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Abstract

The theoretical power delivered by piezoelectric generators (PG) is a key parameter for

their design optimization and for the determination of the power management circuit

which should be designed especially for the targeted device to be supplied. Most often,

when the PG is connected to a resistive load, a maximum of average power occurs

at a given load value which should be determined by sweeping the resistive load.

Although the determination of this optimal load is obvious in the case of a sine signal,

as it is matching the internal impedance of the PG, the cases of non-sine signals are

more complex.

In this paper, we show that the waveform of the mechanical force applied to the

PG significantly influences the generated power and the optimal load. We propose a

method to predict the average power produced by a PG as a function of the load, even

if the waveform is not a sine. The study is focused on a square waveform with variable

exponential rising time, corresponding to realistic mechanical excitations, and shows

that the force rising time drastically influences the mean power delivered by PGs hav-

ing a capacitive internal impedance, for example some ZnO nanowires-based PGs. We

also show that the peak instantaneous power, often reported as PG performance metric

in literature, largely overestimates the truly available power.

Keywords: energy harvesting, piezoelectric, modeling, peak power, average power

1. Introduction

To supply the ever-increasing number of portable devices, a tendency is to build

generators, in particular piezoelectric ones (PG) to harvest the wasted mechanical en-

ergy which can have various origins (ambient vibrations, human body movements).
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In order to directly implement the lead-free directives, developments of nanomaterials

such as ZnO nanowires have been investigated in PGs due their piezoelectric proper-

ties and bio-compatibility [1–5]. PGs can be used to provide the electrical energy to

devices such as sensors, actuators and wireless transmitters [6–9]. An advantage of the

PGs is their ability to collect the otherwise wasted mechanical energy, such as human

body movements and ambient vibrations. PGs can be used to power an electronic de-

vice via a capacitor [10, 11] as temporary energy storage element and also can be used

to charge a small embedded battery [12, 13].

The characterization of the generated voltage and power of a PG is generally carried

out by loading the PG with a variable resistance RL, as presented in Fig. 1. Depending

on the characterization method, the voltage across the load (named vs(t)) and/or the

current through the load (named is(t)) are measured. This allows the determination

of the short circuit current (limit at very low load value) and the open circuit voltage

(limit at high load value). Moreover, according to Ohm’s law, the instantaneous power

delivered to a purely resistive load RL is:

p(t, RL) =
(vs(t, RL))

2

RL
= (is(t, RL))

2 RL (1)

The average power Pave versus RL can be deduced by taking the mean value over a

period T:

Pave(RL) =
1
T

∫ + T
2

− T
2

p(t, RL)dt (2)

This function of RL presents an optimal at a given load named Rave
L . The knowledge

of this optimal load is necessary to optimize the rectifier and conditioner circuit.

As a piezoelectric NW behaves as a charge generator, the PG is usually modeled

as a current source in parallel with a lossy capacitor, or by an equivalent Thevenin

generator consisting of a controlled voltage source (corresponding to the open circuit

voltage and noted vOC(t)) in series with an internal impedance called ZPG as shown in

Fig. 1.

The magnitude and the shape of the voltage source depends on the applied force.

In the case of PG submitted to a quasi-static force, vOC(t) is proportional to the applied

force [14–16]. As a consequence, the temporal waveform of the applied force is similar

to the open circuit waveform. Even if some papers mention the applied waveform,

only few have studied the influence of a non sine excitation waveform on the gener-

ated power [14, 17]. This paper studies the case of periodic waveforms contrary to

impulsive waveforms already studied in literature [18, 19].
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Figure 1: Common electrical circuit used for functional characterization of PGs.

In the case of a uniform active material, such as a bulk piezoelectric ceramic, the

open circuit voltage and the internal impedance of the generator can be determined

using the geometry of the generator (thickness, surface) and intrinsic properties of

the material (dielectric permittivity, piezoelectric coefficient, Young modulus...). In the

case of a nano-material based generator, the device is usually a composite comprising

the active material (which produces the charges) and a matrix (which ensures the ro-

bustness of the device and/or acts as a capacitive layer), in that case the determination

of the circuit parameters has to be done using numerical simulations [15, 20–22]. For

any type of generator, the open circuit voltage can be obtained by measuring the output

of the generator at high resistive load and the internal impedance using conventional

impedance spectroscopy as it is explained later on.

In this paper, we show that the open circuit voltage waveform (proportional to the

applied force when the PG is in quasi-statique regime) largely influences the PG char-

acteristics of average power and peak power versus resistive load. We also propose

a method to predict the average power by knowing the waveform of the open circuit

voltage and the internal impedance of the considered PG. The first part is devoted to

provide a quick review of theoretical calculation of the average power calculation at

the output of a two-port network. Then, the derived expression is applied to the case

of a PG with a capacitive internal impedance, corresponding to a PG with a low elec-

tromechanical coupling coefficient. To confirm the obtained results, a practical study is

carried out using lumped capacitor and a low frequency signal generator. Finally, the

functional characterization of piezoelectric buzzer, used as a PG, is made for different

waveforms of the applied force. We show the harmonics contained into a signal not

only increase the average and peak powers, which seems natural since harmonics con-

tain energy, but also the optimal load range of the PG is modified by these harmonics.

The waveforms considered in this paper are common waveforms, such as the sine
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function which is the base of every harmonic analysis, and also the triangle, sawtooth

and square functions. We mostly focus on the square one, since this signal is similar

to an impact and thus corresponds more to realistic cases of excitation. In order to

take into account the rising time, an additional waveform, which consists of a square

waveform with exponential rise and fall, simply called “exponential signal”, is also

studied.

2. Theoretical study

If we consider a two-port network, sometimes called quadripole, presented in Fig. 2,

having a transfer function expressed as:

H(jω, RL) =
Vs(jω)

Ve(jω)
(3)

The dependence of Vs(jω) with the load resistance RL is implicit, since the transfer

function generally depends on the load value, due to its output impedance. This de-

pendence is explicitly noted in H to remind this fact. The transfer function can be

decomposed into magnitude G and phase φ:

G(ω, RL) = |H(jω, RL)|, φ(ω, RL) = arg [H(jω, RL)] (4)

This transfer function is only valid when the input signal is monochromatic and al-

lows us to obtain the temporal expression of the output for a given input. Firstly, we

consider an input signal with the temporal expression:

ve(t) = Ve sin (ω0t + φe) (5)

where ω0 = 2π f0 is the angular frequency of the signal, Ve the magnitude and φe the

initial phase. The temporal expression of the output signal can thus be obtained:

vs(t, RL) = VeG(ω0, RL) sin (ω0t + φe + φ(ω0, RL)) (6)

If we consider the case of an input signal which is not monochromatic but still

periodic, this input signal can be decomposed into a time series (Fourier series devel-

opment):

ve(t) = a0 +
+∞

∑
n=1

an cos (nω0t) + bn sin (nω0t) (7)

The output signal can also be deduced from (3) which must be applied to each har-

monic, by considering the modulus and the phase of the transfer function at the nω0
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Figure 2: A generic quadripole fed by an ideal voltage source and loaded by a resistor RL.

angular frequency:

vs(t, RL) = a0G(0, RL)

+
+∞

∑
n=1

G(nω0, RL)

(
an cos

(
nω0t + φ(nω0)

)
+ bn sin

(
nω0t + φ(nω0)

))
(8)

With the output signal expression, it is possible to calculate the average power Pave(RL)

dissipated into the load RL during the period T:

Pave(RL) =
1
T

∫ + T
2

− T
2

(vs(t, RL))
2

RL
dt (9)

Using the Parseval’s theorem, the following expression of the average power can be

deduced:

Pave(RL) =
(a0G(0, RL))

2

RL
+

1
2

(
+∞

∑
n=1

G2(nω0, RL)

RL

(
a2

n + b2
n

))
(10)

One can note that only the magnitude of the transfer function is used for the mean

power computation where the phase of the transfer function does not appear. As a

conclusion, the full Pave(RL) curve corresponds to the sum of each (G(nω0, RL))
2/RL

curve weighted by a2
n + b2

n factor. Each (G(nω0, RL))
2/RL curve may present an opti-

mal point versus RL and the full Pave(RL) curve optimal will depend on the weighting

applied to each frequency. In the whole manuscript, the word computation refers to the

power calculated using (10).

3. Application to a PG with capacitive internal impedance

The study detailed in this part is the case of a PG having a capacitive internal impe-

dance such as a nanowire-polymer composite generator with a vertical configuration

[2, 16, 23, 24] or lateral configuration [25, 26]. We consider first a lossless capacitive

impedance (which means that the dielectric losses angle tan δ is null), but the formula

can be applied to any type of lossy capacitive and/or p− n junction generator [27, 28].

The equivalent circuit for the PG connected to the load is presented in Fig. 3. In the

case of a series resistance, the transfer function can be simply obtained using:

H(jω, RL) =
Vs(jω)

Ve(jω)
=

RL

RL + ZPG(jω)
(11)
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In the present case (lossless capacitive internal impedance), the transfer function mag-

nitude (3) can be explicitly derived:

G(ω, RL) =
RL√

R2
L +

(
1

CPGω

)2
(12)

Where CPG represents the internal capacitance of the PG. In the case of a monochro-

matic signal at an angular frequency ω0, the optimal load can be calculated using:

Rave
L =

1
CPGω0

(13)

In the case of a signal containing harmonics, for the nth harmonic, the optimal load is:

Rave
L,n =

1
CPGnω0

=
Rave

L,1

n
(14)

Consequently, each harmonic contained in vOC(t) signal has a different optimal load in

the case of a capacitive internal impedance. The maximum power with respect to the

load, for the nth harmonic, is:

Pave(nω0, Rave
L,n) =

(a2
n + b2

n)

Rave
L,n

G2(nω0, Rave
L,n) =

n(a2
n + b2

n)

2Rave
L,1

(15)

an and bn are the Fourier coefficients of the open circuit voltage (7). One can note the

factor n within equation which means, even if the an and bn coefficients decrease when

n increases, the harmonics are enhanced by the capacitive internal impedance.

For the experimental study, we considered an internal capacitance of 10 nF and

the resistive load was varied from 10 kΩ to 100 MΩ corresponding to the available

load range for our test bench. This value of the internal impedance has been chosen

because the studied generators have a capacitive internal impedance in that range of

magnitude. The value of the internal impedance does not change the results obtained

is that study, a sensitivity analysis is presented later in the manuscript. The chosen

fundamental frequency is 5 Hz since most of our PG characterization campaigns are

made at this frequency [23, 29]. The model derived in this paper works even if the

fundamental frequency is modified, provided that we stay in the quasi-static regime

or at least far away from resonance modes.

In order to validate the theoretical calculation of the average power delivered by

the PG, the following experiment has been carried out: an Agilent 33250 signal gener-

ator (vOC(t)) in series with a 10 nF capacitor (CPG) were used to emulate the capacitive

PG, which was connected to a variable resistance, as on Fig. 3. The acquisition of the

waveform has been made using an Agilent DSO5054A oscilloscope.
6



vOC(t)=ve(t)

CPG

RLvs(t)

Internal generator Internal impedance Load impedance

Figure 3: Equivalent circuit of the PG presenting a capacitive impedance, and connected to a resistive
load for the experimental tests.

3.1. Influence of the waveform of the mechanical force applied to the PG

The previously derived expressions are used here to determine the influence of

the waveform on the generated power and the optimal load for a PG with capaci-

tive impedance. Each harmonic presents an optimal load (since the optimal load of a

monochromatic signal depends on the frequency (13)) and the effective optimal load

(maximizing the total average power) thus depends on the weight of all harmonics. As

open circuit voltage vOC(t) in Fig. 3, four different waveforms are studied here: sine,

sawtooth, square and triangle. The expression of the sine signal with magnitude VOC

is:

vsine(t) = VOC sin (ω0t) (16)

The Fourier series development of the sawtooth signal with magnitude VOC is:

vsaw(t) =
2VOC

π

+∞

∑
n=1

(−1)n sin (nω0t)
n

(17)

The Fourier series development of the square signal with magnitude VOC is:

vsqu(t) =
4VOC

π

+∞

∑
k=0

sin ((2k + 1)ω0t)
2k + 1

(18)

The Fourier series development of the triangle signal with magnitude VOC is:

vtri(t) =
8VOC

π2

+∞

∑
k=0

(−1)k sin ((2k + 1)ω0t)
(2k + 1)2 (19)

The resulting optimal load is quite difficult to obtain analytically, nevertheless, it

depends on the harmonic content of the input signal. For the computation of the

Pave(RL) curve, based on (10) and (12) 104 harmonics are considered. This number

will be justified later on in § 3.2.

Fig. 4 represents the computed and measured mean powers as a function of the

load RL for different waveforms with the same magnitude. One can note the very

good agreement between computation and measurement, showing the efficiency of
7
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Figure 4: Computed (lines) and measured (bullets) mean power supplied to the load as a function of the
load RL for different waveforms.
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Figure 5: Normalized computed mean power according to the max value as a function of the load RL
for different waveforms.

the model to predict the average power for a given generic waveform. For the sine

waveform, the optimal load is very close to the theoretical value of Rave
L = 3.18 MΩ,

(13). The optimal load value is lower for the sawtooth signal than for the square signal

which is itself showing lower optimal load than the sine signal. This comes from the

fact that for the square signal there are only odd harmonics, whereas the sawtooth

signal contains both odd and even harmonics, leading to a higher shift of the optimal

load. As a consequence, the calculation of the optimal load using (13) is not valid for

sawtooth and square signals, due to the presence of harmonics.

The power at optimal load is higher for the square and the sawtooth signals than

for the sine wave. This is due to the harmonics, enhanced by the capacitive impedance

effect, and all these harmonics contribute to the total average power. For the triangle

signal, only a very small shift of the curve towards lower loads is visible and the max-

imum power is 35 % lower than for the sine waveform. The very small shift can be

explained by the fact that the harmonics weighting coefficient is proportional to n−2
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Table 1: Summary of the computed and measured range of optimal load and power at optimal load for
different waveforms.

Computation Measurement

Waveform Range of optimal load Maximum power Pmax
ave Range of optimal load Maximum power Pmax

ave

Sine 2.0 MΩ to 5.1 MΩ 2 µW 1.9 MΩ to 4.8 MΩ 2 µW

Triangle 1.9 MΩ to 5.0 MΩ 1.3 µW 1.9 MΩ to 4.7 MΩ 1.3 µW

Sawtooth 10 kΩ to 1.1 MΩ 2.5 µW 31 kΩ to 1.3 MΩ 2.3 µW

Square 10 kΩ to 3.3 MΩ 5 µW 29 kΩ to 3.1 MΩ 4.9 µW

(with n the harmonic order), whereas for sawtooth and square signals the harmonics

weighting coefficient is proportional to n−1. As a consequence, the contribution of har-

monics to the total power becomes fastly negligible. In the case of a triangle with the

same magnitude as a sine, a 8/π2 coefficient is present on the fundamental according

to the Fourier series decomposition (19). Since the contribution of the other harmonics

to the average power is almost negligible, the maximum value of the average power is

lower for this triangle waveform compared to the sine one.

One can note that the harmonics content largely changes the shape of the Pave(RL)

curve as shown on Fig. 5. For sawtooth and square signals, the power is close to the

maximum value on a wide range of load, here three orders of magnitude and even 6 or-

ders of magnitude, according to [14] which proposes a Finite Element Modelling study

performed on a PZT ceramic submitted to a vertical force. The main consequence is

that the equivalent load of the circuit connected to the PG seems to be less critical when

the mechanical excitation contains harmonics. In order to better show the effect of the

waveform on the shape of the Pave(RL) curve, let us calculate the range of resistance

over which the power exceeds 90 % of the maximum value. The results are summa-

rized in table 1. For the sine and triangle waveforms, the measured ranges are very

similar to the ones obtained in simulation. For the sawtooth and square waveforms,

the upper limit of the range is well predicted, and there is only a small difference on

the lower limit.

The small difference between the measured and the computed powers at small

loads, for the square and sawtooth signals, is attributed to the rising time which is

not null for a voltage provided by a signal generator. Ideal square or sawtooth are not

physical signals, since they present discontinuities, and for this reason, in § 3.3 we pro-

pose a signal which is more physical with a non-null rising time, whose effect on the

Pave(RL) curve will be presented.
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Figure 6: Mean power as a function of the load RL for increasing number of harmonics used for the com-
putation, when VOC is a square signal (a), a sawtooth signal (c) or a triangle signal (e). Decomposition
(dashed line) and total (full line) power as a function of the load RL, when VOC is a square signal (b), a
sawtooth signal (d) or a triangle signal (f).
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3.2. Influence of the number of harmonics used to compute the average power

The three considered signals are described as an infinite sum, that must therefore

be truncated for the computation. Fig. 6(a) shows the effect of the number of consid-

ered harmonics on the average power delivered to the load, for the square waveform.

One can note that, when the number of considered harmonic increases, the maximum

value of power increases (and becomes stable after 103 harmonics) and the shape of the

curve is greatly modified, showing a clear increase of the bandwidth with respect to

the load resistance. A similar effect is visible for the sawtooth signal (Fig. 6(c)) but this

effect is not present for the triangle signal (Fig. 6(e)) because the decrease of the har-

monics magnitude is faster (n−2 instead of n−1). This shows that if the VOC harmonics

magnitude follows a n−2 law, these harmonics (other than the fundamental) almost do

not contribute to the power. On the contrary, if the VOC harmonics magnitude follows

a n−1 law, these harmonics contribute significantly to the power. As a consequence, it

is crucial to take into account a sufficient number of harmonics when the harmonics of

the mechanical excitation decrease proportionally to n−1.

To better understand this point, it important to notice that, as the decrease of the

VOC harmonics magnitude of the harmonics is proportional to n−1 (case of sawtooth

(17) and square (18) signals) the power of each harmonic is proportional to n−2. Nev-

ertheless due to the capacitive effect, the high frequency harmonics are enhanced. This

effect is illustrated in Fig. 6(b) which presents the contribution of each harmonic into

the total power. One can note the magnitude of the harmonics is lower than the fon-

damental contribution but not negligible. The maximum value of the harmonics con-

tribution is proportional to n−1 according eq. (15). For the triangle signal, since the

harmonics magnitude is proportional to n−2 the power component of each harmonic

is proportional to n−4 and thus the contribution of harmonics becomes quickly negli-

gible since the maximum value of each harmonic is proportional to n−3 as illustrated

in Fig. 6(f). Finally, we can notice that the important parameter is the polynomial law

followed by the coefficients of the Fourier series decomposition of the considered VOC

signal.

In practice, the signal is not purely square and there are rising and falling times. In

the next parts, the case of physical signals will be studied such as a square signal with

an exponential rising.
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3.3. Physical signals

In this section, we consider more realistic open circuit voltage signals, hence corre-

sponding to more realistic mechanical excitations applied to the PG, since square and

sawtooth signals both present discontinuities which are not physical. Instead of the

square, hereafter we propose a square, with rise and fall times represented by an ex-

ponential function with a time constant τ, as presented Fig. 7(a). For simplicity, this

periodic signal is simply called “exponential signal”. A small value of τ, compared to

the period T of the signal, represents a fast system, and hence the signal shape is very

close to the square one. On the other hand, a high value of τ represents a slow system

and, thus, the obtained signal which is quite far from the original square.

To obtain the Fourier series decomposition of the exponential signal, it is possible

to use the Fourier series of the square (18) and to apply a first-order low-pass filter with

a time constant τ. Similarly to the square waveform, even Fourier coefficients are null

and the odd ones are :

aexp
n = −4VOC

π

ω0τ

1 + (nω0τ)2 and bexp
n =

4VOC

πn
1

1 + (nω0τ)2 (20)

The full demonstration is presented into the supplementary material.

Depending on the value of τ, the harmonic content of the signal differs. Fig. 7(b)

shows the harmonic content of the exponential signal for different values of τ. For

τ/T = 5× 10−5, a straight line is obtained. This corresponds well to harmonic coef-

ficients following a n−1 law, which is the case of the original square signal. When τ

increases, a second straight line appears with a 2 times higher slope, corresponding to

a n−2 law. Higher is τ, lower is the harmonic number n at which the change of slope

occurs. As a consequence, the harmonics at frequencies higher than 1
2πτ contribute

slightly to the power delivered by the PG to the resistive load.

The average power for an exponential waveform can be calculated using (10) by

replacing the transfer function magnitude G(ω, RL) (12) and the an and bn coefficients

(20):

Pave(RL, ω0, τ) =

(
4VOC

π

)2 +∞

∑
k=0

RL

R2
L +

(
1

(2k+1)Cω0

)2
1

(2k + 1)2
(

1 + ((2k + 1)ω0τ)2
)
(21)

Fig. 8 shows the measured and theoretical mean powers as a function of the load

for the exponential waveform. For small values of τ, the power curve is very flat,

similarly to the curve obtained with the square waveform (Fig. 4) showing that a high
12
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Figure 7: Waveform of the periodic exponential signal (a) and the corresponding harmonic content (b)
for different values of τ/T. Only odd coefficients are represented since even coefficients are null.
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Figure 8: Measured (bullets) and computed (lines) power as a function of the load, for the periodic
exponential signal having different values of τ/T.

number of harmonics contribute to the power. When τ increases, the maximum of

power decreases and the curve approach the power curve obtained with a triangular

or sine signal indicating that in this case the harmonics do not contribute significantly

to the overall power. This clearly shows that, if the applied force presents very sharp

transitions (low value of τ), the high number of harmonics contribute significantly to

the harvested power. On the other hand, when the signal evolves slowly (high value of

τ), the harmonics don’t contribute significantly to the harvested power and the shape

of the Pave(RL) curve is very similar to the case of a monochromatic excitation.

The small difference between the measured and the computed powers at small

loads, especially for τ/T = 5× 10−5, is attributed to the rising time which not as small

as expected, similarly to what have been obtained for the square and sawtooth signals

in the previous part.

A similar study concerning the non-null rising time has been done for the sawtooth
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Figure 9: Measured (cross) and computed (lines) peak instantaneous powers for different values of τ/T,
for an exponential waveform.

signal and is detailed into the supplementary material.

3.4. Comparison between peak and average powers delivered by a PG, for an exponential wave-
form.

In most of literature, presenting mechanical energy harvesters performances, only

the peak instantaneous power is provided [1, 3, 4, 28] instead of the average power

[27]. For an arbitrary mechanical excitation applied to the PG, leading to an arbitrary

open circuit voltage, the peak instantaneous power computation is almost impossible

since it relies on the time derivation of (8) which contains an infinite number of terms.

In the present case, the considered equivalent circuit is sufficiently simple to compute

the temporal expression by solving the associated differential equation. Of course, in

more complex cases (arbitrary internal impedance of the PG), the differential equation

becomes too complicated to be solved and the Fourier analysis is more convenient,

even if there is an infinite sum.

For t ∈
[
0, T

2

]
, the voltage across the resistor is:

v(t) =



2VOC

1− τ
RLCPG

 exp
(
− t

RLCPG

)
1 + exp

(
− T

2RLCPG

) − exp
(
− t

τ

)
1 + exp

(
− T

2τ

)
 if τ 6= RLCPG,

2VOC

τ
(
1 + exp

(
− T

2τ

)) (t−
T exp

(
− T

2τ

)
2
(
1 + exp

(
− T

2τ

))) exp
(
− t

τ

)
if τ = RLCPG

(22)

See supplementary material for the complete demonstration.

Fig. 9 shows the peak instantaneous power curves as a function of the load, for dif-

ferent values of τ/T. These curves present very different shapes and levels compared

to the average power curves plotted in the same conditions (Fig. 8). Table 2 summa-
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Table 2: Summary of the optimal load range values maximizing mean power and peak power, and the
corresponding power levels for different values of τ/T.

Average power Peak power

τ/T Optimal load Rave
L Maximum power Pmax

ave Optimal load Rpeak
L Maximum power Pmax

peak

5× 10−2 2.6 MΩ 3.4 µW 1 MΩ 14 µW

5× 10−3 1.81 MΩ 4.6 µW 150 kΩ 127 µW

5× 10−4 1 MΩ 4.9 µW 38 kΩ 794 µW

5× 10−5 1 MΩ 4.9 µW 14 kΩ 1.9 mW

rizes the optimal load values Rave
L and Rpeak

L , maximizing average power and peak in-

stantaneous power respectively. As noticed previously, when τ/T decreases, the mean

power at optimal load value seems to tend to a limit, as well as the optimal load value

remains constant (almost no difference between τ/T = 5× 10−4 and τ/T = 5× 10−5).

For the peak instantaneous power value, the variation between τ/T = 5× 10−2 and

τ/T = 5× 10−5 leads to an increase of more than two orders of magnitude on the

peak value (a factor 135) and a reduction of a factor 70 of the optimal load (Rpeak
L ). This

clearly shows that the peak instantaneous power is considerably influenced by the har-

monics content of the mechanical excitation. This may explain the large values of peak

power obtained in some papers when the excitation is very brief and intense [1, 23].

3.5. Sensitivity analysis

When measuring the internal impedance or the open circuit voltage of a PG, this

may lead to uncertainty on the predicted average and peak powers. Since the number

of parameters is quite small, a basic sensitivity analysis is presented here. In the case

of a large number of parameters, it is possible to use the method presented in [30].

For a purely sine waveform, the mean power can be computed using (10) which

can be explicitly derived:

Pave(RL, ω0) = V2
OC

RL

R2
L +

(
1

CPGω0

)2 (23)

The optimal load can be computed using (13) and the maximum average power at this

optimal load is thus:

Pave(Rave
L , ω0) =

V2
OCω0CPG

2
(24)

Considering uncertainty on the capacitance value, the relative uncertainty on the max-

imum average power at this optimal load and on the optimal load are thus:(
∆Rave

L
Rave

L

)
VOC

= −∆CPG

CPG
and

(
∆Pave

Pave

)
VOC

=
∆CPG

CPG
(25)
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Figure 10: Computed average power as a function of the load RL, for different values of the internal
capacitance (a) and different values of the open circuit voltage (b).

This signifies that a decrease of the internal capacitance implies an increase of the opti-

mal load and a decrease of the maximum average power. This phenomena is illustrated

by Fig. 10(a).

Considering uncertainty on the open circuit voltage value, the relative uncertainty

on the maximum average power at this optimal load and on the optimal load are thus:(
∆Rave

L
Rave

L

)
CPG

= 0 and
(

∆Pave

Pave

)
CPG

= 2
∆VOC

VOC
(26)

This signifies that a decrease of the open circuit voltage implies no variation of the

optimal load and a decrease of the maximum average power. This phenomena is il-

lustrated by Fig. 10(b). One can note the variation of the maximum average power

is larger for open circuit voltage variation than for the internal capacitance variation

which comes from the square applied on the voltage in (24).

For an exponential waveform, the value of the optimal load is not straightforward

to obtain analytically, thus simulation have been made in order to verify the trend

described above for a sine waveform. Fig. 11(a) shows the computed average power

as a function of the load RL, for different values of the internal capacitance. For the

exponential waveform, the internal capacitance influences the maximum value of the

average power, similarly to what is obtained for the sine waveform. The shift of max-

imum power range is also visible (Fig. 11(b)). Concerning, the sensitivity to the open

circuit voltage, only the maximum average power changes and the optimal load range

is not affected (Fig. 12). One can note, that the shape of the Pave(RL) curve is the same

for any variation of both the internal capacitance or the open circuit voltage.

16



P a
ve

 (µ
W

)

0

2

4

6

8

10

 

Load Resistance RL (Ω)
104 105 106 107 108

CPG = 9 nF
CPG = 10 nF
CPG = 11 nF

(a)

P a
ve

/P
m
ax

0

0.5

1

1.5

 

Load Resistance RL (Ω)
104 105 106 107 108

CPG = 9 nF
CPG = 10 nF
CPG = 11 nF

(b)

Figure 11: Computed average power (a) and normalized computed mean power according to the max
value (b) as a function of the load RL, for different values of the internal capacitance for a exponential
waveform with a τ/T = 5× 10−5.
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Figure 12: Computed average power (a) and normalized computed mean power according to the max
value (b) as a function of the load RL, for different values of the open circuit voltage for a exponential
waveform with a τ/T = 5× 10−5.

4. Experimental validation of the power calculation

The experimental validation has been carried out using a multilayer piezoceramic

plate (Noliac reference NAC2015 [31]) as actuator and a piezoelectric buzzer as PG. The

NCA2015 actuator has been chosen for its high resonance frequency (> 486 kHz), as a

consequence, it will act in quasi-static regime at low frequency (5 Hz) and it will apply

the force even to the buzzer for very sharp transitions (close to a square waveform).

The actuator and the buzzer are fixed using a small screw as presented in Fig. 13. The

actuator is driven using an Agilent 33250 signal generator. At the output of the buzzer,

a variable resistance is connected in order to sweep the resistive load. The acquisition

of the waveform has been made using an Agilent DSO5054A oscilloscope and a double

buffer circuit[29] is used in order to have a high input impedance.
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Figure 13: Schematic (a) and optical view (b) of the experimental test bench using a piezoelectric actuator
and a piezoelectric buzzer (the PG). The actuator and the buzzer are fixed together using a small screw.
The force is applied across the z-axis.

Equation (10)

Impedance
measurement

Equation (11)

Open circuit
voltage

measurement
Equation (20)

Pave(RL)

ZPG(jω) H(jω, RL)

an, bnVOC

Figure 14: Workflow used to compute the average power as a function of the resistive load using the
open circuit measurement and the impedance measurement.

The prediction of the average output power using (10) requires two elements, (i)

the transfer function magnitude representing the loaded piezoelectric generator (11)

and (ii) the Fourier series decomposition of the open circuit voltage (7). The flow chart

of the calculation procedure for the assessment of the average power as a function of

the resistive load and for a given waveform is shown Fig. 14.

For step (i), the transfer function (11) of the considered piezoelectric generator can

be obtained by measuring the internal impedance. For step (ii), the open circuit volt-

age Fourier series decomposition requires the experimental determination of the VOC

magnitude to compute an and bn using (20). This magnitude is measured in harmonic

regime at low frequency (5 Hz) thanks to the double buffer circuit previously intro-

duced.

In the 1 Hz–100 Hz frequency range, the impedance measurement has been car-

ried out by measuring the alternative current (AC) across the buzzer, using a Keithley

6517A electrometer, while applying an AC voltage. In the 40 Hz–10 kHz frequency

range, the impedance measurement has been made using Agilent 4294A impedance

analyzer. The impedance magnitude and phase are shown on Fig 15(a) and the as-

sociated capacitance and loss factor, on Fig 15(b). For frequencies below 1.5 kHz, the

buzzer exhibits a capacitive behavior. Resonances are visible at 2.03 kHz, 3.46 kHz,
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Figure 15: Magnitude and phase of the impedance (a) and associated capacitance and loss factor (b) of
the piezoelectric buzzer as a function of frequency.

4.36 kHz and 5.64 kHz. For an harmonic excitation, the internal impedance of the PG

corresponds to the optimal value of the load, maximizing the delivered power. Accord-

ing to (13), the theoretical optimal resistive load at 5 Hz is 1.9 MΩ for the considered

buzzer.

For, the harmonic excitation, the optimal load corresponds well to the predicted

value. For the exponential waveform with high values of τ/T (≥ 5× 10−3) and for the

sine waveform (Fig. 16(a)), the shape of the Pave(RL) curve is accurately predicted. For

the exponential waveform with small values of τ/T (≤ 5× 10−4) and for the square

waveform (Fig. 16(b)), a discrepancy is present at small load values. It can be attributed

to the resonance modes of the piezoelectric buzzer. Nevertheless, the model predicts

that the maximum average power increases when τ/T decreases and that the band-

width with respect to the load is widened. At τ/T < 5× 10−4, the increase of aver-

age power at very small load value (inferior to 105 Ω) is attributed to the resonance

modes of the buzzer. The Fig 17(a) shows the measured and computed waveforms for

τ/T = 5× 10−5 and RL = 100 kΩ. The measured curve exhibits oscillations due to

resonance modes into the material whereas these oscillations are not present on com-

putation curve showing the limit of the quasi-static approach. This explains the differ-

ence between computed and measured powers. These differences are not visible for

high values of τ/T as shown on Fig. 17(b) since oscillations (due to resonance modes)

are not visible. For a better accuracy the resonance modes of the buzzer could be taken

into account in the analytical model, for example using the Mason model [32].

Fig. 16(c) shows the peak instantaneous power measured for the different wave-

forms. With the exponential waveform, the maximum of peak power increases when
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Figure 16: Measured average power (a), (b) and peak power (c) for the PZT buzzer compressed by
a NAC2015 actuator, for different values of τ/T. The curves for an exponential signal with τ/T =
5× 10−5 and for the square signal are superimposed.

Titre

M
ea

su
re

d 
vo

lta
ge

 v
(t)

0

0.1

0.2

0.3

 

Time t (s)
0 0.05 0.1

Measurement
Computation

RL = 100kΩ
τ/T = 5×10-5

(a)

Titre

M
ea

su
re

d 
vo

lta
ge

 v
(t)

0

0.1

0.2

0.3

 

Time t (s)
0 0.05 0.1

Measurement
Computation

RL = 100kΩ
τ/T = 5×10-2

(b)

Figure 17: Measured and computed waveform for RL = 100 kΩ, for an exponential signal with τ/T =
5× 10−5 (a) and τ/T = 5× 10−2 (b).
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τ/T decreases and the position of this maximum of power shifts towards small resis-

tance values. The ratio between peak value and average value is 2.5 for the sine wave-

form; choosing the peak power as a performance metric is still a reasonable approxi-

mation in that case with an acceptable overestimation of the available power. For the

exponential signal with very low values of τ/T, the peak power is 1000 times higher

than the average power, demonstrating that peak instantaneous power value largely

overestimates the useful power for very impulsive signals.

5. Conclusion

In this paper, we show that the waveform of the PG open circuit voltage, propor-

tional to the force applied to the PG in quasi-static conditions, largely influences the

PGs output power. The study is focused on PG presenting a capacitive internal impe-

dance. Using the Fourier series decomposition, we show that the harmonic content of

the PG open circuit voltage strongly influences the harvested power, since the capac-

itive internal impedance associated with the resistive load enhances the contribution

of high frequency harmonics of the signal. This frequency decomposition allows us to

highlight that the overall P(RL) consists of the sum of P(RL) curves for each harmonic,

as a consequence, the optimal load and the shape of the power curve is greatly affected

by the harmonic content of the voltage waveform.

The present study also shows that the peak instantaneous power, often referred as a

performance metric of PGs, is largely affected by the mechanical excitation waveform,

especially for impulsive excitations. Moreover, this study highlights that the peak in-

stantaneous power leads to a large overestimation of the available power when the

waveform presents fast transitions. Consequently, for any practical application, the

mechanical excitation waveform must be precisely determined in order to correctly

estimate the possible harvested power, as well as the optimal load, as these data are

necessary to design the rectifying and conversion circuit, dedicated to the targeted

electrical load.
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