elementary transformations, then Σ

can be considered as a subdivision of Σ′. Hence, the neces-
sary condition in Theorem 2.1 is the sufficient condition for
Theorem 2.2 and the sufficient condition in Theorem 2.1 is
the necessary condition for 2.2.

The line graph of an undirected graph G is a graph, de-
noted by L(G), which represents the adjacencies between
edges of G (see [9]). That is, given a graph G, the line
graph L(G) of G is the graph such that V (L(G)) = E(G) and
E(L(G))= {(e,e′) : e,e′ ∈E(G) have a common endpoint in G}.

Verification of the balance of the signed line graph of
a set-valued graph Σ, under an induced set-labeling is very
complex. But we discuss the condition for the line graphs of
some special graph classes in the following results.

An edge contraction of a graph G is an operation which re-
moves an edge from G and merge its two end vertices preserv-
ing all adjacency of the merged vertices. The graph obtained
by contracting an edge e of a given graph G is denoted by
G◦e. It is customary that the new vertex obtained by merging
the end vertices of the contracted edge is labeled by the same
set-label of the contracted edge in the given graph.

The following theorem establishes the balance of a signed
graph obtained by contracting some edges of a set-valued
signed graph.

Theorem 2.3. Let Σ be a set-valued signed graph. A signed
graph Σ′ = Σ ◦ uv is balanced under induced set-labeling if
and only if Σ is a balanced.

Proof. First assume that Σ is balanced. Note that if we con-
tract an edge which is not contained in any cycle of Σ, it will
not affect the balance of the reduced graph. Hence, let C be
a cycle in Σ. Then, C has even number of negative edges.
Now choose an edge e = uv in C. Let u′ and v′ be the vertices
adjacent to u and v in respectively and w be the new vertex
obtained after contraction. Here, we have to consider the
following cases.

Case-1: Assume u and v are of the same parity. Then, uv
is a positive edge. In the reduced graph, w is of even parity.
Then, there are the following possibilities.

Case-1.1: If u′ and v′ are of the same parity with u and
v, then all the edges u′u,uv,vv′ are positive edges and after
contraction, the edges u′w and v′w are either positive edges or
negative edges. In this case, the number of negative edges in
the cycle C and in the reduced cycle C′ are the same or C′ has
2 edges more than that of C.

Case-1.2: If u′ and v′ are of the different parity with u
and v, then the edges u′u and vv′ are negative edges and after
contraction, the edges u′w and v′w are either positive edges or
negative edges. In this case, the number of negative edges in
the cycle C and in the reduced cycle C′ are the same or C′ has
2 edges less than that of C.

Case-1.3: If u′ and u are of the same parity and v and v′

are of the different parity, then the edges u′u is positive and
vv′ is negative edge and after contraction, the one of edges
u′w and v′w is positive edge and the other is a negative edge.
In this case, the number of negative edges in the cycle C and
in the reduced cycle C′ are the same.

Case-2: Assume u and v are of the same parity. Then, uv
is a negative edge. In the reduced graph w is of odd parity.
Then, there are the following possibilities.

Case-2.1: If u′ and v′ are of the same parity with u and
v respectively, then the edges u′u and vv′ are positive edges
and after contraction, one of the edges u′w and v′w is positive
edge and the other is a negative edge. In this case, the number
of negative edges in the cycle C and in the reduced cycle C′

are the same.
Case-2.2: If u′ and v′ are of the different parity with u

and v respectively, then all the edges u′u and vv′ are negative
0edges and after contraction, one of the edges u′w and v′w is
positive edge and the other is a negative edge. In this case, the
number of negative edges in the cycle C′ is 2 less than that of
the cycle C.

Case-2.3: If u′ and u are of the same parity and v and v′

are of the different parity, then the edge u′u is a positive edge
and vv′ is a negative edge and after contraction, edges u′w
and v′w will be positive edges. In this case, the number of
negative edges in the reduced cycle C′ is 2 less than that of C.
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In all the above mentioned cases, we note that the number
of negative edges in C′ is even. Hence, Σ◦uv is balanced.

In a similar and reverse manner of arguments, the converse
part of the theorem can also be verified.

3. 2-Clusterability of associated graphs
A signed graph Σ is said to be clusterable or partitionable

(see [19, 20]) if its vertex set can be partitioned into subsets,
called clusters, so that every positive edge joins the vertices
within the same cluster and every negative edge joins the
vertices in the different clusters.

If V (Σ) can be partitioned in to k subsets with the above
mentioned conditions, then the signed graph Σ is said to be
k-clusterable. In this paper, we study the 2-clusterability of
signed graphs only.

Note that 2-clusterability always implies balance in a
signed graph Σ. But, the converse need not be true. If all
edges in Σ are positive edges, then Σ is balanced but not
2-clusterable.

In this section, we discuss the 2-clusterability of the above
mentioned associated graphs of a set-valued signed graph.
The following theorem establishes the 2-clusterability of a
subdivision of a set-valued 2-clusterable signed graph.

Theorem 3.1. A subdivision Σ′ of a set-valued signed graph
Σ is 2-clusterable if and only if Σ is 2-clusterable.

Proof. Let Σ be 2-clusterable with the 2-cluster (X1,X2). Choose
an arbitrary edge e = uv of Σ for subdividing to get the re-
duced graph Σ′. If e ∈ X1, then uv is a positive edge and hence
the corresponding new vertex w in Σ′ will be an even parity
vertex.

If u and v are of odd parity, then w ∈ X2, which will not
be adjacent to any other vertex in X2. If u and v are of even
parity, then the edges uw and vw are positive edges and hence
u,v,w are in X1 itself. In both cases, the 2-clusterability of Σ

is preserved in Σ′ also. A similar argument can be established
for the case when e ∈ X2 also.

Next, if we subdivide a negative edge e= uv, where u∈X1
and v ∈ X2, then we can see that the new vertex w will be of
the same parity with exactly one of u and v. If u and w are of
same parity, then uv is a positive edge and vw is a negative
edge. Hence, w ∈ X1. Here also, the 2-clusterability is not
affected. Therefore, Σ′ is 2-clusterable if Σ is 2-clusterable.

The converse part also can be proved in a similar way.

The above theorem may not hold for homeomorphic graphs
which can be illustrated in Figure 1 as follows.

If uw and vw are the only negative edges in Σ, then ele-
mentary transformation applied on the vertex w may remove
the negative edges in the revised signed graph, which remove
the 2-clusterability of Σ′.

Remark 3.2. The 2-clusterability of a signed graph Σ′ =
Σ ◦ uv under induced set-labeling will be preserved if the
contracted edge uv is not the only negative edge in the 2-
clusterable set-valued signed graph Σ.

Figure 1

Hence, trivially, we have the following theorem.

Theorem 3.3. Let Σ′ = Σ◦ e, where Σ is a 2-clusterable set-
valued signed graph. Then , Σ′ is 2-clusterable if and only if
Σ 2-clusterable with at least two negative edges.

4. Conclusion
In this paper, we have discussed the admissibility of in-

duced set-labelings by certain signed graphs associated with
given set-labeled signed graphs. There are more open prob-
lems in this area. Some of the open problems, we have found
during this study, are the following.

Problem 4.1. An edge of a graph G is said to be contracted if
that edge is removed from G and its end vertices are identified
to form a new single vertex such that the new vertex preserves
the adjacency of the contracted vertices. Defining suitable
induced set-labels for the signed graphs obtained by finite
number of edge contractions and verifying the balance and
clusterability of these reduced signed graphs, under induced
set-labelings.

Problem 4.2. Verify the balance and clusterability of line
graphs of different classes of set-labeled signed graphunder
induced set-labelings.

Problem 4.3. Verify the balance and clusterability of total
graphs of different classes of set-labeled signed graph, under
induced set-labelings.

Problem 4.4. Verify the balance and clusterability of a signed
digraph corresponding to a set-valuation defined on it.

Further studies on other characteristics of signed graphs
and their various associated graphs corresponding to different
set-labeled graphs are also interesting and challenging. All
these facts highlight the scope for further studies in this area.
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