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Abstract. The concepts of linear Jaco graphs and Jaco-type graphs have been intro-

duced as certain types of directed graphs with specifically defined adjacency conditions.

The distinct difference between a pure Jaco graph and a Jaco-type graph is that for a

pure Jaco graph, the total vertex degree d(v) is well-defined, while for a Jaco-type graph

the vertex out-degree d
+(v) is well-defined. Hence, in the case of pure Jaco graphs a

challenge is to determine d
−(v) and d

+(v) respectively and for Jaco-type graphs a

challenge is to determine d
−(v). In this paper, the vertex in-degrees for Fibonaccian

and modular Jaco-type graphs are determined.
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1. Introduction

For general notation and concepts in graphs and digraphs see [1, 2, 3, 10]. Unless
mentioned otherwise, all graphs in this paper are simple, connected and directed
graphs (digraphs).

The concept of a special class of directed graphs, namely Jaco graphs, with a
specific adjacency conditions was introduced. The notion of Jaco graphs has been
improved later and hence the notion of linear Jaco graphs, has been introduced
as follows.

Definition 1.1. [4] An infinite linear Jaco graph, denoted by J∞(f(x)), with
f(x) = mx+ c, x,m ∈ N, c ∈ N0, is a directed graph with vertex set {vi : i ∈ N}
such that (vi, vj) is an arc of J∞(f(x)) if and only if f(i) + i− d−(vj) ≥ j.

A Jaco graph is considered to be a pure Jaco graph if the vertex degree d(v)
is well-defined. The above mentioned studies are the main initial studies on
the families of pure Jaco graphs. Further research followed on different classes
of Jaco graphs in [4, 5, 7] and a few more papers on different properties and
characteristics of Jaco graphs followed subsequently.

In [7], it is reported that a linear Jaco graph Jn(x) can be defined a the graphi-
cal embodiment of a specific sequence defining the vertex out-degree. This obser-
vation opened the scope for determining the graphical embodiment of countless
other integer sequences and and studying their characteristics.

These graphs (graphical embodiments) corresponding to different integer se-
quences, with well-defined vertex out-degrees are broadly named as Jaco-type
graphs. A general definition of a Jaco-type graph is as follows.

Definition 1.2. [7] For a non-negative, non-decreasing integer sequence {an}, an
infinite Jaco-type graph, denoted by J∞({an}), is defined as a directed graph with
vertex set V (J∞({an})) = {vi : i ∈ N} and the arc set A(J∞({an})) ⊆ {(vi, vj) :
i, j ∈ N, i < j} such that (vi, vj) ∈ A(J∞({an})) if and only if ai + i ≥ j.

Definition 1.3. [7] For a non-negative, non-decreasing integer sequence {an}, the
a finite Jaco-type Graph denoted by Jn({an}), is a finite subgraph of the infinite
Jaco-type graph J∞({an});n ∈ N.

So far, the introductory research on Jaco-type graphs dealt with non-negative,
non-decreasing integer sequences only.

Note that a finite Jaco-type graph Jn({an}) is obtained from J∞({an}) by
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lobbing off all vertices vk (with incident arcs) for all k > n.

Note that, the total vertex degree d(v) of each vertex v of a pure Jaco graph
is well-defined, while for a Jaco-type graph the vertex out-degree d+(v) is well-
defined. Hence, the main challenge in the studies on a pure Jaco graph is to
determine d−(v) and d+(v) separately where as the main problem in the studies
on Jaco-type graphs is to determine d−(v).

2. Jaco-type Graph for the Fibonacci Sequence

The definition of the infinite Jaco-type graph corresponding to the Fibonacci
sequence, which is also called the Fibonaccian Jaco-type graph, can be derived
from Definition 1.2. We have the graph J∞(s1), defined by V (J∞(s1)) = {vi :
i ∈ N}, A(J∞(s1)) ⊆ {(vi, vj) : i, j ∈ N, i < j} and (vi, vj) ∈ A(J∞(s1)) if and
only if fi + i ≥ j.

Figure 1 depicts J12(s1).

Figure 1: J12(s1).

Table 1 depicts the manually calculated invariant, d−(vi), 1 ≤ i ≤ 30 together
with the suggested pattern for i ≥ 6 which requires proof to settle the determi-
nation of the corresponding in-degrees, d−(vi), i = 3, 4, 5, . . . We observe that
for i ≥ 6 the subsequences of in-degrees are seemingly of the form: {. . . , fk − 1,
fk, fk, fk + 1, fk + 2, fk + 3,. . . , fk + (fk+1 − 2), . . .}, k = 4, 5, 6, . . ..

The following theorem is of importance to prove the aforesaid observation
and other results related to both pure Jaco graphs and Jaco-type graphs.
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φ(vi) → i ∈ N d−(vi) d−(vi) φ(vi) → i ∈ N d−(vi) d−(vi)
1 0 - 16 9 f6 + 1
2 1 - 17 10 f6 + 2
3 1 - 18 11 f6 + 3
4 1 - 19 12 f7 − 1
5 2 - 20 13 f7
6 2 f4 − 1 21 13 f7
7 3 f4 22 14 f7 + 1
8 3 f4 23 15 f7 + 2
9 4 f5 − 1 24 16 f7 + 3
10 5 f5 25 17 f7 + 4
11 5 f5 26 18 f7 + 5
12 6 f5 + 1 27 19 f7 + 6
13 7 f6 − 1 28 20 f8 − 1
14 8 f6 29 21 f8
15 8 f6 30 21 f8

Table 1:

Theorem 2.1. For any non-negative, stepwise non-decreasing and stepwise in-
creasing integer sequence {an}, and any ` ∈ N there exists at least one vertex
vi, i ∈ N in the corresponding Jaco-type graph J∞({an}) such that d−(vi) = `.

Proof. Consider a non-negative, step-wise non-decreasing and step-wise increas-
ing integer sequence {an}, and assume for some ` ∈ N, d−(vi) 6= `, ∀i ∈ N.
Assume without loss of generality that there exists at least one vertex vj with
d−(vj) = `− 1, then select j∗ = max{j} for which it holds.

Further assume without loss of generality that d−(vj∗+1) = `+1.Now, for ver-
tex vj∗ , clearly the lowest subscripted tail vertex of an incident arc is vj∗−d−(vj∗ ).
With regard to the arcs incident with the vertex vj∗+1, at least all among the arcs
(vj∗−d−(vj∗ ), vj∗+1), (vj∗−d−(vj∗ )+1, vj∗+1), (vj∗−d−(vj∗ )+2, vj∗+1), . . . , (vj∗ , vj∗+1)

exist. However, we have d−(vj∗+1) = `. Hence, an additional arc, (vj∗−d−(vj∗ )−1,

vj∗+1) is required to ensure that d−(vj∗+1) = ` + 1. By Definition 1.2, we have
a contradiction in that, d−(vj∗) = ` 6= `− 1.

By similar argument leading to contradiction, we can establish that it is not
possible to find d−(vj∗) = `−m, d−(vj∗+1) = `+ t, m, t > 1.

Hence, for all ` ∈ N, there exists at least one vertex vi, i ∈ N in the corre-
sponding Jaco-type graph J∞({an}) such that d−(vi) = `.

Before, going to the next theorem, we note some interesting properties of
the Fibonacci sequence. Consider the following table of first few elements of the
Fibonacci sequence.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

n 16 17 18 19 20 21 22 23 24 25
fn 987 1597 2584 4181 6765 10946 17711 28657 46368 75025

From the above table, we observe the following properties of the Fibonacci
sequence.

(i) Look at the number f3 = 2. Every 3-rd number is a multiple of 2
(2, 8, 34, 144, 610, . . .),

(ii) Look at the number f4 = 3. Every 4-th number is a multiple of 3
(3, 21, 144, 987, . . .),

(iii) Look at the number f5 = 5. Every 5-th number is a multiple of 5
(5, 55, 610, 6765, . . .).

(iv) Proceeding like this, we can see that every n-th number is a multiple of
fn.

(v) Any Fibonacci number that is a prime number must also have a subscript
that is a prime number.

It is to be noted that the converse of (v) is true. That is, it is not true that
if a subscript is prime, then so is that Fibonacci number. The first case to show
this is the 19-th position (and 19 is prime) but f19 = 4181 and f19 is not prime
because 4181 = 113× 37.

Invoking the above properties, the following theorem discusses the subse-
quences of indegrees in an infinite Fibonaccian Jaco-type graph.

Theorem 2.2. For the infinite Fibonaccian Jaco-type graph J∞(s1), the subse-
quences of indegrees for vertices vi, are:

(i) d−(v3i) = d−(v3(i−1)) + f3, for all i ≥ 3, with the initial value d−(v6) =
2 = f3,

(ii) d−(v4i) = d−(v4(i−1)) + f4, for all i ≥ 4, with the initial value d−(v8) =
3 = f4,

(iii) d−(v5i) = d−(v5(i−1)) + f5, for all i ≥ 5, and 5 is the least divisor of j,
with the initial value d−(v5) = 5 = f5 and

(iv) d−(vj) = d−(v4m)± 1 or d−(vj) = d−(v4m)± 3.

Proof. For the infinite Fibonaccian Jaco-type graph J∞(s1), we would like to
determine the in-degrees for vertices vi, i ≥ 1. First of all, note that any
Jaco-type graph admit a unique linear ordering of the vertices with respect to
its definition of the arcs. Let the vertices of the Jaco-type graph be linearly
ordered as v1, 1 ≤ i ≤ n. Label on the vertices of the Jaco-type graph with
the numbers from the Fibonacci sequence in the order of which the vertices are
linearly ordered. That is, label the vertex vi with fi, the i-th number from
the Fibonacci sequence {f1, f2, f3 . . .}, where the j-th vertex vj is labelled as
fj = fj−1 + jj−2. Let vi be the minimum subscripted vertex for vj such that
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i + fi = j, where fi the corresponding labelling of vi. That is, at the j-th
vertex i + fi attain the maximum. In this case, clearly d−(vj) = fi. Hence,
determination of the minimum subscripted vertex say vi is important.

But, there are vertices vj , where there exists no such minimum subscripted
vertex so as to compute the in-degree. Also, note that for all the vertices {vl}
between vi and vj , which do not have such minimum subscripted vertex vk for
which d−(vl) = fk, we have d−(vl) = l − k.

We have every v3i, i ≥ 1 is a multiple of 2; every v4i, i ≥ 1 is a multiple of 3;
every v5i, i ≥ 1 is a multiple of 5; every v6i, i ≥ 1 is a multiple of 8.

Case 1: Consider the pairs of vertices (vi, vj) such that vj , j ≥ 3 is a multiple
of 3. Also note that f3 = 2, and d−(v3) = 1. Then, d−(v6) = 2 = f3, d

−(v9) =
4 = d−(v6) + 2, d−(v12) = 6 = d−(v6) + 2,d−(v15) = 8 = d−(v9) + 2,. . . . In
general, d−(v3i) = d−(v3(i−1) + 2(= f3), for all i ≥ 3, with the initial value
d−(v6) = 2 = f3. Hence, d

−(v3i) = d−(v3(i−1) + f3, for all i ≥ 3, with the initial
value d−(v6) = 2 = f3.

Case 2: Consider the pairs of vertices (vi, vj) such that vj , j ≥ 4 is a multiple
of 4. Also note that f4 = 3, and d−(v4) = 1. Then, d−(v8) = 3 = f4, d

−(v12) =
6 = d−(v4) + 3, d−(v16) = 9 = d−(v12) + 3,d−(v20) = 12 = d−(v16) + 3, . . . . In
general, d−(v4i) = d−(v4(i−1) + f4, for all i ≥ 4 with the initial value d−(v8) =
3 = f4.

Case 3: Consider the pairs of vertices (vi, vj) such that vj , j ≥ 5 is a multiple
of 5, (but not divisible by 3 and 4) and 5 is the last divisor of j. Also note that
f5 = 5, and d−(v5) = 2. Then,

d−(v10) = 5 = f5,

d−(v15) = 8 = d−(v4) + 3,

d−(v20) = 12 = d−(v12) + 3,

d−(v25) = 17 = d−(v20) + 5,

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

In general, d−(v5i) = d−(v5(i−1) + f5, for all i ≥ 5, and 5 is the least divisor of
j, with the initial value d−(v5) = 5 = f5.

Case 4: If in the vj-th position we have a prime number. The first such
prime number is 7. and f7 = 13. Also we know that any prime number is of the
form 4m± 1 or 4m± 3.

Subcase 4.1: When j = 4m ± 1. In this case d−(vj) = d−(v4m) ± 1 and if
j = 4m± 3, then case d−(vj) = d−(v4m)± 3.

This completes the proof.

Remark 2.3. It is interesting to note that for j ≥ 7 and j = p1, a prime number
and the next immediate prime greater than P1 be p2, then then d−(vp2

) =
p2 − p1.
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The generalisation of the Fibonacci numbers is given by the Horadam se-
quence defined by

H0 = p ∈ N0,

H1 = q ∈ N0,

Hn = rHn−1 + sHn−2.

where r, s ∈ N0.

In view of the above mentioned generalisation of Fibonacci sequence, we
strongly believe that the following conjecture hold.

Conjecture 2.4. For the Horadam Jaco-type graph, J∞({Hn}), the in-degree
subsequences for vertices vi, for sufficiently large i are of the form {. . . , Hk − 1,
Hk, Hk, Hk + 1, Hk + 2, Hk + 3,. . . , Hk + (Hk+1 − 2), . . .}, k = 4, 5, 6, . . .

3. Modular Jaco-type Graph

It is well known that for the set N0 of all non-negative integers and n, k ∈
N, k ≥ 2, modular arithmetic allows an integer mapping in respect of modulo k

as follows.

0 7→ 0 = m0

1 7→ 1 = m1

2 7→ 2 = m2

. . . . . . . . .

k − 1 7→ k − 1 = mk−1

k 7→ 0 = mk

k + 1 7→ 1 = mk+1

. . . . . . . . .

The new family of Jaco-type graphs, also called themodular Jaco-type graphs,
resulting from mod k, k ∈ N requires a relaxation of Definition 1.2 to allow a
stepwise non-negative, non-decreasing sequence.

Let s2 = {an}, an ≡ n(mod k) = mn. Consider the infinite root -graph
J∞(s2) and define d+(vi) = mi, for i = 1, 2, 3, . . .. From the aforesaid definition
it follows that the case k = 1 will result in a null (edgeless) Jaco-type graph for
all n ∈ N. For k = 2 and n is even, the Jaco-type graph is the union of n

2 copies
of directed P2. For k = 3, the Jaco-type graph is a directed tree and hence is an
acyclic graph G.

For illustration, if k = 5, then Figure 2 depicts J18(s2).

Table 2 depicts the manually calculated invariant, d−(vi), 1 ≤ i ≤ 30 for
k = 8 together with the suggested pattern for all even k ≥ 2, i ≥ 1 which
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Figure 2: J18(s2).

requires proof to settle the determination of the corresponding in-degrees, d−(vi),
i = 1, 2, 3, . . ..

φ(vi) → i ∈ N d−(vi) d−(vi) = φ(vi) → i ∈ N d−(vi) d−(vi) =

1 0 - 16 4 k
2

2 1 1 17 3 k
2 − 1

3 1 1 18 4 k
2

4 2 2 19 3 k
2 − 1

5 2 2 20 4 k
2

6 3 3 21 3 k
2 − 1

7 3 3 22 4 k
2

8* 4 k
2 23 3 k

2 − 1

9 3 k
2 − 1 24 4 k

2

10 4 k
2 25 3 k

2 − 1

11 3 k
2 − 1 26 4 k

2

12 4 k
2 27 3 k

2 − 1

13 3 k
2 − 1 28 4 k

2

14 4 k
2 29 3 k

2 − 1

15 3 k
2 − 1 30 4 k

2

Table 2: k = 8
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We note that for i ≥ 1 and k is even, the in-degree sequence seems to have the

form {0, 1, 1, 2, 2, 3, 3, . . . ,
k

2
− 1,

k

2
− 1,

k

2
︸︷︷︸

1 entry
︸ ︷︷ ︸

first k in−degrees

,
k

2
− 1,

k

2
,
k

2
− 1,

k

2
, . . . ,

k

2
− 1,

k

2
︸ ︷︷ ︸

repetitive subsequence, k in−degrees

,

. . .}.

Table 3 depicts the manually calculated invariant, d−(vi), 1 ≤ i ≤ 30 for
k = 9 together with the suggested pattern for all odd k ≥ 1, i ≥ 1 which
requires proof to settle the determination of the corresponding in-degrees, d−(vi),
i = 1, 2, 3, . . ..

φ(vi) → i ∈ N d−(vi) d−(vi) = φ(vi) → i ∈ N d−(vi) d−(vi) =

1 0 - 16 4 bk
2c

2 1 1 17 4 bk
2c

3 1 1 18 4 bk
2c

4 2 2 19 4 bk
2c

5 2 2 20 4 bk
2c

6 3 3 21 4 bk
2c

7 3 3 22 4 bk
2c

8 4 bk
2 c 23 4 bk

2c

9* 4 bk
2 c 24 4 bk

2c

10 4 bk
2 c 25 4 bk

2c

11 4 bk
2 c 26 4 bk

2c

12 4 bk
2 c 27 4 bk

2c

13 4 bk
2 c 28 4 bk

2c

14 4 bk
2 c 29 4 bk

2c

15 4 bk
2 c 30 4 bk

2c

Table 3: k = 9.

We observe that for i ≥ 1 and k is odd, the sequence of in-degrees seems to

have the form {0, 1, 1, 2, 2, 3, 3, . . . , b
k

2
c, b

k

2
c

︸ ︷︷ ︸

first k in−degrees

, b
k

2
c, b

k

2
c, b

k

2
c, . . .

︸ ︷︷ ︸

all in−degrees

}.

Theorem 3.1. Consider the infinite modular Jaco-type graph J∞(s2), modulo
k ≥ 1. If k is even, then the sequence of in-degrees for vertices vi,
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i ≥ 1 are of the form

{0, 1, 1, 2, 2, 3, 3, . . . ,
k

2
−1,

k

2
−1,

k

2
︸︷︷︸

1 entry
︸ ︷︷ ︸

first k in−degrees

,
k

2
−1,

k

2
,
k

2
−1,

k

2
, . . . ,

k

2
−1,

k

2
︸ ︷︷ ︸

repetitive subsequence, k in−degrees

, . . .}

and if k is odd. then the sequence of in-degrees for vertices vi, i ≥ 1 are of the

form {0, 1, 1, 2, 2, 3, 3, . . . , b
k

2
c, b

k

2
c

︸ ︷︷ ︸

first k in−degrees

, b
k

2
c, b

k

2
c, b

k

2
c, . . .

︸ ︷︷ ︸

all in−degrees

}.

Proof. Partition N into subsets Cm = {j : (m − 1)k + 1 ≤ j ≤ mk, k ∈ N},
m = 1, 2, 3, . . . Also partition the vertex set V (J∞(s2)) into subsets Vm = {vj :
j ∈ Cm}. Clearly, the induced subgraphs 〈Vr〉 and 〈Vq〉 are isomorphic.

Case 1: Let k ≥ 2 and even. First consider 〈V1〉. For k = 2 the sequence of
in-degrees is {0, k2 = 2

2 = 1} = {0, 1}. For k = 4 the sequence of in-degrees is

{0, 1, 1, k2 = 4
2 = 2} = {0, 1, 1, 2}. Hence, the result holds for k = 2, 4.

Assume that it holds for k = `, ` is even. Hence, the corresponding in-
duced subgraph 〈V1〉 has the in-degree sequence {0, 1, 1, 2, 2, 3, 3, . . . , `

2 − 1, `
2 −

1,
`

2
︸︷︷︸

1 entry

}. All the out-arcs defined for vertices v1, v2, v3, . . . , v k
2

have heads

within 〈V1〉. However, vertices vi,
`
2 + 1 ≤ i ≤ `

2 + ( `2 − 1) requires 2i
out-arcs in a sufficiently large modular Jaco-type graph. Hence, by
adding the required out-arcs by utilising 〈V1〉 and 〈V2〉 to construct J2`(s2),
the corresponding sequence of in-degrees is, {0, 1, 1, 2, 2, 3, 3, . . . , `

2 − 1, `
2 −

1,
`

2
︸︷︷︸

1 entry

,
`

2
− 1,

`

2
,
`

2
− 1,

`

2
, . . . ,

`

2
− 1,

`

2
︸ ︷︷ ︸

` in−degrees

}. Since the in-degree of any vertex vi

in Jaco-type graph of any finite size or infinite, remains constant, the result fol-
lows for the in-degree of vertices v`+1, v`+2, v`+3, . . .. Hence, the result holds for
J∞(s2), and k = `. Since the same reasoning applies for k = `+2 mathematical
induction immediately implies that the general result follows for J∞(s2), ∀ even
k ∈ N.

Case 2: Let k ≥ 1 and odd. The proof follows through similar reasoning to
that of Case 1.

Note that the technique used in the proof of Theorem 3.1 is called looped
mathematical induction.

For a given k the in-degree for a vertex vi in both J∞(s2) and the finite
Jn(s2) remains equal and hence the next corollary is immediate consequence of
Theorem 3.1.

Corollary 3.2. For a modular Jaco-type graph, mod k ≥ 1 we have
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(i) If k is even and i ≥ k then d−(vi) =

{
k
2 − 1 if i = 1(mod k),
k
2 otherwise.

(ii) If k is odd and i ≥ k − 1 then d−(vi) = bk
2 c.

In the study of Jaco-type graphs, the concepts of the prime Jaconian vertex
denoted, vp and the Jaconian set are of importance. For ease of reference the
adapted definitions from [4] are repeated here.

Definition 3.3. [4] The set of vertices attaining degree ∆(Jn(s2)) is called the set
of Jaconian vertices; the Jaconian vertices or the Jaconian set of the Jaco-type
graph Jn(s2), and denoted, J(Jn(s2)) or, {Jn(s2)} for brevity.

Definition 3.4. [4] The lowest numbered (subscripted) Jaconian vertex is called
the prime Jaconian vertex of a Jaco-type graph and denoted, vp.

For k ≥ 3, the modular Jaco-type graph is connected. For connected modular
Jaco-type graphs we have the next result.

Proposition 3.5. For the infinite modular Jaco-type graph J∞(s2), k ≥ 3, we
have

J(J∞(s2)) =

{

{vk−1, v2k−2, v2k−1, v3k−2, v3k−1, . . .} if k even,

{vk−1, v2k−1, v3k−1, . . .} if k odd.

Proof. Note that ∆(J∞(s2)) is the maximum degree attained by some vertices.
Hence, ∆(J∞(s2)) = max{d+(vi) + d−(vi)} over all i ∈ N. Since the max{`}
(mod k) is defined for ` = k − 1, the maximum out-degrees are obtained for
vertices subscripted with t · k− 1, t = 1, 2, 3, . . .. The aforesaid implies that the
results for both k even or k odd follow directly from Theorem 3.1.

4. Conclusion

Jaco-type graphs present a wide scope for research in respect of the many known
invariants applicable to graphs. It is noted that all Jaco-type graphs defined
for non-negative, step-wise non-decreasing and step-wise increasing integer se-
quences {an}, are propagating graphs [8]. Hence, a wide scope for further re-
search exists with regards to black clouds, black arcs and black energy dissipa-
tion.

It was reported that the On-line Encyclopedia of Integer Sequences (OEIS)
hosts about 2.6 lakhs of sequences. Amongst the sequences, it is likely that
thousands of integer sequences exist for which Jaco-type graphs can be defined.
Characterising the Horadam Jaco-type graph is also an open research topic.
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