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Background: The study of repetitive (quasi-periodic) spatio-temporal patterns in

complex dynamical systems with a well defined spatial structure may be complicated if

the recurrent behavior is confined to specific local regions, where it lasts for a limited time.

This can decrease the efficacy of recurrence plots (RPs) in recognizing such patterns. It

then becomes important to first detect whether repetitive spatio-temporal patterns are

present, and if so, where they are located (both in space and time), to facilitate a focused

RP analysis approach. This study proposes a novel framework for spatio-temporal

detection of local recurrence of a quasi-periodic nature in complex dynamical systems.

A motivating application for this framework is the analysis of atrial fibrillation to better

understand the heart tissue involved.

Methods: The spatio-temporal data observed from the system are decomposed by

means of principal component analysis to identify the points in the spatial structure

exhibiting quasi-periodic recurrent patterns. The frequency content of the principal

components is used to determine if such patterns are present, and the corresponding

eigenvectors are used to identify the points associated with those components.

Geometric information about proximity of these points is used to cluster them into local

regions. A sliding temporal window is used to detect the start and end of each pattern.

Results: A first simulation shows how the proposed framework can handle multiple

recurrent patterns simultaneously occurring in a spatial structure of a dynamical system.

A second simulation shows how the method can handle more complicated patterns like

2D nonlinear spiraling waves, typical of many diffusion processes. The framework is then

applied to real data to detect recurrent patterns in wave fronts propagating inside the

heart during atrial fibrillation. This analysis can unveil regions of recurrence in the atria

that were not visible with standard RP analysis.

Conclusion: A novel framework for detecting spatio-temporal repetitive patterns in

complex dynamical systems is introduced. It allows retrieve the correct recurrences

associated with known 2D traveling waves, while the same information is not visible with

standard RP analysis. This framework can be effectively used to investigate recurrence

in real dynamical systems as cardiac arrhythmia.

Keywords: recurrence plots, dynamical systems, spatio-temporal detection, principal component analysis,

spatio-temporal data
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1. INTRODUCTION

Complex dynamical systems arise in many fields of science,
e.g., in biology, physics, climatology, and engineering. Those
are systems exhibiting nonlinear, non-stationary, and possibly
even chaotic behavior which is generally difficult to model or
analyze. Several dynamical systems are also characterized by
a well defined spatial organization (like the human brain for
instance), and to properly describe their dynamics, one must
take into account both their spatial and temporal properties.
A way to achieve this is by analyzing the spatio-temporal
data that can be observed from the complex system. In this
respect, an important observation is that dynamical systems
tend to return to former states, and this recurrence can be
recognized as a fundamental characteristic of many dynamical
systems [1] which can be used to study their behavior. Eckmann
et al. introduced the method of Recurrence Plots (RPs) to
visualize and quantify the recurrent behavior of the phase-
space trajectory of a dynamical system [2]. Depending on
the distance measure used, RPs are known to characterize
the underlying trajectory up to isometry, and an underlying
time series up to a sign choice under mild conditions [3, 4].
Once the RP of a dynamical system is obtained, Recurrence
Quantification Analysis (RQA) [5] can be employed to further
quantify the properties of its recurrent behavior. RPs have
been successfully used in numerous fields of research such
as astrophysics, earth sciences, biology and physiology, and
engineering [1].

Originally, RPs were developed for the study of phase-space
trajectories, or for uni-variate time series through time-delay
embeddings. Several extensions have been proposed to deal
with multi-variate time series data and with spatio-temporal
processes which can also exhibit typical recurrent structures of
interest (the interested reader is invited to read section 2 for
more background information about multi-variate and spatial
recurrence plots). Those approaches for multi-variate RPs and
their accompanying RQA generally exploit the whole record
of spatio-temporal data observed from the complex dynamical
system under investigation; they do not aim to find a subset
on which to perform a more focused and informative analysis.
However, for a given systemwith an arbitrary spatial or geometric
structure, recurrence (perceived as quasi-periodic repetitive
patterns) may occur in localized regions of this structure only
(limited over space), and may last for just a limited time
(relative to the overall time span of the data). Not focusing on
such most informative spatio-temporal regions of interest in
the data, may hinder the identification and characterization of
complex dynamics with RQA, as relevant information becomes
obscured by getting drowned in uninformative data and noise.
In addition, from a computational point of view, it is also
inefficient to build RPs and perform RQA on complete multi-
variate datasets if one is predominantly interested in spatio-
temporally localized recurrences. We therefore argue that, before
carrying out multi-variate RPs and RQA, it is important to first
detect if, where, and when recurrence patterns are present and
recognizable. This will allow one to select the spatial region(s)
and time interval(s) of interest for performing a more efficient

and accurate analysis of recurrence, leaving out much of the
unwanted disinformation.

In this study, we propose a novel such framework for the
detection of spatio-temporal recurrence in complex dynamical
systems, This framework focuses on a specific type of recurrence,
namely, recurrences from repetitive (relatively short lived) quasi-
periodic oscillatory patterns, with a limited frequency bandwidth.
This kind of recurrence is important in signal processing
applications, especially in the field of medicine from which we
shall present an example with real data. The framework (see
Figure 1) is designed to work with spatial structures of arbitrary
geometry (which can be graph-based and need not be confined to
regular grids). It first uses Principal Component Analysis (PCA)
to identify the points in the geometric structure associated with
a local recurrent pattern, and then clusters those points to find
the geometric regions where the recurrent patterns are located.
In order to estimate the corresponding time interval of each
recurrent pattern, a time windowing procedure is developed. The
effectiveness of this method is illustrated with two numerical
simulations. The practical relevance of the framework of this
study is then demonstrated by means of an application with real
data. In this application, the goal is to identify recurrence in atrial
fibrillation (AF) propagation patterns in high-density contact
mapping in a sheepmodel of acute AF. AF is a cardiac arrhythmia
characterized by an irregular electrical activity in the atria, the
upper chambers of the heart. AFmay be driven by specific regions
within the atria that spontaneously generate electrical activity in
an uncoordinated way, or by self-perpetuating quasi-periodic re-
entry patterns of propagation of electrical wave fronts, which
may happen both globally (at the level of the whole atria),
or locally (at the level of sub-regions of the atria). Therefore
wave front propagation during AF is a complex phenomenon,
which may be localized both in time and space, and which
provides a natural application for the framework proposed in
this study [6]. The results presented in this paper demonstrate
the applicability and validity of the proposed framework for the
detection of spatio-temporally localized recurrence in complex
dynamical systems.

2. BACKGROUND ON MULTI-VARIATE AND
SPATIAL RECURRENCE PLOTS

As mentioned in the Introduction, several extensions of RP
and RQA have been proposed to deal with multi-variate time
series data and with spatial data. Romano et al. [7] proposed
to calculate RPs of multi-variate time series based on joint
recurrence in phase space. This approach focuses on studying
the phase synchronization of two bidirectionally coupled chaotic
systems, depending on their coupling strength, and frequency
mismatch. Nichols et al. [8] used RP and RQA for damage
detection in structures, and they showed how it can be extended
to include multi-variate observations coming from a spatially
distributed network of sensors. The authors proposed a simple
embedding procedure for multi-variate time series, in which
each embedded vector is built by taking the samples from all

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 August 2019 | Volume 5 | Article 36

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bonizzi et al. Detection of Spatio-Temporal Recurrence

FIGURE 1 | Schematic of the framework. Briefly, the time series associated with each point in the geometric structure are collected into a matrix B, which can be seen

as a multi-variate time series. A sliding window is applied over the multi-variate time series, and each window is decomposed by means of PCA. The information from

the PCA decomposition is used to retrieve the points in the structure associated with a temporal recurrent pattern. The geometric information about proximity of the

points is then used to cluster together points of recurrence which are next to each other, and identify spatial regions of recurrence. Finally, the information from all

windows is used to create global regions of recurrence and estimate their time intervals (spatio-temporal recurrence).

sensors at a given time instant. We used a similar idea to generate
multi-variate RPs in this study, as discussed in section 3.2.

When the focus is on spatial data structures characterized
by high-dimension and geometric correlation patterns (different
from time series data), traditional RP is limited in analyzing
it, since recurrene may occur in any spatial direction (and
not simply over time). In this respect, Vasconcelos et al. [9]
investigated recurrence in spatial data by separating the higher-
dimensional objects into a large number of one-dimensional
data series (space separated coordinates), and by analyzing them
separately. This approach was used to study the distribution of
spatially coherent structures at a fixed time. Marwan et al. [10]
extended this one dimensional approach to a higher-dimensional
one, still focused on the analysis of still images (i.e., data
structures at a fixed time). They showed that when used on
images from computed tomography scans of human proximal
tibia with different degree of osteoporosis, the RQA measures
related to the complexity and homogeneity of the trabecular
structure. Prado et al. [11] adapted these approaches for spatial
RQA to study digital mammography high-resolution images, and
showed that subtle details could be highlighted, which may elude
visual inspections. Riedl et al. [12] proposed tomeasure similarity
between spatially distributed data instances at different time
points by means of a mapogram (a special form of a spatiogram),
and used the similarity values of the pairwise comparison to
construct an RP. This allows to focus on different spatial scales
that can be used in a multi-scale analysis of spatio-temporal
dynamics. Chen et al. [13] introduced a generalized framework
based on complex networks for recurrence analysis of spatial
data, able to overcome the limitation from previous approaches,
which could only visualize recurrence patterns in the projected
reduced-dimension space (i.e., two- or three- dimensions). In this

way, network edges and weights help preserve complex spatial
structures and recurrence patterns. The approach proposed in
this study also treats each individual point in the structure (or
pixel in an image) as a separate dimension, or a separate network
node. The advantage of such a graph-based approach is that it is
expected to work with spatial structures of arbitrary geometry.

One underlying assumption of themethods listed above seems
to be that all the data (multi-variate data or spatial structures) is
relevant to recurrence behavior analysis. For instance, recurrence
may characterize the entire distributed network of sensors in
Nichols et al. [8], and not just a subset of those, and thus all
sensors (or, more broadly, data) are used for RP and RQA.
However, if only a portion of the spatio-temporal data is carrying
recurrence information, it could be more beneficial to first
identify the subset of data involving recurrence, and then to
apply multi-variate RP and RQA to this subset only to obtain
more accurate results. Similar thoughts apply to spatial data, with
the identification of the spatial subregion(s) where recurrence
is present. In this respect, the method we propose is not an
alternative way to perform RP and RQA on spatio-temporal data
(although it shares similarities with some of those), but rather an
approach to identify spatio-temporal regions of recurrence for a
better investigation of it by means of any arbitrary multi-variate
RP and RQA technique.

3. METHODS

This section is divided in two main parts. The first part
focuses on introducing an algorithm for detection of spatio-
temporal recurrence. The second part focuses on an approach for
generating recurrence plots from multi-variate time series.
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3.1. Spatio-Temporal Detection of
Recurrence
Given a dynamical system with n state variables, the current
mathematical state of the system at a given discrete time k is
obtained by collecting the variables into a state vector x(k). This
vector represents a point in a space R

n, which is known as the
state-space or as the phase-space of the system. The evolution of
the system over time traces a path through this space, referred
to as the phase-space trajectory of the system. A recurrence
in the phase-space can then be defined as a time instant in
which the state returns close to a location it has visited before
(x(i) ≈ x(j), i 6= j). RPs and RQA provide a way to respectively
visualize and quantify recurrent behavior of the phase-space
trajectory of a dynamical system [2]. We now assume to be
dealing with a complex dynamical system characterized by an
arbitrary geometric structure with n points; at each point we
have a uni-variate state variable that varies with time. We do not
assume that those points are spatially organized on a regular grid.
However, we do assume that the geometric relationships among
those points are well-defined (for instance, in terms of proximity:
for each point, its neighboring points are specified).

For the purpose of detecting recurring geometric patterns,
and given that we have a geometrical structure of n points, we
define the state vector as the n instantaneous values at those
points and we do not use a time-delay embedding. Each point in
the geometry is characterized by a signal or a time series, which
describes the evolution over time of the state variable associated
with that point. An overall trajectory can then be determined
for the whole structure, by considering the joint evolution of
all states. In this context, recurrence can be defined in terms of
spatial patterns that repeat over time. Such patterns may occur in
specific regions of the structure, and over limited time intervals.
For instance, consider the case of a 2D sinusoidal wave appearing
at a specific location in a sequence of random noise images, and
over a limited time interval, as depicted in Figure 2. The 2D
sinusoidal wave was generated from:

s(x, y, t) = sin(2π f (x cos(θ)+ y sin(θ))+ φ(t)), (1)

where (x, y) are the geometric coordinates of a point in the
structure, f is the normalized frequency (equal to 1/12 in this
example), θ is the angle associated with the orientation of the
2D wave (equal to 2π

7 ), and φ(t) = π
9 t, for t = 0, 1, 2, . . .. The

questions now become whether in this context it is possible to:
(1) detect the presence of this localized recurrence, (2) identify
its spatial region of recurrence within the geometric structure,
and (3) estimate its time interval. To answer these questions, the
following framework for spatio-temporal detection of recurrence
is proposed.

3.1.1. Identification of the Most Relevant Points in the

Geometric Structure—Spatial Detection of

Recurrence

The first step is to identify the most relevant points in the
geometric structure associated with a specific recurrent pattern.
This is achieved by first generating a matrix B = (n × N), which
collects the signals from all points in the structure (n points andN

samples). Matrix B is then decomposed by means of PCA, using
Singular Value Decomposition (SVD), such that B = USVT , with
U = (n × n) and V = (N × N) being orthogonal matrices
collecting the left and right singular vectors, respectively, and
S = (n×N) a rectangular diagonal matrix collecting the singular
values of B on its diagonal. The rationale for using SVD is due
to the assumption that spatio-temporal repetitive quasi-periodic
patterns are expected to be associated with highly correlated
signals at different points of the structure. This provides the ideal
setting for PCA to describe this redundancy, which is expected
to be picked-up by the first Principal Components (PCs) of B. At
the same time this filters out possible uncorrelated information
or noise from other points. Moreover, the output V of the SVD
is independent of any permutation of the rows of B, making
this step of the analysis independent of the specific geometric
relationships among the points.

The second step is to identify how many PCs of B are required
to properly determine a recurrent pattern in the structure. The
full PC decomposition of B can be obtained as B = AZ, where
Z =

√
NVT is the matrix collecting the PCs of B in its rows,

and A = 1√
N
US is the linear transformation connecting the PCs

to the original variables. The most relevant PCs associated with
a recurrent pattern are then found by looking at the normalized
power spectrum Pj(f ):

Pj(f ) =
|Ẑj(f )|2

max
f

|Ẑj(f )|2
(2)

where Ẑj(f ) =
N−1
∑

ℓ=0

Zj(ℓ)e
−2π iℓf

N (3)

of each PC Zj (with f being the frequency index), and by
measuring the spectral concentration (SC) around the index

f̃j of the dominant frequency peak in Pj(f ) [14]. The spectral
concentration is computed as:

SCj =

∑f̃j+
wj
2

f=f̃j−
wj
2

Pj(f )

∑N−1
f=0 Pj(f )

, (4)

where w is the half height bandwidth of the frequency of the

dominant peak at f̃j. The rationale to look at the SC for selecting
themost relevant PCs is that recurrence associated with repetitive
(quasi-periodic and oscillating) patterns should show clear peaks
in the power spectrum of the corresponding PCs. The most
relevant PCs are identified as those whose SC is larger than a
pre-defined threshold Ŵ (which is assumed to be dependent on
the specific application). Figure 3 shows the power spectrum of
the first PC of the recurrent pattern in Figure 2, together with

the frequency index f̃j of the dominant peak and its half height
bandwidth wj for the computation of the SC of component Zj.

Once all relevant PCs of a recurrent pattern have been selected,
the third step is to identify all points in the original geometric
structure associated with those PCs, i.e., the points on which the
selected PCs are reflected the most. This is achieved as follows:
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FIGURE 2 | Example of spatio-temporally localized recurrence. A 2D sinusoidal wave of limited time duration appears in a specific region of a random noise image,

and propagates in the direction indicated by the white arrow. The sequence consists of N = 90 frames, with the sine wave appearing at frame 31 and lasting for 30

frames until frame 60. The frame size is 256 × 256 points, while the region of recurrence has size 32 × 32. At the bottom, the signal associated with a point (a pixel) in

the region of recurrence is depicted (90 sample long signal), showing the alternation between random noise and the sine wave. The matrix B corresponding to this

case has a size of 65536 × 90.

FIGURE 3 | Normalized power spectrum of the first principal component of

the matrix B from the example of Figure 2. The location of the index f̃j of the

dominant frequency peak and its half height bandwidth wj are also shown. The

horizontal axis shows the frequency indices; the vertical axis shows the

normalized power spectrum (n.u.: normalized units).

for each selected PC Zj, the entries in the (n × 1) vector aj, the
j-th column of A, provide information about the contribution
of Zj to each point in the original structure. The most relevant
points in the geometric structure associated with Zj can therefore
be defined as those points with the largest contribution from
Zj. The following criterion is used on aj to select all relevant
points associated with a selected Zj. Given each entry aj(i) of aj,
the vector ãj is generated by taking the absolute value of each

entry of aj: ãj(i) =
∣

∣aj(i)
∣

∣, for i = 1, . . . , n. Then, for each
entry ãj(i) in ãj, location i is selected as relevant if ãj(i) > 3σãj ,
where σãj denotes the standard deviation of the entries in ãj.
Assuming that recurrence patterns are only present on limited
regions of a structure, and for limited time, most of the points
at each time instant are expected to be uncorrelated with those
recurrence patterns, and they represent a sort of reference range.
The multiplicand 3 is used to identify all points outside of this
reference range. Figure 4-left shows the locations of the most
relevant points associated with the recurrent pattern in Figure 2.
Observe that the region of recurrence is identified properly,
but several spurious points outside of this regions have been
selected as well. To accurately identify regions associated with
recurrent patterns, and filter out spurious points, the geometric
information about proximity between the most relevant points
is then taken into account in order to cluster neighboring
relevant points together. This can be achieved in a similar
way to finding connected nodes in a undirected graph, and
any suitable technique for this task can be employed. An
(application dependent) threshold can then be applied to define
the minimum size (number of points) that a cluster should have
to be considered a region of recurrence, and to filter out all
small clusters composed by spurious points. Figure 4-right shows
the result of applying the geometric information to the relevant
points in Figure 4-left, in order to identify the recurrent regions
in a structure.

3.1.2. Spatio-Temporal Detection of Recurrence

To be able to estimate the time span of a region of recurrence
in a geometric structure, the multi-variate signal can be split up
into (overlapping) time windows, and the algorithm for spatial
detection of recurrence introduced in the previous section can
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FIGURE 4 | (Left) locations of the most relevant points associated with the recurrent pattern in Figure 2. (Right) region of recurrence identified after applying the

geometric information to all relevant points identified, and a threshold on the minimum number of points a region of recurrence should contain (set to 100 points for

this example).

FIGURE 5 | Example of application of the framework for spatio-temporal

detection of recurrence introduced in section 3.1 to the example of Figure 2.

Shown is a summary of the analysis as outputted by our software. In black the

detected recurrence area is indicated. The estimated time interval (frame

range) of the recurrent pattern is also shown.

be applied to each window individually. All clusters identified in
a window need then to be compared with those found in the
previous window, to be able to say for each cluster whether it
is a new cluster or not, or whether a cluster from the previous
window has ceased. Experience shows that the window size p
and the overlap between windows q, are application dependent,
as it is to be expected. Figure 5 shows the result of applying the
proposed approach for spatio-temporal detection of recurrence
to the case of Figure 2, involving a time limited 2D sinusoidal
wave appearing at a specific location in a sequence of random
noise images.

For the estimate of the time interval of a region of recurrence,
we used the first and last window where the region was detected.
The mid points of those windows are used to estimate the start
and the end of the time interval of recurrence, respectively. In

the example, the estimated interval (from frame 35 to 65, as
displayed in Figure 5) is close to the actual time interval of the
recurrent pattern (from frame 31 to 60). The result shown in
Figure 5 was obtained with a window size p = 30 frames, and
an overlap q = 20.

3.2. Multi-Variate Recurrence Plots
Asmentioned before, RPs provide a way to visualize and quantify
recurrent behavior of the phase-space trajectory of a dynamical
system [2]. According to Takens’ theorem the dynamics of
a uni-variate process x(k) can be represented in phase space
using an appropriate time-delay embedding, producing the
embedded vector:

x(k) = (x(k), x(k+ τ ), . . . , x(k+ τ (m− 1)))T (5)

with time-delay τ and embedding dimension m, providing a
vector of size m × 1. Recurrence Rij between two points x(i) and
x(j) in the phase-space is measured by computing the distance
between those two points. Traditionally, the Euclidean distance is
used to compute the proximity of two points in the phase space.

Given a multi-variate process, the uni-variate framework
in (5) needs to be extended to handle multi-variate (spatio-
temporal) data. This would allow to process the signals from
all points of a recurrent region simultaneously, and take into
account the contribution of space and time together. A multi-
variate RP can be generated as follows: the matrix X of size
ℓ × M is defined, which collects the set S of points constituting
a recurrent region (ℓ = |S| ≤ n), and all samples in the set T
that constitutes the time span of the recurrence in that region
(M = |T| ≤ N). The rows of X can be viewed as a multi-variate
time series xi(k), i = 1, . . . , ℓ and k = 1, . . . ,M, which denotes
the i-th signal sampled at discrete time k. The dynamics of a
process xi(k) can be then reconstructed by considering delayed
copies of each of the signals forming the delay vectors:
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x(k) = (x1(k), x1(k+ τ1), . . . , x1(k+ (m1 − 1)τ1), . . . ,

xℓ(k), xℓ(k+ τℓ), . . . , xℓ(k+ (mℓ − 1)τℓ))
T .

As in the multi-variate case of a dynamical system, the
embedding dimension of all ℓ signals can be fixed to mi =
1, i = 1, . . . , ℓ, thus giving the phase space representation
x(k) = (x1(k), x2(k), . . . , xℓ(k)), as proposed in Nichols et al.
[8]. Each column of X is then assumed to provide an
“embedded” vector x(k). This formulation allows to investigate
the temporal recurrence over the entire surface covered by a
recurrent region. An unthresholded RP can then be generated
by measuring the distance between each column x(k), and every
other column in X.

As a distance measure, we propose to use the cosine
of the angle between two vectors instead of the Euclidean
distance, namely:

d(x(i), x(j)) = x(i)Tx(j)

||x(i)||2||x(j)||2
(6)

The rationale for this choice is that this distance provides a
normalized correlation which is not affected by the magnitude
of the vectors (for two signals, that means that the shapes of the
signals are compared without being influenced by their respective
amplitudes). This approach for generating a multi-variate RP was
used in Meste et al. [15] to investigate temporal recurrence of
spatial patterns of the electrical activity of the heart, as recorded
on the body surface, in patients affected by AF (for which
several electrical signals were recorded on the body surface).
This helped improving both noninvasive characterization of
the progression of the disease and outcome prediction of
a specific therapy.

Figure 6 shows an example of a multi-variate RP for the case
presented in Figure 2. Figure 6 top-left shows the multi-variate
RP computed on all points and all samples (X = B of size
n×N). It can be noticed how the RP is dominated by the random
noise in the system (only the main diagonal stands out, which
is related to the autocorrelation at lag zero), while the recurrent
patterns associated with the 2D sinusoidal wave is completely
concealed by the noise of the system. On the other hand, when
a multi-variate RP is generated using only the relevant points in
the geometric structure, the recurrent patterns associated with
the 2D sinusoidal wave stand above the random noise (X =
Bi∈S;1 :N of size ℓ×N). This is shown in Figure 6 top-right, from
which the temporal extension of the recurrent pattern can be
clearly deduced from the RP (lasting from sample 31 to sample
60). Figure 6 bottom-left shows the result of generating a multi-
variate RP using only the points within the region of recurrence,
and the time interval corresponding to the temporal extension of
the recurrent pattern (X = Bi∈S;j∈T of size ℓ × M; from frame
31 to frame 60). Finally, Figure 6 bottom-right shows the multi-
variate RP computed on the region of interest and time interval
reported in Figure 5, identified by the spatio-temporal approach
proposed in section 3.1.

4. SIMULATIONS

Two numerical simulations are presented in this section.
The first one shows the ability of the proposed approach to
handle multiple recurrent patterns simultaneously occurring in
a geometric structure. The second one shows the ability of the
proposed approach to detect recurrent patterns from spiraling
waves, which may occur in several real world problems, among
which cardiac arrhythmia like AF. All analysis and computations
were performed in MATLAB (MATLAB and Statistics Toolbox
Release 2018a, The MathWorks, Inc., Natick, MA, USA). Code
can be requested from the authors.

4.1. 2D Sine Waves
The first simulation concerns a sequence of random noise images
(each frame of size 256 × 256 points), with two different
2D sinusoidal waves of limited time duration appearing in
two different regions of the random images. The sequence
is composed of N = 150 frames, with the first sinusoidal
wave starting at frame 40 and lasting for 60 frames (region
of recurrence of size 32 × 32 points; Figure 7-left), and the
second sinusoidal wave starting at frame 80 and lasting for 60
frames (region of recurrence of size 20 × 20 points; Figure 7-
right). The two sinusoidal waves are therefore simultaneously
present in twenty frames (Figure 7-middle), while having
different directions of propagation (indicated by the white
arrows in Figure 7), different frequencies, and different speeds
of propagation (with the smaller wave having a higher speed than
the larger wave). The two waves were generated from Equation
(1), with the following settings, first sine wave: f = 1/12, θ = 2π

7 ,

φ(t) = π
9 t, for t = 0, 1, 2, . . .; second sine wave: f = 1/5, θ = 2π

3 ,
and φ(t) = π

9 t, for t = 0, 1, 2, . . ..
Figure 8 shows the result of applying the framework proposed

in section 3.1 for spatio-temporal detection of recurrence to this
example. For this, the following settings were used: a window size
p = 30 samples, with overlap q = 20 samples, a threshold Ŵ =
0.25 for the spectral concentration, and a minimum size of 100
points for a cluster to be considered a valid region of recurrence.
From Figure 8, it can be noticed how the proposed framework
accurately detects both the locations of the two regions of
recurrence (also avoiding generation of spurious regions), and
their corresponding time supports (cluster 1: actual time interval
from 40 to 99, estimated from 45 to 105; cluster 2: actual time
interval from 80 to 139, estimated from 85 to 135).

Figure 9 shows the multi-variate RPs of the two recurrent
regions depicted in Figure 8, computed over the time intervals
estimated for the corresponding clusters.

4.2. 2D Periodic Spiraling Wave
The second simulation concerns a sequence of random noise
images (each framewith a size of 300× 300 points). The sequence
is composed of N = 130 frames, with a 2D periodic spiraling
wave appearing at frame 21, and lasting for 80 frames (with a
period of approximately 25 frames; the region of recurrence is
of size 128 × 128 points; Figure 10 shows two periods of the
spiraling wave). The spiraling pattern was simulated using the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 August 2019 | Volume 5 | Article 36

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bonizzi et al. Detection of Spatio-Temporal Recurrence

FIGURE 6 | Multi-variate RP for the case presented in Figure 2. (Top-left) The multi-variate RP computed on all points and all samples (X = B of size n× N).

(Top-right) Multi-variate RP is generated using only the relevant points in the geometric structure (set S). (Bottom-left) Multi-variate RP using only the points within

the region of recurrence (set S), and the time interval corresponding to the temporal extension of the recurrent pattern (T = {31, . . .60}), i.e., frame 31 through 60.

(Bottom-right) Multi-variate RP computed on the region of interest and time interval (frame 35 through 65) reported in Figure 5.

FIGURE 7 | Simulation characterized by a sequence of random images with two different 2D sinusoidal waves of limited time duration, appearing in two different

regions of the random images. The two sinusoidal waves are simultaneously present over 20 frames, and they have different direction of propagation (indicated by the

white arrows), different frequency, and different speed of propagation (with the smaller wave having a higher speed than the larger wave).

complex Ginzburg-Landau equation in 2D (by means of pseudo-
spectral code and exponential time differencing, as described
in Cox and Matthews [16]). The complex Ginzburg-Landau
equation has been used to describe several physical phenomena,
among which nonlinear waves, superconductivity, and strings in
field theory [17]. The equation is given by:

∂tA = A+ (1+ ib)1A− (1+ ic)|A|2A,

where A is a complex function of (scaled) time t and (two
dimensional) space, and the real parameters b and c characterize
linear and nonlinear dispersion. The simulation in Figure 10 was
generated by setting b = 0 and c = 1.2. The complex Ginzburg-
Landau equation allows to simulate spiral turbulence in two
dimensions, which can be regarded as a model of AF. Indeed,
cardiac arrhythmia such as AF are characterized by spatially
complex dynamics generated as multiple excitation waves that
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FIGURE 8 | Result of applying the framework for spatio-temporal detection of recurrence introduced in section 3.1 to the example of Figure 7. The estimated time

intervals of the recurrent patterns are also shown.

FIGURE 9 | Multi-variate RPs computed on the regions of interest and time intervals reported in Figure 8.

propagate through the cardiac tissue, merging and breaking
up [18]. Unlike the previous simulation, this simulation offers
therefore a more realistic example of a spatially complex periodic
pattern, and it provides a test bench for the application of the
proposed framework for spatio-temporal detection of recurrence
to the characterization of atrial activity propagation patterns
during AF, which is discussed in section 5.

Figure 11 shows the result of applying the spatio-temporal
detection of recurrence to this example. For this, the following
settings were used: a window p = 40, with overlap q = 30,
a threshold Ŵ = 0.25 for the spectral concentration, and a
minimum size of 100 points for a cluster to be considered a valid
region of recurrence. From Figure 10, it can be noticed how the
proposed framework admits accurate detection of the location of
the region of recurrence, and of its corresponding time interval
(actual time interval from 21 to 101, estimated from 25 to 105). A
longer window size was required for this simulation to be able to
detect recurrence of the spiraling wave. This was likely due to the
fact that the spiral wave is sparser both in space and time.

Figure 12 shows the multi-variate RP of the recurrent region
depicted in Figure 10, computed over the time interval estimated
for the corresponding cluster.

5. APPLICATION TO ATRIAL FIBRILLATION

5.1. Experimental Setup
The animal study performed to acquire the data used in this
study was carried out in accordance with the principles of
the Basel Declaration and regulations of European directive
2010/63/EU. The local ethical board for animal experimentation
ofMaastricht University approved the protocol. Epicardial (outer
surface of the heart) high-density direct contact mapping was
performed in an ovine model of acute atrial fibrillation (AF).
Uni-polar electrograms were measured on the left atrial free
wall during an open-thorax procedure with a regular grid of
electrodes (16x16 electrodes, 1.5mm inter-electrode distance,
1 KHz sampling frequency, see Figure 13A). In a healthy
adult sheep, acetylcholine was delivered intracoronary, which
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FIGURE 10 | Simulation characterized by a sequence of random images with a spiraling wave of limited time duration added to it. The spiraling pattern was obtained

by means of a complex Ginzburg-Landau equation, with parameters b = 0 and c = 1.2. The simulation shows two periods of the spiraling wave.

FIGURE 11 | Result of applying the framework for spatio-temporal detection

of recurrence introduced in section 3.1 to the example of Figure 10. The

estimated time interval of the recurrent pattern is also shown.

shortened the effective refractory period of the atrial action
potential, thereby shortening the AF cycle length and stabilizing
AF. Infusion rate was adjusted to reach a sufficiently short AF
cycle length at which more complex patterns of AF (i.e., multiple
wave fronts per cycle) could be observed.

5.2. Recurrence Analysis
Recurrence of wave patterns was determined in a selected
segment of the mapping, which comprised 10 s of AF, with an
average cycle length of 67 ms (∼15 Hz). Recurrence analysis was
based on automated annotation of local atrial deflections and
activation-based phase map similarity as described in previous
work [6, 19]. In short, an activation guided phase signal was
computed for each signal, setting the moment of phase inversion
equal to the local activation time. The linear phase (−π to π)
was interpolated for every interval between activations. Based on
these phase signals, phase maps were constructed for all time

FIGURE 12 | Multi-variate RP computed on the region of interest and time

interval reported in Figure 11.

steps. The distance between two phase maps was calculated as
the average absolute phase difference over all electrodes. This
was executed for every possible comparison between time steps
within the 10 s recording. Recurrent patterns were defined as
phase maps with a distance < π

4 , corresponding to 1
8 of the AF

cycle length.

5.3. Application of the Framework for
Spatio-Temporal Detection of Recurrence
The proposed framework for spatio-temporal detection of
recurrence was applied to the uni-polar electrograms. The
frequency content around the fundamental frequency of AF
was emphasized by filtering the electrograms with a band-pass
filter (40–250 Hz, 3rd order, zero-phase Chebyshev), followed
by rectification and a low-pass filter (20 Hz, 3rd order, zero-
phase Chebyshev). Window size was set to p = 10 AF cycles
(∼670 ms) with a 50% overlap (q = 5 AF cycles), a threshold
Ŵ = 0.25 for spectral concentration, and a minimum size of
20 electrodes for a cluster. Deviating slightly from the approach
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FIGURE 13 | Application of the spatio-temporal recurrence detection framework to high-density contact mapping recordings in an ovine model of AF. (A) a

high-density grid of electrodes was used to record conduction patterns during AF in a healthy adult sheep, on the left atrial free wall during an open-thorax procedure.

(B) a recurrence plot of a 10 s recording based on activation-phase similarity. Overall recurrence is limited and short-lasting (recurrence rate: 0.23% determinism:

88.17%, minimal diagonal line length 1 AF cycle). (C) application of the spatio-temporal recurrence detection framework produced a heat map of electrode-cluster

incidence (left) and corresponding candidate recurrence regions (right). (D) Recurrence plots of the selected regions with corresponding colors (blue and red), with

increased recurrence [recurrence rates: 5.31% (blue) and 1.55% (red), determinism: 83.79% (blue), and 56.18% (red)].

used in the simulations, the identification of regions eligible for
recurrence analysis was performed by creating a heat map of
the number of times each electrode was selected as part of a
cluster in each window. Regions were identified as clusters of
electrodes that were selected in at least 75% of the windows.
The rationale behind this procedure is that in the context of AF,
the interest is in finding regions that harbor both recurrent and
frequent patterns that may act as local drivers that maintain AF.
This procedure also accounts for potential minor drifting of the
dominant recurring patterns.

Figure 13 shows the results of the case study in the ovine
model of AF. The RP for the whole mapping area (Figure 13B)
shows that overall recurrence rate is very limited, which indicates
that there are almost no wave front patterns that re-occur. Close
to the diagonal there are a few, short-lived recurrences that
however do not reappear later on. Applying spatio-temporal
recurrence detection, a heat map of electrode-cluster incidence
was determined that shows two distinct regions of frequently
selected electrodes (Figure 13C). RPs for these two regions
are shown in Figure 13D, in blue and red. Clearly, these two
regions - most notably the larger region in blue - have an
increased recurrence rate compared to the RP of the full mapping

area. This shows the benefit of using the suggested framework
to unveil regions of recurrence in spatio-temporal data from a
complex dynamical system, which would be otherwise concealed
by using all the spatio-temporal information available.

6. DISCUSSION

This study proposed a novel framework for spatio-temporal
detection of recurrence in complex dynamical systems
characterized by repetitive (quasi-periodic) spatio-temporal
patterns. This framework allows to address the following
questions: whether a recurrent pattern is present in the geometric
structure, where it is located (in which region of the geometric
structure), and when it occurs (at what time instants it appears
and then disappears). This is relevant since several dynamical
systems are characterized by a well defined spatial organization,
and accurate localization of recurrence both in space and time
becomes important to be able to properly describe the recurrent
behavior of such systems, and filter out any noise or unwanted
information. This can be seen in Figure 6, which displays the
multi-variate RP of a simple example, a 2D sinusoidal wave
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traveling in a limited region of a noisy image. When all spatial
and temporal information is considered, the dynamic behavior
associated with the sinusoidal wave is concealed by the noise,
and the typical RP of white noise is obtained. On the other hand,
the typical RP of a sinusoidal wave is properly retrieved when
only the spatio-temporal information associated with the region
of recurrence is used.

The two numerical simulations presented in section 4 suggest
that the proposed framework is able to achieve a detailed
identification of the spatial and temporal locations of different
types of spatio-temporal repetitive patterns in a dynamical
system. The first simulation shows that an accurate identification
in both space and time is possible even when several recurrent
patterns are simultaneously present in the geometric structure
of a dynamical system. The second simulation shows that
accuracy is also maintained with more complicated types of
recurrent patterns like spiral waves from reaction diffusion
models, simulated by means of the complex Ginzburg-Landau
equation, whose recurrent patterns become sparser both in
space and time, and thus more difficult to be detected. This
scenario is also encountered in cardiac arrhythmia like AF, in
which abnormal electrical activity may generate and propagate
in specific regions of the atrial tissue, which may also offer
the physiological conditions for this activity to self-perpetuate
over a certain time span. When applied to actual invasive
recordings of atrial activity during AF in an animal model, the
proposed framework was able to unveil regions on the atrial walls
characterized by recurrent behaviors, which were not visible from
the RP generated from the full available spatio-temporal data.
This is relevant, as an accurate spatial and temporal identification
of those regions may help characterize the progression of the
disease, the level of impairment of the cardiac tissue, and improve
patients stratification and personalize therapy [20].

The proposed framework was also tested on simulations
similar to those of Figures 2, 7, but with the background
noise replaced by a 2D sinusoidal wave covering all the
geometric structure and lasting for the entire duration of
the simulation (results not presented in this study). This was
done in order to test the ability of the framework to detect
regions of spatio-temporal repetitive patterns in presence of a
background global repetitive pattern. The preliminary results
of this analysis showed that the framework could correctly
detect the regions of recurrence and separate those from the
background activity. In turn, this suggests that the method
should be able to handle the contemporary presence of different
temporal structures in different areas and at different time/spatial
scales, and to identify meaningful temporal structures with
low percentage of variance explained. However, this should be
thoroughly addressed in a future study. In this respect, Giuliani
et al. [21] showed that addition of artificial noise to a multi-
variate dataset before PCA improved the discrimination between
weak periodic signals and noise inherent in the data. In a
similar way, Poon and Barahona [22] proposed the controlled
addition of white or colored noise to short and noisy time
series data to track the onset of deterministic chaos and to
give a relative measure of chaos intensity. The framework
introduced in this study may benefit from such a controlled

addition of noise to the spatio-temporal data to improve
discrimination of different temporal structures simultaneously
present in different areas and at different time/spatial scales.
Similarly, Zbilut et al. [23] used cross-recurrence to extract
periodic signals up to very low signal-to-noise ratio. It would
be worthwhile to investigate whether replacing matrix B in the
current framework with the covariance matrix of the multi-
variate time series data may improve identification of the
significant points in the geometric structure, and reduce spurious
points due to noise.

Several extensions of RP techniques for spatially distributed
data have been introduced. In this respect, Riedl et al. [12]
proposed multi-scale recurrence analysis of spatio-temporal
data as a way to take spatial patterns of different scales
and with different rhythms into account. They showed that
this approach is able to both separate mixed regular patterns
of specific scales and rhythms and also to reveal large-
scale rhythms beyond the dominant small-scale dynamics in
spatial distributed systems. The framework proposed in this
study could be integrated with this and other multi-variate
RP approaches, in order to improve multi-variate RQA of
spatio-temporal data.

The task of detecting the start and end points of a recurrent
pattern may appear very similar to the one of change point
detection (CPD) in time series data [24]. CPD is about identifying
the time point(s) in a time series such that observations follow
a certain statistical distribution up to that point and a different
distribution after that point [25]. In this respect, Hu et al. [26]
recently proposed the use of RPs to improve CPD in multi-
variate time series data. However, the sudden appearance of a
spatio-temporal repetitive pattern in a multi-variate time series
represents a very specific type of change, which may not be
reflected in a statistical difference in the distributions of the
observations before and after the change. In a future study, it may
be worthwhile to investigate whether an RP-based CPD approach
could be used as an alternative to the sliding window approach
suggested in this study, in order to improve the accuracy in
the estimation of the time interval of a recurrent patter, after
the most significant points in the geometric structure have
been identified.

In this study, we did not analyze the influence of the
noise level on the accuracy in the detection of spatio-
temporal recurrence, which should be addressed by a
future study. One limitation of the proposed framework
is that it only considers information about proximity
when clustering neighboring points to build a region of
recurrence. Additional information could be taken into
account, such as distances between the points, which may
become relevant when clustering points in arbitrary irregular
geometric structures.

7. CONCLUSION

In this study, we presented a novel framework for spatio-
temporal detection of recurrence in complex dynamical systems
characterized by a well defined spatial structure. This framework
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focuses on spatio-temporally localized repetitive patterns and
is able to retrieve the correct recurrence plots associated
with known traveling waves in a geometric structure, by
focusing on the spatial regions and time intervals involved
by a recurrence behavior, and leaving out all unwanted
information. This framework may be integrated with state of
the art methods for multi-scale and multi-variate recurrence
plots, to help improve recurrence quantification analysis of
spatio-temporal data.
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