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Abstract
Background: Human T-cell leukemia virus (HTLV) -1 and -2 are deltaretroviruses that infect a
wide range of cells. Glut1, the major vertebrate glucose transporter, has been shown to be the
HTLV Env receptor. While it is well established that the extracellular surface component (SU) of
the HTLV envelope glycoprotein (Env) harbors all of the determinants of interaction with the
receptor, identification of SU subdomains that are necessary and sufficient for interaction with the
receptor, as well as critical amino acids therein, remain to be precisely defined. Although highly
divergent in the rest of their genomes, HTLV and murine leukemia virus (MLV) Env appear to be
related and based on homologous motifs between the HTLV and MLV SU, we derived chimeric
HTLV/MLV Env and soluble HTLV-1 and -2 truncated amino terminal SU subdomains.

Results: Using these SU constructs, we found that the 183 and 178 amino terminal residues of the
HTLV-1 and -2 Env, respectively, were sufficient to efficiently bind target cells of different species.
Binding resulted from bona fide interaction with the HTLV receptor as isolated SU subdomains
specifically interfered with HTLV Env-mediated binding, cell fusion, and cell-free as well as cell-to-
cell infection. Therefore, the HTLV receptor-binding domain (RBD) lies in the amino terminus of
the SU, immediately upstream of a central immunodominant proline rich region (Env residues 180
to 205), that we show to be dispensible for receptor-binding and interference. Moreover, we
identified a highly conserved tyrosine residue at position 114 of HTLV-1 Env, Tyr114, as critical for
receptor-binding and subsequent interference to cell-to-cell fusion and infection. Finally, we
observed that residues in the vicinity of Tyr114 have lesser impact on receptor binding and had
various efficiency in interference to post-binding events.

Conclusions: The first 160 residues of the HTLV-1 and -2 mature cleaved SU fold as autonomous
domains that contain all the determinants required for binding the HTLV receptor.
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Background
Human T-cell leukemia virus type 1 (HTLV-1) has been
found primarily in CD4+ and CD8+ T-lymphocytes in vivo
[1-3], whereas CD8+ T-lymphocytes are thought to be the
in vivo reservoir of HTLV-2 [4]. However, the in vitro tro-
pism of HTLV-1 and -2, as determined using HTLV enve-
lope-pseudotyped virions or envelope-induced cell fusion
assays, appears to be ubiquitous [5-7]. Indeed, we recently
showed that Glut1, the ubiquitous vertebrate glucose
transporter, serves as a receptor for HTLV-1 and -2 enve-
lope glycoprotein (Env) [8]. While the precise organiza-
tion and properties of the receptor-interacting Env
domains has not been reported, we found that the amino
terminal two-thirds of the HTLV-1 extracellular surface
component (SU) are sufficient to confer HTLV-1 tropism
to an ecotropic Friend murine leukemia virus (F-MLV)
Env [9]. A cell fusion interference assay performed with
this HTLV/F-MLV Env chimera and the parental Env con-
firmed that this 215 amino acid Env domain, harbors
HTLV-1 receptor-binding determinants [9].

The corresponding domain in MLV Env SU – located
upstream of a conserved K/R L L T/N L V Q motif in the
SU of the HTLV-1 and F-MLV Env [9,10] – is well charac-
terized and comprises two main functional regions: an
amino terminal sequence harboring the receptor-binding
determinants, VRA, VRB and VRC [11-13], and a proline-
rich region (PRR), starting at the first proline residue of
the GPRVPIGP sequence [11,14] and flanked by two
highly conserved GXDP [15] and CXXC [16] motifs (Fig-
ure 1). In the ecotropic and amphotropic (Ampho) MLV
Env, the PRR is a putative hinge region implicated in con-
formational changes, triggered after receptor binding, and
subsequent fusion [17,18]. In the central region of the
HTLV SU, a short sequence (Env residues 180 to 205) har-
bors high proline content and could be a homologue of
the MLV PRR.

Several studies using synthetic peptides and neutralizing
antibodies against the HTLV Env have shown that deter-
minants within this proline rich region homologue
(PRRH) are involved in interference to Env-mediated syn-
cytium formation [19-21]. The PRRH had been thought to
encode the receptor-binding domain, as based on cell-to-
cell fusion assays [19,22-24]. However, although PRRH
synthetic peptides can block HTLV Env-mediated syncytia
formation, they have no effect on HTLV SU binding [25]
and infection [26]. Indeed, we and others have shown
that Env receptor binding per se, as well as interference to
receptor-binding, cell-to-cell fusion, syncytium forma-
tion, and infection involve several distinct cell surface-
associated parameters [27-29]. In the present report, we
produced soluble forms of wild-type and mutant HTLV-1
and 2 SU amino terminal subdomains and tested their
receptor-binding abilities. We also tested their ability to

specifically interfere with HTLV Env cell surface binding,
Env-mediated cell-to-cell fusion, and retroviral infection.
By testing these essential parameters of Env-mediated dis-
semination, we delineated the Env receptor-binding
domain (RBD) to the first 160 residues of the mature
HTLV-1 and -2 SU, excluding the PRRH, and we identified
a conserved tyrosine residue at position 114 of HTLV-1
Env as a critical determinant for HTLV Env receptor
binding.

Results
Motif conservation and similar modular organization of 
HTLV and MLV SU, and identification of a proline-rich 
region homologue (PRRH) in the HTLV SU
As shown in Figure 1, our alignment of the MLV and HTLV
SU reveals several notable motif conservations outlining a
similar modular organization of the MLV SU and HTLV
SU. A (K/R)LL(T/N)LVQ motif, highly conserved between
the F-MLV and HTLV-1 SU, is located immediately down-
stream of the PRR and its PRRH counterpart, respectively.
Another highly conserved motif between MLV and HTLV,
GXDP, is found immediately upstream of the PRR/PRRH
(Figure 1). These two motifs compelled us to notice the
PRRH, between the PSQ and KLLTLVQ sequences in
HTLV-1, and between the PTQ and KILKFIQ sequences in
HTLV-2 (Figure 1). As counted from the first and last pro-
line in the delineated sequence, the PRRH has a proline
content of 30.8% and 30.4% for HTLV-1 and -2, respec-
tively. This is slightly lower than the 35.3%, 36%, 36%,
and 35.6% proline content for the ecotropic, polytropic,
xenotropic, and amphotropic MLV Env, respectively (Fig-
ure 1). The presence of a PRRH in the HTLV SU appeared
to be characteristic of their MLV-like modular organiza-
tion, since HTLV SU average proline content outside of the
PRRH does not exceed 11%.

Functional, soluble HTLV Env-receptor binding 
determinants
MLV SU receptor binding determinants are all located
upstream of the PRR [11,30]. To test whether the HTLV
Env receptor binding determinants are also located
upstream of the potential PRRH, we constructed a chi-
meric Env and several soluble HTLV-1 and -2 SU amino
terminal subdomains. The chimeric HTLV/MLV Env,
H1183FEnv, comprises the 183 amino terminal residues of
the HTLV-1 SU ending with the PSQL residues fused to the
PIGP sequence of the F-MLV PRR (Figure 2A). In this Env
chimera the receptor-binding domain (first 269 residues)
of the F-MLV Env was replaced with the potentially corre-
sponding domain of the HTLV-1 Env SU (Figure 2A). The
chimeric H1183FEnv construct – which lacks the HTLV
PRRH but has the MLV PRR – was properly expressed in
transfected cells and was revealed on immunoblots with
an anti-MLV SU polyclonal antibody (Figure 3A). Accord-
ingly, an anti-HTLV-1 monoclonal antibody raised
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against a PRRH epitope did not bind this chimeric Env
(data not shown).

HTLV-1 and -2 SU amino terminal subdomains with or
without their respective PRRH were constructed as fusion
proteins with either an influenza hemagglutinin (HA) or
rabbit immunoglobulin Fc (rFc) carboxy terminal tag
(Figure 2B). The H1215SU and H2211SU subdomains com-
prise the first 215 and 211 residues, counting from the
first methionine in the signal peptide through the KLLT-
LVQ of HTLV-1 and KILKFIQ of HTLV-2 Env, respectively
(Figure 2B). The H1179SU and H2178SU, comprising the
amino terminal 179 and 178 amino acids of the HTLV-1
and -2 Env, respectively, exclude the PRRH sequence (Fig-
ure 2B).

Cell lysates and cell culture supernatants were analyzed to
evaluate intracellular expression and secretion of func-
tional SU amino terminal domains in transfected-cell cul-
tures, respectively. H1215SU and H2211SU, containing the
PRRH sequence, and H2178SU lacking this PRRH were all
efficiently expressed in transfected cells (Figure 3B). It is
noteworthy, however, that recovery of tagged H1179SU
molecules was largely inefficient because the vast majority
of this protein was cleaved (data not shown). In contrast,
no significant cleavage was observed with the other solu-
ble domains released in the medium (not shown) (Figure
3C). As expected for immunoadhesins, H1215SU,
H2211SU, and H2178SU rFc-tagged domains were detected
as dimers under non-reducing conditions (not shown).
Immunoblots of cell extracts revealed two forms of

Homologous modular domains in HTLV and MLV envelopesFigure 1
Homologous modular domains in HTLV and MLV envelopes. Friend-MLV (F-MLV) Env and HTLV-1 Env are schemat-
ically represented as open and solid boxes, respectively. Boxes represent, from left to right, the signal peptide which comprises 
the first 34 and 20 amino acid residues of F-MLV and HTLV Env, respectively, the extracellular surface component (SU) and the 
transmembrane component (TM) including the carboxy terminal R peptide in F-MLV, which is cleaved in the mature Env glyco-
protein [64, 65]. Env landmark positions are indicated and the MLV proline-rich regions (PRR) and the HTLV SU PRR homo-
logue (PRRH) are delineated by vertical lines within the SU at the positions indicated by solid arrowheads. The PRR and PRRH 
start at the first proline (P) residue downstream of the conserved GXDP motif. Env sequences represented in the figure are 
obtained from F-MLV strain 57 (accession number CAA26561); P-MLV, F-MCF polytropic MLV (AAA46483); X-MLV, NZB 
xenotropic MLV (AAA46531); A-MLV, amphotropic MLV strain 4070A (AAA46515); HTLV-2 (NP_041006); and HTLV-1, MT2 
strain (VCLJMT). Residue numbering starts from the first methionine of the Env signal peptides. Proline residues and homolo-
gous motifs are noted in bold. Amino acid sequence alignments were performed using the Clustal program in the Megalign 
alignment software package (DNAStar) with manual adjustments.
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Schematic representation of HTLV/MLV Env chimeras and HTLV SU amino terminal subdomainsFigure 2
Schematic representation of HTLV/MLV Env chimeras and HTLV SU amino terminal subdomains. Env land-
mark positions are indicated and SU landmark sequences and positions are indicated by arrowheads. Open arrowheads indi-
cate the position of construct borders. (A) HTLV/MLV Env chimeras. The H1215FEnv and H1183FEnv HTLV/MLV Env chimeras 
were obtained by replacing the 329 and 269 amino terminal residues of the F-MLV Env (open boxes) with the amino terminal 
215 and 183 amino acid residues of the HTLV-1 Env (solid boxes), respectively. The H1215FEnv chimera, previously described 
and formerly designated HHproFc [9], has been renamed here for sake of nomenclature homogeneity. (B) Soluble HTLV-1 
(H1) and HTLV-2 (H2) SU amino terminal subdomains, H1215SU, H2211SU, H1179SU, and H2178SU were constructed as fusion 
proteins with a carboxy terminal hemagglutinin (HA) or rabbit immunoglobulin Fc (rFc) tag. All amino acid residue numbering 
starts from the first methionine of the HTLV-1 or -2 Env signal peptide, the amino terminal 20 and 21 aa residues, respectively.
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intracellular H1215SU and H2211SU (Figure 3B); this was
likely due to variable glycosylation of these subdomains.
However, a single secreted, soluble form of each of these
amino terminal subdomains was detected in cell culture
supernatants (Figure 3C).

A truncated Ampho-MLV SU-rFc fusion protein that com-
prises the amino terminal 397 residues of the Ampho-
MLV Env fused to a carboxy terminal rFc tag was con-
structed (A397SU) and used as a heterologous control. A
single form of this truncated SU was efficiently expressed
in transfected cells (Figure 3B), and abundantly secreted
in cell culture medium (Figure 3C).

HTLV-1 and -2 SU subdomains with HTLV receptor binding 
properties
The amino terminal subdomains were tested for their
ability to bind to HTLV receptor-presenting cells by flow
cytometry. Using this cell surface binding assay, all of the
soluble HTLV SU subdomains bound to the A23 hamster
fibroblast cell line (Figure 4) as well as to all other cell
lines tested, including 293T (human kidney fibroblasts),
NIH3T3 and NIH3T3TK- (murine fibroblasts) [29], HeLa
(human ovarian carcinoma cells), D17 (canine fibrob-
last), Jurkat (suspension human T cell line), activated pri-
mary human T cells, and numerous other cell lines and
primary cell types that are thought to express the HTLV
receptor. As expected from our previous work [31], none
of these soluble HTLV SU subdomains showed detectable
binding on resting T lymphocytes. Notably, binding of the
HTLV SU to these cells occurred whether they formed or
not syncytia in the presence of HTLV Env [29] and data
not shown). Binding by H2178SU was similar to H2211SU,
demonstrating that the first 158 residues of the mature
HTLV-2 SU, without the 20 amino acids of the amino ter-
minal signal peptide, are sufficient for cell surface bind-
ing, and therefore that the PRRH is not required for
receptor binding (Figure 4A).

To determine whether cell surface binding of these solu-
ble SU domains corresponded to bona fide binding to the
HTLV receptor, we performed an Env-specific binding
interference assay. In this assay, transfection of the above
described chimeric Env and SU subdomains into 293T
cells resulted in interference to cell surface binding by the
soluble HA-tagged H2178SU subdomain (Figure 4B).
Indeed, nearly complete interference was observed when
cells were transfected with the amino terminal subdomain
constructs, in the presence and absence of PRRH
sequences (H1215SU and H2211SU versus H1183FEnv and
H2178SU) (Figure 4B). This effect was specific as HTLV SU
binding was not inhibited by a heterologous A397SU
domain (Figure 4B). Therefore, we showed that the first
163 and 158 residues, with a cleaved signal peptide, of the
mature HTLV-1 and HTLV-2 SU, respectively, contained

Intracellular expression of HTLV-1 Env chimeras and soluble SU subdomainsFigure 3
Intracellular expression of HTLV-1 Env chimeras and 
soluble SU subdomains. Cell extracts (A, B) or culture 
supernatants (C) were prepared from 293T cells transfected 
with either full length Env (A) or soluble SU subdomains (B, 
C) expression vectors as depicted in figure 2. Membranes 
were probed with either (A) an anti-MLV SU antiserum to 
detect F-MLV and H1183FEnv uncleaved Env precursor pro-
teins (F-MLV Prgp85 and H1183Fenv Pr, respectively) indi-
cated by arrowheads, and cleaved SU (F-MLV SUgp70 and 
H1183FEnv SU, respectively) indicated by circles, or (B, C) an 
anti-rabbit IgG antiserum to detect carboxy terminal rFc-
tagged soluble subdomains, including the Ampho-MLV SU 
subdomain (A397SU).
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the entire HTLV Env RBD. These data also showed that
HTLV-1 and 2 cross-interfered, consistent with the fact
that they recognize the same cell surface receptor for infec-
tion [8,32].

Interference to HTLV Env-mediated cell-to-cell fusion by 
HTLV SU amino terminal subdomains
Viral envelope interference occurs when cell surface recep-
tors are occupied by receptor-interacting Env components
[33-35]. Since interference to the different Env-mediated

functions involves distinct components [27-29], we also
tested the abilities of the H1183FEnv and the HTLV SU
amino terminal subdomains to interfere with HTLV Env-
mediated cell fusion. Interference to cell fusion was meas-
ured using a quantitative HTLV envelope cell fusion inter-
ference assay (CFIA), as previously described [9].

HTLV-1 Env-induced cell fusion was significantly dimin-
ished upon expression of the H1215SU subdomain in tar-
get cells, 12% ± 2% of control fusion (P < 0.001),

HTLV-1 and -2 SU subdomains interfere with HTLV Env SU cell surface bindingFigure 4
HTLV-1 and -2 SU subdomains interfere with HTLV Env SU cell surface binding. (A) Conditioned medium from 
control 293T cells (open histograms) or from 293T cells expressing soluble rFc-tagged HTLV-1 H1215SU, HTLV-2 H2211SU and 
H2178SU, or Ampho-MLV A397SU subdomains (filled histograms), were incubated with A23 hamster cells for 30' at 37°C and 
binding was assessed by flow cytometry following addition of a secondary FITC-conjugated anti rabbit IgG antibody. Similar 
results were obtained in binding assays performed using all cell lines described in the text. (B) To assess binding interference, 
target 293T cells were transfected with the indicated Env construct and subsequently incubated with the HA-tagged H2178SU 
domain (filled histograms). Binding was detected by FACS following incubation with an anti HA 12CA5 mouse mAb and a 
FITC-conjugated anti mouse IgG antibody. Open histograms represent background levels of fluorescence. SU constructs are 
schematically represented below each graph by solid (HTLV), open (F-MLV) or grey (Ampho-MLV) boxes.
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consistent with previous observations using the
H1215FEnv chimera [9]. Significant interference to cell
fusion was also observed with the H1183FEnv chimera,
which lacked a PRRH, down to 26% ± 4% of control
fusion (P < 0.001) (Figure 5). The corresponding HTLV-2
SU subdomains produced a nearly identical cell fusion
interference profile: interference by the H2211SU isolated
domain, in which the PRRH was maintained, resulted in
15% ± 3% of control cell fusion levels, while the H2178SU
subdomain, lacking the HTLV PRRH, inhibited HTLV-1
Env-induced cell fusion to 24% ± 6% of control levels (P
< 0.001) (Figure 5). It is noteworthy that similar data were
obtained when comparing cell fusion interference by
H1215FEnv and H1183FEnv. These effects were specific to

HTLV SU amino terminal domains as A397SU did not
interfere with HTLV-1 Env-mediated cell fusion (83% ±
11% of control fusion) (Figure 5). Furthermore, no inter-
ference was observed when these truncated HTLV SU frag-
ments and chimeric Env were tested against heterologous,
fusogenic control Env such as A∆R Env, F∆R, Xeno∆R and
VSVG (data not shown). Altogether, these results con-
firmed our findings that receptor-binding determinants
are present within the first 183 and 178 amino acids of the
HTLV-1 and -2 Env, respectively. They also indicated that
the PRRH (H1215SU and H2211SU), although unnecessary
for receptor binding, modulates the efficiency of interfer-
ence to HTLV Env-induced cell-to-cell fusion (P < 0.03).

Interference to HTLV Env-mediated infection by HTLV SU 
amino terminal subdomains
Interference, as described above, was based on the inhibi-
tion of cell-to-cell fusion induced by fusogenic Env
expressed in the absence of other viral proteins. We fur-
ther evaluated the abilities of the Env chimeras and solu-
ble subdomains to specifically interfere with HTLV Env-
mediated infection. HTLV Env-pseudotyped MLV virions,
MLV(HTLV), were produced to infect 293T target cells.
Because these recombinant cell-free virions are not com-
petent for replication, this viral pseudotype infection
assay tests a single round of infection, and does not meas-
ure replication and subsequent exponential viral dissemi-
nation. Therefore, relative infection values are expressed
in linear rather than logarithmic scales.

Infection of mock-transfected target cells, devoid of inter-
fering Env domains, resulted in a mean infection value of
9905 ± 1117 infectious units per ml (iu/ml), and this was
taken as 100% control infection (Figure 6). Similar values,
8803 ± 1871 iu/ml or 89% ± 19% of control infection,
were obtained upon infection of target cells expressing a
heterologous SU subdomain, A397SU (Figure 6). Expres-
sion of the H1183FEnv and H1215FEnv chimeric Env in tar-
get cells significantly reduced MLV(HTLV) infection to
324 ± 98 iu/ml, 3.3% ± 1% of control infection, and to
307 ± 129 iu/ml, 3.1% ± 1.3% of control infection, respec-
tively (Figure 6 and data not shown). Similarly, the
H2178SU and H2211SU subdomains diminished
MLV(HTLV) infection to 191 ± 56 iu/ml and 215 ± 122 iu/
ml, 1.9% ± 0.6% and 2.2% ± 1.3% of control infection,
respectively (Figure 6). The specificity of interference to
infection by HTLV Env constructs was assessed by their
lack of interference abilities toward Ampho-MLV Env-
pseudotyped virions, MLV(Ampho) (data not shown).
Thus, for both HTLV-1 and -2, the amino terminal
domain upstream of the PRRH was sufficient for specific
interference to HTLV Env-mediated infection. Further-
more, in contrast to the cell fusion interference assays
described above, the PRRH did not detectably influence
MLV(HTLV) infection.

HTLV-1 and -2 SU subdomains interfere with HTLV Env-mediated cell fusionFigure 5
HTLV-1 and -2 SU subdomains interfere with HTLV 
Env-mediated cell fusion. Cell-to-cell fusion assays were 
performed by cocultivating fusogenic HTLV-1 Env-expressing 
cells with target cells expressing the Env derivatives indicated 
and schematically represented below each histogram. HTLV-
1 Env-mediated cell fusion in the presence of target cells 
transfected with empty vector (Mock) yielded 200 to 1000 
blue foci in 4 independent experiments and these levels were 
defined as 100% cell fusion. Cell fusion levels in the presence 
of HLTV SU mutants or the A397SU control Ampho-MLV SU 
subdomain is shown as percent of control. Mean fusion per-
centages were determined from three to four independent 
experiments. Error bars represent the standard error of the 
mean.
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Because HTLV dissemination appears to occur mostly via
cell-to-cell contact, we also tested envelope interference to
infection by HTLV-1 SU amino terminal domains using a
cell-to-cell transmission interference assay. In this assay,
cells harboring interfering chimeric Env and soluble sub-
domains were cocultured with cells producing
MLV(HTLV) virions. Transfection of either chimeric Env
or soluble subdomains into HeLa target cells decreased
MLV(HTLV) infection to levels similar to those observed
in the cell fusion interference assay presented in figure 5
(data not shown).

Identification of residues within the HTLV SU amino 
terminal domain that modulate receptor binding and 
HTLV Env-mediated interference
Two key residues contained in the HTLV SU RBD and con-
served between HTLV-1 and -2, arginine 94 (Arg94) and

serine 101 (Ser101) for HTLV-1 Env which correspond to
Arg90and Ser97 in HTLV-2 Env, have been shown to alter
cell-to-cell fusion and infection when mutated [36,37]. To
determine whether mutations of these residues had an
effect on receptor binding, we generated H1215SU sub-
domains with either Arg94 or Ser101 mutated to Ala, yield-
ing the mutant H1(R94A)SU and H1(S101A)SU
subdomains, respectively. We also evaluated mutations of
Asp106, mutant H1(D106A)SU, and Tyr114, mutant
H1(Y114A)SU, both residues found to be highly con-
served between all human and simian T cell leukemia
viruses (unpublished observations). Surprisingly, cell sur-
face binding profiles of H1(R94A)SU and H1(S101A)SU
mutants were not significantly altered when compared to
binding by the parental H1215SU, whereas the
H1(D106A)SU mutant presented reduced binding to
HTLV receptor-bearing cells and the H1(Y114A)SU
mutant showed a nearly complete abrogation of cell sur-
face binding (Figure 7A). Loss of binding observed with
the two latter mutants was not due to decreased soluble
SU fragment production, as assessed by immunoblotting
of transfected-cell culture media (Figure 7A). Moreover,
equivalent binding profiles were obtained when the same
mutations were introduced into the HTLV-2 soluble RBD
H2178SU (data not shown). Altogether, these experiments
demonstrated that Tyr114, and to a lesser extent Asp106, are
key residues involved in HTLV Env receptor binding.

We next tested the abilities of these mutants to interfere
with HTLV Env-mediated cell fusion and infection, using
the assays described above. As mentioned above, all wild-
type and mutant HTLV SU subdomains were produced
and secreted with a similar efficiency (Figure 7A).
Expression of the H1(D106A)SU and H1(Y114A)SU
mutants, with decreased capacities to bind the HTLV
receptor, correlated with decreased interference to HTLV
Env-mediated cell fusion and infection. Indeed,
H1(Y114A)SU, which had nearly undetectable level of
binding, showed the lowest levels of interference and thus
allowed the highest levels of HTLV Env-mediated cell
fusion and infection (56% ± 16% and 46% ± 10%, respec-
tively) (Figure 7). Nevertheless, levels of fusion and infec-
tion were lower than that observed when the heterologous
A397SU was used as a negative control of interference
(83% ± 11% and 89% ± 19% for cell fusion and infection,
respectively). Thus, overexpression of mutant HTLV SU
fragments with highly decreased receptor binding abilities
can still exert, albeit to a significantly lesser extent, inter-
ference to HTLV Env-mediated cell fusion and infection.

We found that similar levels of interference to HTLV Env-
mediated cell fusion and infection were observed when
either the parental H1215SU or the mutant H1(S101A)SU
were expressed in target cells (Figure 7B and 7C). This is
consistent with the capacity of this mutant to bind target

HTLV-1 and -2 SU subdomains interfere with infection by HTLV envelope-pseudotyped virionsFigure 6
HTLV-1 and -2 SU subdomains interfere with infec-
tion by HTLV envelope-pseudotyped virions. 293T 
cells (5 × 105) expressing the indicated interfering Env deriv-
atives were infected with cell-free HTLV-2 Env-pseudotyped 
virions MLV(HTLV) carrying a LacZ reporter gene. Infected 
cells were detected 2 days later by X-gal staining. Infection 
values are represented as percent of control infection, i.e., 
relative to infection of mock (pCDNA3.1) transfected target 
cells, calculated as infectious units per ml of virus containing 
supernatant (i.u./ml). Data are representative of at least three 
independent experiments performed in duplicate. Error bars 
represent the standard error of the mean.
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cells at levels similar to that of wild type H1215SU. How-
ever, interference to HTLV Env-mediated cell fusion and
infection did not always correlate with cell surface bind-
ing profiles. While the H1(R94A)SU mutant inhibited cell
fusion and infection, its effects were significantly lower
than those of the wild-type H1215SU (56% ± 8% and 32%
± 2.3%, respectively) (Figure 7B,7C). Thus, although nei-
ther Arg94 nor Ser101 of the HTLV-1 SU appears to play a
direct role in binding, Arg94 modulates HTLV Env-medi-
ated fusion and infection (Figure 7), likely via post-bind-
ing effects rather than binding per se. In conclusion,
Tyr114 appeared as the main determinant identified so far
for HTLV Env binding, whereas the effects previously
described with Arg94 and Ser101 are most likely associated
with post-binding events.

Discussion
Here, we report the generation of MLV Env with chimeric
HTLV/MLV SU and truncated HTLV-1 and -2 amino termi-
nal SU subdomains that can be expressed in and secreted
from eukaryotic cell lines in functional, soluble form.
Using these constructs, we demonstrated that the amino
terminal 163 and 158 residues (i.e., expunged of their Env
signal peptide) of the mature HTLV-1 and -2 Env SU,
respectively, were sufficient to exert both HTLV receptor
binding and efficient interference to diverse HTLV Env-
mediated functions, including binding, cell-to-cell fusion
and cell-free as well as cell-to-cell infection. Although the
PRRH sequence comprising amino acid residues 180 to
215 of the HTLV-1 Env and 176 to 211 of the HTLV-2 Env
was previously thought to be a receptor binding site, our

HTLV-1 SU amino terminal domain mutantsFigure 7
HTLV-1 SU amino terminal domain mutants. (A) H1215SU constructs were generated with the following SU amino ter-
minal point mutations; R94A, S101A, D106A and Y114A. The abilities of these soluble H1215SU constructs to bind 293T cells 
were assessed by flow cytometry (gray histograms). The levels of expression of the various soluble SU subdomains are shown 
under each histogram. The abilities of the H1215SU mutants to interfere with (B) HTLV Env-induced cell fusion and (C) 
MLV(HTLV) pseudotype infection was assayed as described in Figs. 5 and 6. Data are representative of at least three independ-
ent experiments performed in duplicate. Error bars represent the standard error of the mean.
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data preclude a major role for this region in the binding
properties described above. Indeed, whereas a synthetic
peptide composed of amino acids 197 to 216 and located
within the HTLV-1 PRRH, has been reported to interfere
with HTLV Env-induced syncytia formation [22], this pep-
tide was later shown to compete neither with receptor
binding of the entire HTLV-1 Env SU [38], nor with infec-
tion [26]. It is therefore likely that the effects reported for
PRRH-derived peptides, as measured by syncytia forma-
tion, are solely due to post-receptor binding events. How-
ever, we identified Tyr114 of the HTLV-1 Env, which
corresponds to Tyr110 of the HTLV-2 Env, as a key residue
in HTLV Env binding and for all the aforementioned
HTLV Env-mediated functional assays. We could not
detect binding of H1(Y114A)SU by flow cytometry, while
this mutant exerted residual, albeit significantly
decreased, interference to HTLV Env-mediated cell fusion
and infection. Altered folding outside of the binding
domain per se, rather than direct alteration of the receptor-
binding site, could also account for the lack of binding of
this mutant. However, we favor the latter hypothesis,
since the H1(Y114A)SU mutant was properly folded and
transported to the plasma membrane and secreted in the
medium as efficiently as wild type RBD, thus arguing
against gross misfolding of this mutant. Accordingly,
Tyr114 appears to be conserved in all known human and
simian T cell leukemia viruses strains, which share the
same receptor.

The receptor-binding site in MLV RBD is composed of a
combination of several cysteine loops located upstream of
the PRR [11,39] which is linked to a conserved anti-paral-
lel β core [13]. The isolation of an F-MLV SU amino termi-
nal subdomain allowed crystallization of MLV RBD and
the modeling of the RBD cysteine loop arrangement [13].
The precise organization of cysteine loops, likely to har-
bor the receptor binding determinants, within the HTLV
SU amino terminus remains to be established. Neverthe-
less, the identification of Tyr114 as a key HTLV-1 RBD resi-
due points at this determinant as a very likely receptor-
binding core. This, together with previous works relying
on syncytia formation and cell-to-cell transmission
[36,37], will help to distinguish between bona fide recep-
tor binding determinants and determinants involved at a
post-binding level.

Another recently identified determinant, the Pro-His-Gln
SU motif conserved among gammaretroviruses such as
MLV and feline leukemia viruses (FeLV), has been deter-
mined to play a major role in viral entry during post-bind-
ing events [40]. The mechanism of this effect involves a
direct interaction of MLV SU soluble forms with Env
attached SU carboxy terminus [41-46]. This interaction
between the SU amino and carboxy termini leads to the T
cell-restricted tropism of a natural isolate of FeLV, FeLV T,

in which the SU Pro-His-Gln motif is mutated. Indeed,
FeLV T is restricted in cat to T cells because they naturally
express an endogenous soluble FeLV RBD-related factor
called FeLIX that trans-complements the lack of the SU
Pro-His-Gln motif in the FeLV T Env and restores its post-
binding defect [47]. Despite the HTLV-1 and F-MLV SU
homologous modular organization and the assignment of
several common motifs between the two latter SU, no
obvious Pro-His-Gln motif homologue is present in the
HTLV SU amino terminus. Whether a FeLIX-like molecule
that interacts with HTLV Env exists in human T cells
remains to be addressed. Furthermore, the fact that the
Pro-His-Gln has been shown to play a major role in trans-
activation of viral infection in several gammaretroviruses
which are efficiently infectious as cell-free virions
[42,44,48], raises the question whether the apparent lack
of such a motif in the HTLV simple oncovirus-like SU is
linked to the relative inefficiency of HTLV Env-mediated
infection by cell-free virions. The HTLV SU subdomains
described here should prove to be valuable in addressing
such questions.

The recent identification of Glut1, the ubiquitous glucose
transporter of vertebrates [49], as a receptor for HTLV Env
[8] adds an additional similarity between the Env of
HTLV, a deltaretrovirus, and that of gammaretroviruses.
All these virus Env recognize multimembrane-spanning
metabolite transporters [50,51]. This and the common
modular organization of the HTLV and MLV SU raise
questions regarding the origin of the HTLV Env. It has pre-
viously been reported that envelopes of invertebrate retro-
viruses may have been "captured" from other viruses [52-
54]. As HTLV and MLV have strongly divergent overall
genomic organizations, "envelope capture" from related
ancestor genes might account for the close relationship
between the Env of these phylogenetically distant viruses
[10].

Conclusions
We have generated truncated domains of the HTLV Env
amino terminus, upstream of residues 183 and 178 of the
HTLV-1 and -2 Env, respectively, that were sufficient to
bind target cells of different species through interaction
with the HTLV Env receptor. We also identified a tyrosine
at position 114 and 110 in HTLV-1 and -2 Env, respec-
tively, as a key determinant for this binding. In addition
to their use for further exploration of the mechanisms
involved in HTLV entry, the tagged HTLV-1 and -2 RBD
subdomains described here are novel tools for the detec-
tion of Glut1 cell surface expression and intracellular traf-
ficking. Indeed, we tracked intracellular expression of
EGFP-tagged HTLV SU subdomains by time-lapse micros-
copy, and found that they are preferentially routed toward
cell-cell contact areas (unpublished observations), where
Glut1 is particularly abundant [55] and our unpublished
Page 10 of 14
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observations). Furthermore, those HTLV SU derivatives
could be of particular importance in view of the key roles
played by Glut1 in various biological processes, including
T cell survival and activation [31,56], tumor genesis
[57,58], and neuronal activity [59]. Interestingly, soluble
HTLV SU subdomains inhibit Glut1-mediated glucose
transport, and accordingly, expression of mutants with
diminished receptor binding ability resulted in less pro-
nounced inhibition [8] and data not shown). Thus, these
HTLV SU derivatives could also be used as glucose trans-
port inhibitors. These data demonstrate the potential for
the novel and broad utility of these reagents in the study
of HTLV infection as well as biological processes involving
glucose transport and metabolism.

Materials and methods
Construction of chimeric Env and HTLV-1 and -2 SU 
subdomains
To exchange the PRR and PRRH regions, we introduced an
allelic MfeI restriction site in the HTLV-1 and F-MLV Env.
Introduction of this site in F-MLV resulted in the substitu-
tion of a glutamine and leucine (QL) dipeptide for the
parental arginine and valine (RV) residues of the GPRV-
PIGP motif, at the start of the MLV Env PRR. Introduction
of the MfeI site in the PSQL motif of the HTLV-1 SU main-
tained the parental QL residues, at the start of the HTLV
Env PRRH. By exchanging domains at the MfeI sites, we
derived the H1183FEnv chimera containing the amino ter-
minal 183 residues of the HTLV Env followed by the F-
MLV PRR. In this chimera, the PSQL/PIGP hybrid
sequence is generated at the exchange border, and the
PRRH of HTLV is replaced by the F-MLV PRR (Figure 2A).
In contrast, the entire PRRH of HTLV-1 is present in the
H1215FEnv chimera – this Env chimera has been previ-
ously described and designated HHproFc [9]. The
H1183FEnv and H1215FEnv chimeras, as well as the paren-
tal HTLV-1 and F-MLV Env, were inserted in an allelic
fashion into the previously described pCEL retroviral Env
expression vector [60]. The HTLV-2 Env expression vector,
pCSIX/H2, was constructed by inserting the HindIII –
EcoRI fragment from pHTE-2 (a gift from M-C Dokhelar)
encompassing the HTLV-2 env gene, the pX region and the
3' LTR into pCSI (CMV promoter, SV-40 intron) [61] at
the HindIII and EcoRI restriction sites.

The H1215SU, H2211SU, H1179SU, and H2178SU sub-
domains, corresponding to the HTLV-1 and -2 SU amino
terminus with and without their respective PRRH, were
generated by PCR and subcloned into the pCSI expression
vector as fusion proteins harboring a carboxy terminal rFc
or HA tag (Figure 2B). The H1(R94A)SU, H1(S101A)SU,
H1(D106A)SU, and H1(Y114A)SU substitution mutants
were generated by oligonucleotide-directed PCR muta-
genesis on the H1215SU vector and subcloned into the
pCSI expression vector. All PCR-generated DNA fragments

were sequenced using an ABI Prism 310 sequencer. Clon-
ing details are available upon request.

Protein expression and immunoblots
Approximately 5 × 105 293T cells per 35 mm well were
transfected with 5 µg of vectors using a calcium-phos-
phate-Hepes buffered saline (HBS) transfection protocol.
Transfection medium was replaced with 3 ml of fresh cul-
ture medium twenty hours post-transfection. Forty-eight
hours post-transfection cell culture medium (superna-
tant) was recovered and filtered through a 0.45 µm pore-
size membrane to remove cell debris. Twenty µl were
directly analyzed by SDS-PAGE (15% polyacrylamide
gel), and the rest was aliquoted and stored at -20°C for
later use in binding assays (see below). Cell extracts were
collected 48 h post-transfection in 1 ml of cell lysis buffer
(50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.1% sodium
dodecyl sulfate [SDS], 1% Nonidet P-40, 0.5% deoxycho-
late, and a cocktail of mammalian protease inhibitors
[Sigma]) and clarified by two successive centrifugations at
13,000 rpm for 10 min at 4°C in a microcentrifuge.
Approximately 20 µl of each extract, adjusted after nor-
malization for protein concentration using the Bradford
assay (Sigma), were subjected to electrophoresis on SDS-
15% acrylamide gels, followed by transfer onto nitrocellu-
lose (Protran; Schleicher & Schuell). Membranes were
blocked in phosphate-buffered saline (PBS) containing
5% powdered milk and 0.5% Tween 20, probed with a
1:1000 dilution of a goat anti-RLV gp70 polyclonal
antibody (Viromed) followed by a horseradish peroxi-
dase-conjugated anti-goat immunoglobulin (for detec-
tion of chimeric Env), or goat anti-rabbit-IgG-horseradish
peroxidase-conjugated immunoglobulins (for detection
of rFc-tagged SU subdomains). Immunoblots were subse-
quently washed three times with PBS-0.1% Tween 20 and
revealed by chemiluminescence (ECL+, Amersham).

Binding and binding interference assays
Binding assays were performed as previously described
[31]. Briefly, 5 × 105 target cells were detached with a PBS-
EDTA solution, collected by centrifugation, incubated for
30' at 37°C with 300 µl of rabbit Fc-tagged soluble HTLV-
1, HTLV-2, or Ampho-MLV truncated SU, washed, labeled
with an anti-rabbit-IgG FITC-conjugated antibody, and
analyzed on a FACSCalibur (Becton Dickinson). Data
analysis was performed using the CellQuest software
(Becton Dickinson). For interference studies, 293T cells
were transfected with 4 µg of Env or Env SU subdomain
expression vectors (carboxy terminal rFc-tagged forms)
using the calcium-phosphate-HBS method. Under these
conditions, transfection efficiencies ranged from approxi-
mately 80 to 90% of the target cells. Twenty-four and 48
hours post-transfection, cells were collected and trans-
fected 293T cells expressing the different interfering HTLV
or Ampho-MLV domains were incubated with a
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challenging HA-tagged soluble HTLV-2 SU amino termi-
nal subdomain (H2178SU-HA). Cells were stained using a
primary 12CA5 anti HA antibody followed by an anti-
mouse-IgG FITC-conjugated antibody before detection by
flow cytometry.

Envelope interference to cell fusion assay
Briefly, the HTLV/MLV Env chimera, H1183FEnv, was used
to interfere with challenging HTLV Env. The interfering
non-fusogenic H1183FEnv and truncated HTLV SU sub-
domains were transiently transfected into
HeLaCD4LTRLacZ, a cell line highly susceptible to HTLV
Env-induced fusion that contains a stably integrated Tat-
dependent LacZ expression vector [62]. These transfect-
ants were cocultured with Tat-expressing NIH3T3(TK-)
cells (NIH3T3(TK-)Tat) that were transiently transfected
with the challenging HTLV Env. The NIH3T3(TK-)Tat cell
line is resistant to HTLV-Env-induced syncytia formation,
despite its ability to express the HTLV receptor and to bind
HTLV Env, and thus can be used to precisely monitor
fusion of the HeLaCD4LTRLacZ target cells [9,29].
H1183FEnv Env and truncated HTLV SU subdomains
plasmid DNA (2 to 3 µg) was transfected into
HeLaCD4LTRLacZ cells, while challenging, fusogenic
HTLV-1 Env plasmid (1 µg) was transfected into
NIH3T3(TK-)Tat. The interfering Env or SU subdomain-
presenting cells were detached 24 hours post-transfection
and 1–2 × 105 cells were cocultured for 24 hours with 1–
2 × 105 challenging HTLV-1 Env-presenting NIH3T3(TK-
)Tat cells. Subsequently, the cocultured cells were fixed
and stained for β-galactosidase expression as described
previously [60]. Transfection efficiencies of the
HeLaCD4LTRLacZ target cells were approximately 50%.
Mock transfections were performed with similar amounts
of control plasmid DNAs. Env interference was measured
by the decreased number of blue foci and was expressed as
percent blue foci of control fusion (mock-transfected
target cells). Data are represented as mean interference (±
standard deviation), and statistical significance of interfer-
ence levels was determined using a pairwise Student's t
test.

Envelope interference to infection assay
MLV(Ampho) and MLV(HTLV) pseudotyped virions were
produced after transfection of 106 293T cells with 5 µg
pCSI/Ampho or pCSIX/H2, respectively, 5 µg pCL/Gag-
Pol [29] and 10 µg of pCLMFG-LacZ [63], using a calcium-
phosphate-HBS transfection protocol. Supernatants were
recovered 48 hours post transfection and filtered through
0.45 µm pore-size membrane to remove cell debris, and
stored at -80°C. The pCLMFG-LacZ plasmid is a retroviral
expression vector that provides a packageable RNA coding
for the LacZ gene marker. pCSI/Ampho is an expression
vector encoding the Ampho-MLV Env, and the HTLV-2
Env expression vector, pCSIX/H2, is described above.

Virion-containing supernatants were used to infect target
293T cells expressing the chimeric Env or HTLV RBD
subdomains. Transfection efficiencies of target 293T cells
were >80% in all experiments. Infections were performed
36–48 hours post-transfection on cultures grown in 12
well plates (Costar) at 37°C, medium was changed 24
hours later, and confluent cell monolayers were fixed,
stained for β-galactosidase activity before counting blue
foci. Interference to infection was determined by infecting
transfected target cells with approximately 100 and 1000
iu. Infection was evaluated as described above, and the
number of LacZ-positive blue colonies counted was nor-
malized by multiplying by the appropriate dilution factor.
The resulting infection values were analyzed as iu/ml of
virus containing supernatant. Subsequently the relative
infection levels in cells expressing the HTLV SU domains
were compared to those of mock transfected cells and
were expressed as percentages of control infection (%
control).

List of abbreviations used
HTLV Human T-cell leukemia virus

SU envelope extracellular surface component

Env envelope glycoprotein

MLV murine leukemia virus

F-MLV Friend-MLV

RBD receptor-binding domain

PRR proline-rich region

PRRH proline rich region homologue

Ampho amphotropic

HA influenza hemagglutinin

rFc rabbit immunoglobulin constant fragment

A397SU Ampho-MLV Env fused to a carboxy terminal rFc
tag

CFIA cell fusion interference assay

iu/ml infectious units per ml

Arg94arginine 94

Ser101serine 101

Tyr114tyrosine 114
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FeLV feline leukemia viruses

HBS Hepes buffered saline

PBS phosphate-buffered saline

SDS sodium dodecyl sulfate
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