
HAL Id: hal-02262375
https://hal.science/hal-02262375

Submitted on 2 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmark problems for continuous-time model
identification: Design aspects, results and perspectives

Valentin Pascu, Hugues Garnier, Lennart Ljung, Alexandre Janot

To cite this version:
Valentin Pascu, Hugues Garnier, Lennart Ljung, Alexandre Janot. Benchmark problems for
continuous-time model identification: Design aspects, results and perspectives. Automatica, 2019,
107, pp.511-517. �10.1016/j.automatica.2019.06.011�. �hal-02262375�

https://hal.science/hal-02262375
https://hal.archives-ouvertes.fr


Benchmark Problems for Continuous-Time Model

Identification: Design Aspects, Results and Perspectives ?

Valentin Pascu a,b, Hugues Garnier b,c, Lennart Ljung d, Alexandre Janot a

aSystems Control and Flight Dynamics Department, ONERA - The French Aerospace Laboratory, 31055 Toulouse, France
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Abstract

The problem of estimating continuous-time model parameters of linear dynamical systems using sampled time-domain input
and output data has received considerable attention over the past decades and has been approached by various methods. The
research topic also bears practical importance due to both its close relation to first principles modeling and equally to linear
model-based control design techniques, most of them carried in continuous time. Nonetheless, as the performance of the existing
algorithms for continuous-time model identification has seldom been assessed and, as thus far, it has not been considered in
a comprehensive study, this practical potential of existing methods remains highly questionable. The goal of this brief paper
is to bring forward a first study on this issue and to factually highlight the main aspects of interest. As such, an analysis is
performed on a benchmark designed to be consistent both from a system identification viewpoint and from a control-theoretic
one. It is concluded that robust initialization aspects require further research focus towards reliable algorithm development.

Key words: identification algorithms, output error identification, parameter identification, linear multivariable systems,
benchmark examples, Monte Carlo simulation.

1 Introduction

The estimation of continuous-time models of dynamical
systems from sampled input and output system data is
a research topic that has known considerable advance-
ments throughout the past two decades, currently hav-
ing reached maturity. With relevance pertaining to the
traditional modeling framework for physical systems us-
ing first principles, the need for continuous-time sys-
tem identification methods has been acknowledged also
from model-based control viewpoint, given that prior
knowledge can be preserved and further used for con-
trol design. Consequently, the major overhaul of the
MATLAB R© System Identification Toolbox in 2012 [15]
aimed at a rapprochement with the Control System and
with the Robust Control toolboxes. Currently, the de-
fault use of many of the identification algorithms gives a
continuous-time model while discrete-time models still
can be optionally obtained. This reflects the fact that
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for most users, continuous-time models remain more in-
tuitive and estimating such models is a more natural
step for the control community. Indeed, many advan-
tages regarding the quality and versatility of the identi-
fied continuous-time models can also be achieved using
direct continuous-time approaches [6]. While many de-
velopments within this area have been reported, an ex-
haustive assessment of the associated algorithms on a
relevant test bench has not been documented.

Recently, within the system identification and the ma-
chine learning communities, growing attention is given
to proposing suitable benchmarks for numerically assess-
ing methodologies [10,11,23]. The value of a test bench
depends on the community’s acceptance of its relevance
with respect to the different techniques available, as well
as the data generating procedure and the model qual-
ity assessment criteria. Benchmarks based on randomly-
generated systems, though currently common, remain
under question with respect to their appropriateness and
representativity for the issues at hand [21]. Nonetheless,
the necessity for having such benchmarks based on ran-
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domized systems available for various studies does exist
from both a theoretical and practical point of view. In
control engineering, most systems of practical interest
obey the laws of physics and, therefore, have an inherent
low-pass behaviour, even when accompanied by addi-
tional resonant/anti-resonant dynamics. Well-designed
test benches based on randomized systems experiencing
such behaviors can, therefore, be considered attractive
from both the automatic control and the system identifi-
cation viewpoint, while thorough studies based on them
with respect to given questions at hand can but reveal
important aspects for further development.

Though crucial in understanding the relevance of fun-
damental works with respect to envisioned applications,
as well as to realizing their limitations, it often remains
cumbersome to point out where methodologies fall
short of their expected standard [19]. Yet, the challenge
is approachable within the control and identification
communities by use of computational methods for as-
sessment [2,1], as is the case within this study. The goal
of this brief paper is to qualify and quantify, from both
these perspectives, the reliability of continuous-time
Output-Error (OE) model identification algorithms on
a custom-developed benchmark and to pertinently high-
light the important aspects for future advances. The
study leaps forward from the presentation given in [19]
by bringing about a systematically designed test bench
and drawing consistent conclusions using it in relation to
these goals. The choice of model class is here restricted
to OE models, these readily portraying the essential
aspects of the work; more challenging and realistic test
systems can also be conceived e.g. using other linear
model classes (such as Box-Jenkins) or even nonlinear
ones, yet this falls outside the scope of the current study.

The paper is organized as follows. In Section II, the iden-
tification of multi-input continuous-time transfer func-
tion models is briefly reviewed. In Section III, a control-
and identification-relevant setup is developed for assess-
ing the algorithm implementations of the standard ap-
proaches described in Section II. In Section IV, results
obtained with the proposed benchmark are summarized
and discussed. Based on these, specific conclusions are
drawn in Section V and several perspectives are given.

2 Continuous-Time Transfer Function Model
Identification in a Multi-Input Setting

Let us consider the general problem of estimating
multiple-input single-output (MISO) continuous-time
(CT) rational transfer function (TF) matrices, expressed
in terms of the Laplace transform variable s, as:

G(s) =

[
B1(s)

A1(s)

B2(s)

A2(s)
· · · Bl(s)

Al(s)

]
(1)

starting from N samples of the l-dimensional CT input

u(t) = [u1(t)u2(t) ... ul(t)]
T

and output y(t) signals, col-

lected into the ZN = {u(tk), y(tk)}Nk=1 dataset. By tak-
ing the number of inputs to be l = 1, a single-input
single-output (SISO) scalar rational transfer function is
obtained. The input and output signals are related by:

y(t) = G(p)u(t) + v(t) (2)

with v(t) representing a CT signal incorporating the
effects of measurement noise and output disturbances,
whose effect on y(t) is considered only at the sampling
instants tk, k = 1, ..., N in the dataset ZN . Let p denote
the differential operator. The noise-free response of the
system is defined as ẙ(t) , G(p)u(t). In this section we
briefly recall two main approaches for solving this esti-
mation problem, namely the Maximum Likelihood and
the Instrumental Variable methods.

2.1 The Maximum Likelihood Method

With appropriate account taken of the intersample be-
haviour of u(t) and y(t) and under the assumption that
v(t) is a stochastic signal with Gaussian probability den-
sity function, the theoretically optimal solution is to ap-
ply the Maximum Likelihood method. It has long been
known how to do this e.g. [17,12] and a recent discussion
is given in [16]. If the disturbances on the system are
Gaussian, the ML method coincides with the Prediction
Error Method. For each input i = 1, ..., l the parameters
of Bi(s) and Ai(s) from (1) are collected in the vector
θ =

[
θT1 θ

T
2 · · · θTl

]
, so that the predicted θ-parametrized

output is given as:

ŷ(t|θ) =

l∑
i=1

Gi(p, θi)ui(t) (3)

We denote the true parameter vector of G(p) by θo. If
in (2) the additive disturbance v(t) at the output is white
then the optimal estimate arises as the solution of:

θ̂ML = arg min
θ

N∑
k=1

‖y(tk)− ŷ(tk|θ)‖2 (4)

The tfest algorithm from the MATLAB R© System Iden-
tification Toolbox [13] is a software implementation of
this approach, further denoted by TFEST in the paper.

2.2 The Instrumental Variable Method

Another route to solving the formulated problem comes
from the application of the Instrumental Variable
method, see e.g. [26,27]. The parameter estimate then
arises as the solution of:

θ̂IV = arg min
θ

N∑
k=1

∥∥ζf (tk)
(
yf (tk)− ϕTf (tk)θ

)∥∥2
(5)
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where ζf (tk) and ϕf (tk) are the filtered instrument and
regression vectors, respectively and yf (tk) is the fil-
tered output signal [5,28]. The srivc algorithm of the
CONTSID Toolbox [4] contains an implementation of
this approach, further called SRIVC in the study.

3 Description of the Proposed Benchmark

An evaluation setup developed for investigating the
performance of the algorithms that implement the pre-
sented methods, is described in this section. The key
factors that lead to correctly-drawn conclusions on ob-
tained results are the generation of effective low-pass
systems, the design of informative experiments and the
choice of pertinent assessment criteria and will here be
considered sequentially.

3.1 Generating appropriate test systems

Given the assumptions resilient to the presented identi-
fication methods, a simulation setup that satisfies these
as closely as possible is defined. First, a CT OE structure
is chosen for (2) by setting the disturbance v(t) to be a
zero-mean white Gaussian signal. Reference systems of
SISO and MISO type are taken in (1) with l = {1, 2},
where:

Gi(s) =
αi
∏m
j=1(s− zj)∏n

j=1(s− pj)
, i = 1, ..., l (6)

In general, the most appropriate way to avoid any speci-
ficity of the dynamics in the reference systems, apart
from the low-pass behaviour, is to choose the transfer
function parameters in a random way. However, typical
related pitfalls, such as approximate pole-zero cancella-
tion and generation of low-effective order systems, com-
mon to both single- and multiple-input system realiza-
tion problems must be avoided [21].

For designing randomized low-pass systems of various
orders n, strictly proper stable rational transfer func-
tions with pole-zero excess of 1 are taken for Gi(s) with
their n poles and m = n − 1 zeros being randomly-
chosen and e.g. evenly distributed in a given frequency
band ω ∈

[
10−3ωB , ωB

]
, where the lower limit is cho-

sen such that the system dynamics are not too wide
apart. For each system order, ωB is split randomly into
several divisions, as follows. One by one, a pole pair is
designated to either consist of one real or two complex-
conjugate poles; this results into a number η ≤ n of
pole pairs, representing also the number of frequency
divisions. The real part (for real poles) or the imagi-
nary parts (for complex poles) are chosen such that the
given pair has its associated frequency within the des-
ignated division, but chosen randomly based on e.g. a
normal distribution. For complex poles, the real part is

also randomly-chosen on e.g. a normal distribution, in
the interval

[
−ωB , 10−3ωB

]
, without loss of generality.

Similarly, the zeros can be assigned in their own corre-
sponding divisions µ ≤ m; the zero pair location with re-
spect to the imaginary axis (left-half or right-half plane)
is randomly-chosen, so as to allow for both minimum and
non-minimum phase systems. The gain αi is randomly-
picked based on e.g. an integer uniform distribution so
that the DC gains of the systems are above 0 dB and its
sign is randomly-chosen; there is, again, no loss of gen-
erality in the choice. Generating random test systems of
different complexities, expressed in terms of the order
n, is done numerically. As a first guarantee for effective
model complexity, cases where the locations of poles are
close to those of zeros should be avoided by re-iteration
when the distance is e.g. less than ωB/(m + n). This
goal can be achieved by various criteria, whereas the
proposed one provides a simple method relating the fre-
quency band of interest to the number of singularities.
For simplicity, we further consider ωB = 2π100 rad/s in
the remainder of the study.

Indeed, the reference systems play an important role
with respect to the thoroughness of the identification al-
gorithm assessment. For a second guarantee on the effec-
tiveness of the model complexity, the generated systems
should be checked not to be of low-effective orders [21].
This can be evaluated from the computation of the Han-
kel singular values [9,29]. For example, the computation
of the ratio σ/σ between the largest σ and the lowest σ
Hankel singular values represents up to some extent the
degree of model reducibility. This allows systems of low-
effective orders to be defined here as those systems for
which σ/σ < el·n, the right-hand side stemming from
the fact that the decay rate in the Hankel singular values
is exponential for asymptotically stable systems [18], as
in the case considered here. If the condition is not satis-
fied, the system generation is re-iterated.

The summary of one set of generated SISO and MISO
systems, designated as reference for the benchmark, is
provided in Table 1. As an example of the proposed ran-
dom system generation technique, the pole-zero map for
the 5th order SISO system is given in Figure 1. As can be
noticed, first a complex pole pair is generated, followed
by a real pole and, subsequently, another complex pole
pair, so here η = 3 divisions exist for the given frequency
range; for the zeros one complex zero pair followed by
two real ones are generated, corresponding to µ = 3.

In Figure 2, the Bode diagrams for 25 SISO systems of
order 5 are given: as can be seen from their frequency
response functions, the procedure delivers stable low-
pass SISO systems with diverse dynamics and DC gains.

When used for generating MISO systems, the proposed
procedure remains efficient in delivering diverse multi-
input models in a satisfactory manner, given the system
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System SISO MISO

Order l · (m+ n) σ/σ l · (m+ n) σ/σ

1 2 1.0e0 4 6.5e0

2 4 1.5e0 8 1.7e1

3 6 1.7e0 12 7.8e1

4 8 1.4e0 16 7.2e1

5 10 4.2e0 20 6.4e1

6 12 4.2e0 24 6.5e2

7 14 5.0e0 28 1.1e5

8 16 4.3e0 32 2.1e3

9 18 7.2e0 36 3.6e5

10 20 8.7e0 40 3.2e8

Table 1
Number of parameters and ratios of maximum/minimum
Hankel singular values for the reference systems

Fig. 1. Pole-zero map for a 5th order SISO system; the three
corresponding frequency divisions are highlighted

Fig. 2. Bode diagram for 25 SISO systems of 5th order; range[
10−3ωB , ωB

]
for ωB = 2π100 rad/s highlighted

dynamics shown on singular value plots of Figure 3 for
the same number of 2x1 MISO models of 5th order.

3.2 Input design for informative experiments

These reference systems are to be simulated for collect-
ing identification data. The input signals for excitation
are chosen to be of random-phase multisine type:

ui(t) =

F∑
λ=1

Ai sin(2πfλt+ φλ), i = 1, 2 (7)

Fig. 3. Singular value plot for 25 2x1 MISO systems of 5th

order; range
[
10−3ωB , ωB

]
for ωB = 2π100 rad/s highlighted

as this class experiences the highest versatility with re-
spect to a given designable experiment [20]. The de-
sign parameters of the multisine(s) need to be chosen
such that the excitation is persistent for parametric es-
timation in a certain frequency range e.g. ωR = 1.1ωB .
The choice of the number of harmonics F can either
be made to be as large as possible or, at the least, not
smaller than Ω = 2 · (m + n) in relation to the num-
ber of parameters to be estimated for each system [12].
A choice of as high as possible a number of harmon-
ics e.g. 1000 within the frequency range of interest has
here been made, without any loss of generality. The har-
monics ωλ are linearly spaced from ω0 = 10−3ωB to
ωR, while for each harmonic λ, the phase φλ is cho-
sen to be a uniformly-distributed random variable with
zero mean and variance π/2. For ensuring appropriate
informativity in MISO experiments input orthogonality
is recommended, see e.g. [3]. In the 2x1 MISO case of
the current study, this implies that for any number of
periods, the second input will be a π/2 phase-shifted
version of the first. An equally valid approach would be
to use orthogonal multisines as defined in [3], but this
is not opted for within the benchmark. Each multisine
has a period of length T0 = 2π/ω0. The spectrum of
each multisine signal i can be chosen to be flat, by defin-
ing the same amplitude Ai for each harmonic; however,
to ensure that the data is informative for multivariable
system estimation [7], these amplitudes need to be cho-
sen such that the inputs contributions to the output are
comparable, e.g. by defining A1 = |G2(0)/G1(0)| and
A2 = |G1(0)/G2(0)| for the MISO case and A = 1 for
SISO; this often remains reasonable in practice given
that the DC gain of systems under investigation are
roughly known prior to experimentation. The inputs are
fast-sampled, as is typically the case in CT identifica-
tion, here with a frequency of Fs = 50ωB

2π Hz.

The reference systems are simulated using e.g. lsim with
a first-order hold specification and zero initial condi-
tions. The number of periods for excitation is chosen such
that sufficient data is available for estimation e.g. several
periods. When choosing the number of periods for the
experiment, attention must be given also to whether or
not the identification method can handle transient data;
if this is not the case, a certain amount of samples corre-
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sponding to the transient’s response must be discarded
from the obtained data, while still allowing for sufficient
data for estimation. Since the two methods presented in
Section II are reasonably robust with respect to cases
when transient data forms part of the provided identi-
fication data, any choice of data discarding can be con-
ceived within the presented benchmark.

On the output, zero-mean white Gaussian measurement
noise with average power Pv is added such that a signal-
to-noise ratio SNR= 10 log (Pẙ/Pv) of 10 dB is obtained
in the data. Here Pẙ is the average power of the noise-
free output.

3.3 Criteria for systematic model quality evaluation

Model quality assessment can be carried in many dif-
ferent ways depending on the goal of the model, such
as prediction [12] or feedback control design [25,24]. The
model’s prediction performance is often assessed by eval-
uation of standard statistics (such as mean and standard
deviation or median and the associated first and third
quartiles) of the time-domain fits between the model
noise-free output ẙ(t) and the measured output y(t)
given by:

FITγ = 100 ·
[
1− ‖y(tk)− ẙ(tk)‖2
‖y(tk)− Ey(tk)‖2

]
, γ = 1, ...,Γ, (8)

offers for a Monte Carlo-type of analysis reliable statis-
tics with respect to Γ, provided that Φ estimation fail-
ures (any case when the estimation algorithms fail to
provide a parameter estimate) from the Γ obtained mod-
els have been counted, but not indexed as outliers in the
calculation of the statistics.

Additionally, in any case where a parameter estimate
has been obtained (an estimation failure did not occur),
the parameter can be a priori expected to have a certain
theoretical level of prediction performance (lower bound
on the obtained FIT), based only on SNR level used
during experiments:

FITγ < 100− SNR, γ = 1, ...,Γ− Φ (9)

One is also interested in counting the number of mod-
els K that fail to achieve this performance, here called
prediction-wise failures, and hence defined as models
models with a fit value FITκ < 70, κ = 1, ...,K.

For a control-relevant analysis, a different path may
be taken altogether for defining what a failure might
be, without the possibility of relating the model perfor-
mance to the SNR level used for obtaining the estima-
tion data. Computing the maximum, over all the models
obtained from the Monte Carlo assessment, of the peak
additive uncertainty:

∆γ(s) = G(s)− Ĝγ(s), γ = 1, ...,Γ− Φ (10)

can provide a conservative measure of each algorithm’s
expected introduced uncertainty for each specific refer-
ence system [24]. This uncertainty is quantified in terms
of the system-theoreticH∞ norm, between the reference
system and the worst estimated stochastic model. The
metric shows, in a control sense, the worst-case error
expected from each identification algorithm and is reli-
able provided that a sufficient number of well-designed
experiments has been carried.

However, it remains more insightful to assess this uncer-
tainty in a fully statistical sense. Hence, computation of
standard statistics (such as mean and standard devia-
tion or median and the associated first and third quar-
tiles) is here opted for, but for a relative measured of
uncertainty i.e. the normalized additive uncertainty, ex-
pressed in percentage:

∆norm,γ = 100 · ‖G(s)− Ĝγ(s)‖H∞

‖G(s)‖H∞

, γ = 1, ...,Γ− Φ(11)

A perfect model will have ∆norm,γ = 0%, while a control-
wise failure can hence be defined as any obtained nu-
merical model (one for which an estimation failure did
not occur) where ∆norm,ι > 100%, ι = 1, ..., I i.e. the
model’s error relative to the system exceeds the true sys-
tem’s H∞ norm by a certain factor above unity so the
model has more uncertainty than the size of the system;
their number I is to be reported as well.

The described reference systems as well as the code used
for data generation/processing can be accessed from
http://w3.cran.univ-lorraine.fr/perso/hugues.
garnier/Benchmark/Benchmark_Source_Files.rar.

4 Analysis of Results for Generated Reference
Systems

In this section, the described benchmark is used for one
Monte Carlo simulation with 100 runs carried for the
identification of TF models of the provided reference sys-
tems, using the TFEST and SRIVC approaches, for the
case when the model orders are the same as the ones
of the true system S i.e. S ∈ M where M denotes the
model structure. A related, yet different analysis could
be carried when the expected model orders would be dif-
ferent from the true ones. This latter analysis falls out-
side of the scope of the current study since the goal of the
paper has been to provide a benchmark design method-
ology accompanied by an evaluation of the reliability of
two OE model identification algorithms within a stan-
dard setup.

Estimating OE model parameters is a non-convex prob-
lem, wherein a suitable initialization of the parameter
vector is necessary [12]. In general, the algorithms cur-
rently investigated within this paper can be very sensi-
tive to the parameter initialization [14]. As there is no
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known reliable solution, within the core of the presented
study we report both the cases where the initialization
is done by the true system’s parameters and those when
the parameter search is left to its default mode for both
algorithms (no specific initialization setting).

Let us first perform such an analysis in a SISO set-
ting. In Figure 4, the boxplots of the obtained FIT val-
ues for the 100 Monte Carlo runs are given for both
TFEST and SRIVC, with number of prediction-wise fail-
ures shown at the top, next to the number estimation
failures, shown between round brackets (the circles rep-
resent the means). As can be observed, upon algorithm
initialization by the true system’s parameters, the algo-
rithms perform well with satisfactory overall statistics
and medians located around 90%, even though for higher
system orders the performance seems to drop. No failure
of any kind has been generated throughout the Monte
Carlo runs, according to Figure 4 and Figure 5. Note
for Figure 5, the statistical drop of relative norm error
for TFEST, due to the routine’s small numbers of iter-
ations when initialized by the true system’s parameters
for higher order systems.

Fig. 4. Boxplots of FIT for 1st to 10th order SISO systems
(algorithms on initialization by the true system’s parame-
ters). At the top, the number of prediction-wise failures K is
given, next to the number of estimation failures Φ shown be-
tween round brackets, for each routine. The y-axis is linear
but zoomed in a range from 88.2% to 90.2%.

Fig. 5. Boxplots of ∆norm for 1st to 10th order SISO sys-
tems (algorithms on initialization by the true system’s pa-
rameters). At the top, the number of control-wise failures I
is given, next to the number of estimation failures Φ shown
between round brackets, for each routine. The y-axis is log-
arithmic.

For default initialization on both algorithms, the fit

statistics are shown in Figure 6. As can be noticed, the
medians of the fits continue to be located around 90%,
while estimation errors appear present for large order
systems for the SRIVC routine and some prediction-
wise failures for the TFEST routine for a system of
order 10. From a control-theoretic viewpoint, we can
see in Figure 7 that the reliability of the two algorithms
drops as the system complexity increases, but not con-
siderably for moderately-low system orders (below 5).
Nonetheless, for higher system orders, such as for sys-
tems of order 9 and 10, based on the medians of the
relative norm error defined in equation (11), it can be
seen that the generated models can often experience
uncertainty of size comparable to the true system’s size
(norm), indicating that the two methods are less reliable
in this sense.

Fig. 6. Boxplots of FIT for 1st to 10th order SISO systems
(algorithms on default initialization). At the top, the number
of prediction-wise failures K is given, next to the number
of estimation failures Φ shown between round brackets, for
each routine. The y-axis is linear but zoomed in a range from
45% to 90%.

Fig. 7. Boxplots of ∆norm for 1st to 10th order SISO systems
(algorithms on default initialization). At the top, the number
of control-wise failures I is given, next to the number of
estimation failures Φ shown between round brackets, for each
routine. The y-axis is logarithmic.

In a MISO setting, for initialization by the true system’s
parameters on both algorithms, the fit statistics are sim-
ilarly shown in Figure 8. With medians of the fits still
located around 90% for the lower order systems, it can
still be statistically noticed that the algorithms’ perfor-
mance slightly drops for larger order systems. Yet, no
prediction-wise failures or estimation failures have been
detected throughout the 100 Monte Carlo. Nonetheless,
with respect to the control-oriented assessment criterion,
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we can see that the generated models errors remain low
for low order systems and can significantly increase for
higher order ones, as shown in Figure 9; a similar con-
clusion can be drawn based on the numbers of control-
wise failures which tend to become large for high order
systems (9 or 10) for the models obtained via SRIVC.

Fig. 8. Boxplots of FIT for 1st to 10th order 2x1 MISO sys-
tems (algorithms on initialization by the true system’s pa-
rameters). At the top, the number of prediction-wise fail-
ures K is given, next to the number of estimation failures Φ
shown between round brackets, for each routine. The y-axis
is linear but zoomed in a range from 78% to 90%.

Fig. 9. Boxplots of ∆norm for 1st to 10th order 2x1 MISO
systems (algorithms on initialization by the true system’s
parameters). At the top, the number of control-wise failures
I is given, next to the number of estimation failures Φ shown
between round brackets, for each routine. The y-axis is log-
arithmic.

In a similar fashion to the SISO case, the MISO results
for default algorithm initialization confirm that the two
algorithms are still rather sensitive to the initialization
aspect, as confirmed in Figures 10 and 11. The obtained
statistics in this case, reported in Figure 10, show that
for large system orders the default initialization on the
two algorithms renders models of questionable quality,
with e.g. as many as 34 of the 100 obtained models be-
ing prediction-wise failures for the TFEST algorithm (in
the case of the 10th order 2x1 MISO system), while as
many as 13 of the 100 Monte Carlo runs having gener-
ated estimation failures on the SRIVC algorithm (on the
same system). From a control-theoretic viewpoint, the
statistics on the model errors from Figure 11 confirm the
limited algorithms’ reliability in providing appropriate
models with medians of the relative errors being gener-
ally above 90% and many reported control-wise failures
for both algorithms. We can hence conclude that even

though theoretical guarantees on the statistical proper-
ties of the parameter estimates could otherwise set the
standards for the expected potential of identification al-
gorithms [8], implementation plays as large a role on
the achieved performance as does a well-designed exper-
iment in practice, especially with respect to the robust-
ness of initialization [22] for multi-input identification.

Fig. 10. Boxplots of FIT for 1st to 10th order 2x1 MISO
systems (algorithms on default initialization). At the top,
the number of prediction-wise failures K is given, next to
the number of estimation failures Φ shown between round
brackets, for each routine. The y-axis is logarithmic.

Fig. 11. Boxplots of ∆norm for 1st to 10th order 2x1 MISO
systems (algorithms on default initialization). At the top, the
number of control-wise failures I is given, next to the number
of estimation failures Φ shown between round brackets, for
each routine. The y-axis is logarithmic.

5 Conclusions

In this paper, a study has been carried for numerically as-
sessing the performance of continuous-time model iden-
tification methods using an evaluation setup based on
computer simulations. The design of the benchmark has
been carried according to pragmatic criteria pertaining
to randomized system generation; it has been extensively
explained and motivated, going through generating ref-
erence systems, creating informative orthogonal multi-
sine inputs and choosing appropriate model quality as-
sessment criteria for both a system identification and an
automatic control perspective on the obtained results.
The main goal of the study has been to use the proposed
benchmark towards revealing the main aspects for fur-
ther consideration in continuous-time model identifica-
tion; as such, one topic for further research and develop-
ment has been recognized to be that of algorithm initial-
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ization robustness for multi-input linear model identifi-
cation. The conclusion, though known in theory, has yet
to be consistently verified in practice on a test bench.
Though the study has been limited in terms of the in-
vestigated methods only to the maximum likelihood and
the instrumental variable methods for transfer function
model identification, the benchmark can be used for sim-
ilar analyses of other methods. Furthermore, it is hoped
that the study itself serves as an encouragement for the
system identification community to further use bench-
mark tests in their investigations.
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