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Abstract

This paper is devoted to investigate the temporal and spatial accuracy in
transient conjugate heat transfer problems where the influence of unsteadi-
ness in the fluid is supposed to be negligible. The numerical method is based
on an iterative procedure with interpolated boundary conditions on the solid
side. Emphasis is put on these interpolation procedures. First it is shown that
a temporal interpolation is by no means the most appropriate way of estimat-
ing the flow boundary conditions prescribed on the coupled solid surfaces.
In contrast, when these conditions are based on the heat flux/temperature
linearity, significantly better results are obtained. Indeed, they compare
very well against a reference solution provided by a non-iterative and non-
interpolated coupled computation. Moreover, important improvements were
made by adequately defining the integral contribution of the boundary con-
dition using the Gauss points in the finite element solid code. Finally, it was
also revealed that a relevant approximation of the heat transfer requires a
sufficiently fine solid mesh at the interface.
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Nomenclature

Acronyms

BC Boundary Condition

CHT Conjugate Heat Transfer

FEM Finite Element Method

FVM Finite Volume Method

MTO Maximum take-off

NS Navier-Stokes

RANS Reynolds-Averaged Navier-Stokes

Physics Constants

α coupling coefficient W/(m2K)

Bi∆ mesh Biot number

∆t time step s

∆y first cell size m

F inviscid and viscous flux

D Fourier number

inter y (x) linear interpolation with respect to y of x

κ thermal conductivity W/ (mK)

K thermal conductivity matrix W/(mK)

Ω physical domain
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ρcp volumetric heat capacity J/(Km3)

ρ density kg/m3

Γ coupled interface

v inward-pointing unit normal

w conservative quantity vector

as thermal diffusivity m2/s

cp the specific heat capacity at constant pressure J/(kgK)

h heat transfer coefficient W/(m2K)

K thermal conductance W/(m2K)

L solid characteristic lenght m

Q generic quantity

q heat flux W/m2

T temperature K

t time s

Tref reference temperature (here it is the fluid inlet temperature) K

U fluid velocity m/s

y+ Dimensionless wall distance

Subscripts

∞ far from the interface (fluid inlet)

c coupled

f fluid

k solid subiterations between two coupling times

s solid
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Superscripts

̂ variable to compute

n coupling iteration (counting the number of steps in the iterative pro-
cess)

1. Introduction

Accurate prediction of aero-engine metal heat conduction is of paramount
importance in the engine process in general and in high pressure turbine
heat transfer designs in particular. Indeed, the temperature field throughout
the solid material is an essential factor exerting a great influence on the
induced thermal stress, material properties, and fatigue-creep (Sun et al.
(2012); Amirante et al. (2012); Rezazadeh Reyhani et al. (2013); Mukherji
et al. (2015)).

The transient component metal temperature is the result of inter-
nal/external convective heat transfer and the time-dependent conduction
through the solid itself. Therefore, an interaction model between the fluid
and the solid media is required. The term conjugate heat transfer (CHT) is
used when the two modes of heat transfer - convection and conduction - are
considered simultaneously, Perelman (1961). CHT procedures are now com-
monly found in many real-word environments in which accurate heat transfer
predictions are needed.

Only fully conjugate heat transfer computations allow correct analysis
of heat and mass transfer. However, a numerical treatment of a transient
process in both media would lead to accurate but excessively expensive sim-
ulations in terms of CPU time and would provide information far beyond
what is needed for engineering analysis and design.

The time-accurate prediction of CHT problems can be computationally
expensive, although significant progress has been achieved in this area. Its
application has been mainly limited to steady simulations for many years,
specifically when a two-way coupling method is required, i.e. whenever the
physical coupling between the fluid and solid models involves significant in-
teractions. It is the reason why its application remains limited to steady
or simple transient simulations and has not become a current design tool
in industry. Nevertheless increased attention is being devoted to transient
issues during specific periods of an engine cycle (start up, shutdown, cruise)
to obtain precise thermal behavior.
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In a transient aero-engine flight cycle, the solid computations in the fluid-
solid coupling must be unsteady in order to obtain a detailed local knowledge
of the slow response of metal heat conduction to changes in operating con-
ditions. On the other hand, the fluid flow time scales are much shorter, as
the ratio between the solid and the fluid time scales can be up to 104 for
gas turbine blades (He and Oldfield (2009)). As a result, one may reason-
ably assume that the influence of unsteadiness is negligible on the fluid side
(Sun et al. (2008); Ganine et al. (2012); Errera and Baqué (2013); Baque
et al. (2013); Gimenez et al. (2016)). Note that other interesting alternative
approaches can be designed (He and Fadl (2017)).

Two major challenges to the improvement of CHT predictions are stability
and accuracy.

Regarding the first issue, CHT studies have so far been very much ori-
ented to stability issues and to having the right conditions at the fluid-solid
interface in a partitioned approach. Indeed, partitioned approaches are very
popular and largely used in aeroelastic problems, but they suffer from sta-
bility limitations due to the fact that the fluid and solid interfaces are solved
separately (Felippa and Park (1980); Piperno et al. (1995)). Partitioned
methods are also largely employed in CHT (see for example Kuntz et al.
(2001); Liu et al. (2005)). It is the reason why, in recent years, the be-
havior (well-posedness, stability, convergence) of interface conditions in a
CHT partitioned procedure techniques has been addressed in different ways
such as a normal mode analysis (Roe et al. (2008); Henshaw and Chand
(2009); Kazemi-Kamyab et al. (2014); Joshi and Leyland (2014); Verstraete
and Scholl (2016)) or the energy method (Lindström and Nordström (2010)).
However, in most existing stability studies, the focus is primarily on steady
regimes.

A stability analysis for thermally coupled fluid-structure problems in a
quasi-dynamic regime was presented by Errera et al. (2017). This mathe-
matical investigation provided relevant interface conditions, obtained from
a simplified model problem and it has been shown that fast and accurate
prediction of solid temperature can be obtained in a wide range of fluid-solid
interaction regimes, i.e. from low to very large Biot numbers. For instance, it
is often noted in the literature that realistic CHT computations are prone to
oscillations that can ultimately lead to a divergent process. It is then essential
to note here that the interfacial schemes proposed by ONERA, namely the
so-called optimal coupling coefficients presented for the first time by Errera
and Chemin (2013) lead to fast converging solutions in any case, either in
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steady (Errera and Duchaine (2016); El Khoury et al. (2017); Moretti et al.
(2018)) or unsteady (Errera and Turpin (2013); Errera et al. (2017)) CHT.

Once the stability problems are dealt with efficiently and appropriately
strategy, accuracy issues can be considered. In a quasi-dynamic approach,
in order to bridge the disparity in time scales between convection and solid
conduction during a long-time period, a sequence of fluid steady states is con-
sidered. Two coupling times define a ramp and the whole cycle is composed
of 10-20 ramps at the most. In a given ramp, accurate solutions are obtained
from the thermal coupling at each ramp-defining point in time. Whereas at
each temporal solid step, in between the coupling times, boundary condi-
tions are estimated generally via a linear temporal interpolation. However,
linear time-dependent operating conditions may be considered a priori as
unfounded and thus may prove to be unreliable. This fundamental aspect
will be discussed hereafter.

This paper is devoted entirely to the investigation of the temporal and
spatial accuracy in quasi-dynamic CHT coupling processes, with emphasis
put on interpolation procedures. In order to evaluate precisely the perfor-
mances of these procedures, a full coupling process will be carried out. This
is a process where the thermal coupling is carried out systematically, at each
temporal solid state. It is well understood that full coupling process is partic-
ularly expensive and must be prohibited in realistic problems. On the other
hand, a full coupling process contains no interpolation. As a result, it can
be seen as a "reference solution", i.e. a comprehensive and efficient solution
to identify and measure the most accurate interpolation procedure. Other
"accuracy issues" are addressed in this paper, namely the fluid-solid inter-
face treatment. In this regard, some relevant papers are already available
to deal with the effect of non-matching meshes (Jaiman et al. (2006)) or to
get a conservative schemes (Jiao and Heath (2004); Jaiman et al. (2005)).
However, another aspect will be addressed here. Emphasis will be put on
the exchange of data between a finite-volume fluid solver and a finite-element
solid solver and a practical means to obtain an accurate fluid-solid solution,
independent of the interfacial treatment, will be provided.
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2. Numerical Methods

2.1. Finite volume fluid solver
The governing equations for compressible flow are the Navier-Stokes (NS)

equations that can be written in the form:

∂wf

∂t
+5 · [F (wf )] = 0 in Ωf (1)

where wf represents the vector of mass, momentum and energy density, F
represents the flux including inviscid and viscous terms. The Navier-Stokes
(NS) equations are discretized with the Finite Volume Method (FVM). The
inviscid terms are solved using a second-order upwind spatial discretization.
The viscous terms are discretized with a five-point central difference formu-
lation. The time integration is obtained by an implicit method.

2.2. Finite element solid solver
In the solid domain, Ωs, the temperature is solved using the heat equation.

The heat equation is a parabolic partial differential equation that describes
the distribution of heat (or variation in temperature) in a given region over
time. If there are no heat sources, the heat equation is:

ρcp
∂T

∂t
−∇ · (K · ∇T) = 0 in Ωs (2)

where T = T (x , y , z , t) is the unknown temperature field, K is the thermal
conductivity matrix, ρ is the density and cp is the specific heat capacity at
constant pressure. The product ρcp is the volumetric heat capacity.

2.3. Example of a transient cycle
The aim of this study is to improve the accuracy of a two-way coupling

procedure for practical CHT applications during a full transient flight cy-
cle. This cycle is above all characterized by a long period of time, that
is, the entire duration of a flight (i.e. several hours). This is needed since
high requirements about the life-span of the engine elements are required, in
particular heat load characteristics during all the stages of a flight. These
stages are expressed by ramps and these ramps are defined from ramp points,
namely specific instants representing changes in operating conditions.

Figure 1 gives an example of a transient cycle where a typical quantity
Q (engine speed, temperature, flow rate,. . . ) is plotted over time. One can
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Figure 1: Example of a transient cycle

see that this cycle covers a broad range of usual operating conditions from
stand-still, idle, engine acceleration to maximum take-off (MTO), and cruise
conditions. The time intervals, also simply called “ramps”, are pre-established
instants from the time position of ramp points where environment conditions
are available. In these ramps, linear distributions of the environment param-
eters are assumed. It is only at ramp points that a fluid-structure coupling
may take place without further hypothesis. These points can also be re-
garded as coupling times. Outside these specific and limited instants, flow
conditions are not known and must be interpolated. In contrast, there are
no restrictions on the number of solid time steps. In other words, each ramp
can be subdivided into as many temporal divisions as are required to analyze
the transient heat conduction in solid regions.

2.4. Time scale disparities
A transient coupling process is challenging due to the great time-scale

disparities of the physical model between the fluid and the solid. The fluid
flow requires usually a much smaller temporal resolution than the structure.
Accordingly, a description of transients in the fluid would be almost imprac-
tical over a period comparable to the thermal response time of the solid. It
is then necessary to develop simplified coupling strategies to minimize the
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number of CFD runs.

2.5. A quasi-dynamic strong approach
An interesting coupling procedure is used to limit the computational cost

due to the CFD. Because the resolution of the fluid transient is not sought,
this procedure considers the flow solution as a sequence of steady states. In
most cases, this assumption is valid since the solid and the fluid operate on
different time constants, and consequently, the influence of the unsteadiness
of the fluid is negligible. In summary, this procedure couples the solid res-
olution in time with a sequence of fluid steady states. This approach has
been called "quasi-dynamic" or "quasi-steady assumption" to highlight the
partial resolution of the system transient.

In general, in steady CHT problems the equilibrium of the fluid-solid
interface is not enforced during the computation, but only when convergence
has been reached (weak coupling). However Koren et al. (2017) showed
that using un hybrid Dirichlet-Dirichlet method and solving each domain
with a conservative numerical scheme, the energy conservation through the
medium interface is ensured. In the case of transient CHT problems, the
solution evolves over time, i.e. it depends on the solution at the previous
physical time step. Thus, the interface equilibrium has to be enforced at
every physical time step which corresponds to a strong coupling approach.
Strong coupling can be achieved with monolithic procedures where fluid and
solid domains are solved simultaneously ensuring the conservativity at the
interface. This can be very time consuming when the physical time period
to compute is large. Furthermore, it often leads to ill-conditioned systems as
Farhat and Lesoinne (2000) explain. The second family of coupling methods
are the partitioned procedures. They were developed in order to speed up the
coupling computations using different time steps for each physical problem.
Unfortunately, these methods are weak coupling approaches by definition. As
a result, appropriate adjustments are required to convert them into strong
coupling approaches in order to carry out transient coupling computation.
A sub-iteration process is set up at every coupling time to reach a converged
solution verifying the equilibrium of the fluid-structure interface.

Figure 2 shows the "quasi-dynamic strong algorithm" used in the present
paper:

1 Transient calculation in the solid from tc to tc + ∆tc

2 Exchange from the solid to the fluid
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Figure 2: The "quasi-dynamic" strong algorithm

3 Steady fluid computation at time tc + ∆tc

4 Exchange from the fluid to the solid

Convergence Test : Comparison between solid and fluid at the interface at
time tc + ∆tc. Converged?

5 No: Go back to time tc and remake steps 1-4 until convergence.

5’ Yes: transient computation until time tc + ∆tc is achieved. Advance
over time to the next coupling time.

Fluid states are known only at a few physical times, therefore interpolated
fluid states have to be used as boundary conditions at every temporal solid
increment to advance the solid resolution in time (step 1 in Fig. 2). The
present paper focuses on this aspect.

Hereinafter, the set of steps 1-4, as well as the convergence test, will be
called coupling iteration.
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2.6. Fluid solid interface condition
This paper will not focus on the stability of the coupling method; only

the common Dirichlet-Robin interface condition will be used. This condi-
tion, widely used in the literature, consists of imposing a temperature profile
(Dirichlet condition) on the fluid solver and the Robin condition on the solid
one.

The Robin condition is a linear relationship between the temperature and
the heat flux. At the fluid-solid interface, a general Robin condition on the
solid side during the coupled resolution leads to the equation:

q̂s + αf T̂s = −qf + αfTf (3)

where q is the normal heat flux, T is the temperature and α is a coupling
coefficient, the super-imposed hat symbol ( ̂ ) denotes the sought values.
Note that qs = −Ks

∂Ts/∂vs and qf = −Kf
∂Tf/∂vf are the normal solid and

fluid heat flux respectively (v is inward-pointing unit normal) where K is
the thermal conductance. The definition of the thermal conductances are
Kf = κf/ (ν∆yf ) (ν = 1/2 if FVM or ν = 1 if FEM) and Ks = κs/∆ys
where ∆yf and ∆ys are respectively the size of fluid and solid cell adjacent
to the coupled interface.

It is an interesting boundary condition meant to stabilize and accelerate
the convergence of fluid-structure coupling problems. As Errera et al. (2017)
have shown, it is possible to stabilize and obtain the best convergence speed
using appropriate coupling coefficients αf .

At convergence, the Robin condition ensures the continuity of tempera-
ture and heat flux at the interface, i.e. the solution should be independent
of the coupling coefficient. This is one of the criteria a correct coupling al-
gorithm must satisfy. Often it is not the case, as the test case in Section 3
will illustrate.

2.7. Reminder on the interfacial fluid-solid schemes
This paper is not devoted to implement stable conditions at the fluid-

solid interface. These conditions have been already described precisely else-
where. Moreover, in order to highlight the loss of precision and the coupling
coefficient-dependency, extreme conditions will be implemented (very high
values of the coupling coefficients - far from optimal!). However, in this pa-
per, when an efficient solution is sought, optimal coefficients (in terms of
convergence and CPU time) will be used.
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For the sake of clarity and coherence, this section briefly summarizes the
main results of the stability analysis and provides the mathematical expres-
sion of the main relevant adaptive coefficients in a quasi-dynamic approach.
The reader is referred to Errera et al. (2017) for a more complete presenta-
tion.

In CHT analysis, adaptive coefficients have been expressed for the first
time in Errera and Chemin (2013). They are derived from a normal mode
stability analysis based on the theory of Godunov-Ryabenkii. However, this
study was initially devoted to steady CHT solutions only, whereas steady
and unsteady CHT have very little in common, Errera and Turpin (2013).
Thus, a new stability analysis, specifically dedicated to transient CHT, was
carried out.

The main characteristics of the Dirichlet-Robin interface conditions are
summarized in Table 1 where the domain and range of |g| (temporal amplifi-
cation factor of the transient coupled problem) are provided. The conditions
both depend upon the mesh Biot number and the mesh Fourier number.

αf 0 αminf α
(opt)
f

∞ Condition

|g| UNSTABLE 1 gopt 1 Bi∆ ≥
(
1 + Ds

)
|g| g01 gopt 1

(
1 + Ds

)
/2 ≤ Bi

∆ ≤
(
1 + Ds

)
|g| g02 1 Bi∆ ≤

(
1 + Ds

)
/2

αminf = h
2
− Ks

2

(
1 + Ds

)
α
(opt)
f

= h−Ks

(
1+Ds

)
2

g01 = Bi∆ − Ds g02 = 1− Bi∆ gopt =

(
1−Ds

)
(
1−Ds

)
+2Bi∆

Table 1: Dirichlet-Robin procedure for transient analysis.
Stability conditions in terms of αf

The Fourier number is the ratio of diffusive transport rate to the heat
storage rate:

Ds =
as∆ts
∆y2

s

(4)

where as is the thermal diffusivity, ∆ts is the solid time step and ∆ys is the
solid first cell size in the direction of the surface normal. Ds is a normalized
Fourier number which varies in the range [0, 1[.

The "mesh Biot number" defined by:

Bi∆ =
h

Ks

(5)
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The dimensionless number is used here to characterize the heat trans-
ferred from the first solid grid cell to the surrounding fluid.

Table 1 shows the existence of three distinct zones in the numerical be-
havior of D-R transmission procedure in transient CHT :

1. The first region
[
Bi∆ > 1 + Ds

]
(large mesh Biot number) is charac-

terized by a lower stability limit. In this region, when αf > αminf , |g|
first decreases from 1 to the optimal amplification factor.

2. The second region
[(

1 + Ds

)
/2 < Bi∆ < 1 + Ds

]
does not exhibit any

stability restriction. It is a narrow region where as previously, |g| has an
absolute minimum, namely when αf is equal to the optimal coefficient.

3. The third region
[
Bi∆ <

(
1 + Ds

)
/2
]
(low Biot number) is character-

ized by a continually increasing function in the domain αf ≥ 0. There
is no stability restriction. The minimum of the amplification factor is
obtained for αf = 0.

At that point, two essential remarks must be made :

• At large Biot numbers, difficult problems, due to non-uniformity of
temperature fields within the solid, can arise. This is reflected mathe-
matically by precisely defined stability limits in the case where a tem-
perature is sent to the fluid side (1st row of Table 1). In practice, even
if the optimal coefficient is very close to the heat transfer coefficient
αf ≈ h (h is the heat transfer coefficient), this choice must be avoided
in general. Indeed, Table 1 shows that the stability limit is very close
αminf ≈ h/2, and this is especially true as the Biot number grows.

• At low Biot numbers, on the contrary, there is no stability limit (2nd
and 3rd row of Table 1). This numerical property will enable us in the
current paper to study the influence of the coupling coefficient on the
accuracy in extreme conditions (very large coefficients), without any
stability issues. This is precisely why these regimes will be adopted in
this paper.

2.8. Length scale and stability
We are interested in the transient solution in the solid domain and thus

in the definition of the conductance, the length of the solid mesh is a natural
candidate. However, this choice has adverse effects on stability.
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Indeed, it has been shown (Errera et al. (2017)) that for the Dirichlet-
Robin condition, the stability bound, at large Biot numbers, is an increasing
function of the thermal penetration depth. This is also confirmed by the
values given by Table 1. As we can see, the lower stability bound is given by:

αminf =
h

2
− Ks

2

(
1 + Ds

)
(6)

This means that the CHT computations are theoretically unstable for
any coupling coefficient αf < αminf . In the expression of αminf , the thermal
conductance and the Fourier number are estimated with the solid cell size.
Thus, the greater the penetration depth, the greater the value of the stability
bound :

αminf (∆yf ) < αminf (2∆yf ) < . . . < αminf (L) (7)

where L is a characteristic thickness of the solid domain.
Consequently, the stability limit provided by a given penetration depth

can only stabilize phenomena with shorter penetrations but is unstable for
higher penetrations. This is a major result obtained by the stability analysis.
As a result, the solid thickness must be adopted in the definition of the solid
conductance and thus, the numerical Biot number naturally becomes the
“traditional” Biot number found in the literature.

At this point, we can adopt the values obtained at steady state, i.e. Ds =
0 and KL

s = κs/L. This leads to

αminf =
h

2
− KL

s

2
(8)

that can stabilize the largest penetration depths and has a very little negative
impact on the convergence speed. This coefficient provides a highly secure
value for the stability bound. This coefficient can also be increased if we
adopt αminf = h

2
since it is not easy to define a solid thickness in complex

geometries. It is valid at large Biot numbers (h� KL
s ). At low Biot numbers

there is no stability issue, there are no bounds as shown in the 2nd and 3rd
row of Table 1.

2.9. Solid interfacial boundary conditions at "non-coupling" instants
As already mentioned, in the "quasi-dynamic" algorithm the transient

solid computation is coupled with the steady fluid solution at a few physical
times. Between two coupling steps, there is no facing fluid state for every
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solid iteration, so these fluid states (blue empty circle in Fig 3) have to be
predicted and sent to the solid solver through a "one way coupling". The
boundary conditions on the solid are then interpolated between the two fluid
states corresponding to the coupling points (blue filled circle in Fig 3).

1-way
coupling

interpolated
state

1-way
coupling

interpolated
state

1-way
coupling

interpolated
state

1-way
coupling

interpolated
state

stabilized
state

stabilized
state

Figure 3: Predicting fluid states for each solid iteration

2.9.1. Linear interpolation in time of both fluid temperature and heat flux
(DR1)

Since only two fluid states are available, a linear interpolation in time is
the simplest method to use. In the literature, both fluid temperature and
heat flux are linearly interpolated in time. In this paper, this method is
called DR1 ("DR" stands for Dirichlet-Robin interface condition and "1"
for method number 1) and it is defined as follows:
{
q̂ns + αn−1

f T̂ ns = −inter t
(
qn−1
f

)
+ αn−1

f inter t
(
T n−1
f

)
on Γs at tk

T̂ nf = T ns on Γf at tc
(9)

where Γ defines the coupled interface and inter t (x) is the linear interpolation
in time of the x quantity such as:

x− x0 = a(t− t0) with x0 = x(t0), a = const (10)
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Equation 9 is applied in the fluid only at coupling times because the fluid
solution is not considered between two coupling times. Whereas in the solid,
Eq. 9 is applied at every solid iteration, including the solid iterations be-
tween two coupling times. Practically, the temperature and the heat flux
are interpolated at each solid iteration tk using the extreme values (at tc and
tc+∆tc) computed during the previous coupling iteration n−1. When n = 1,
a constant prediction is applied.

We want to underline that a linear interpolation is carried out between
the initial and the final fluid step at the previous coupling iteration n − 1.
The initial fluid state does not change within the iterative method because it
is already a converged state where the fluid and the solid are in equilibrium.
Whereas the final step is updated during every coupling iteration until the
fluid-solid equilibrium is reached.

The DR1 method applies the linear interpolation of the two thermal
quantities coming from the fluid, but for specific cases, like a Dirichlet con-
dition on the fluid side, the interpolation of the fluid temperature can be
avoided. Indeed, when a Dirichlet condition is used in the fluid solver, this
latter receives the solid temperature which is imposed as boundary condition
without any transformation. Theoretically, the temperature sent by the solid
solver and the temperature it receives after the CFD computation should be
the same. Practically, it never happens. The fluid and solid meshes at the
interface are usually very different, and the exchanged quantities should be
spatially interpolated between the two meshes. In most cases, the spatial
interpolation of the Robin condition quantities (combination of heat flux,
temperature and the coupling coefficient) is not conservative. Even when
matched meshes are used, the error is not nil. Indeed, the fluid domain
is usually solved with a Finite Volume Method (FVM), i.e. quantities are
computed at the cell center, whereas the Finite Element Method (FEM) is
traditionally used in the solid domain, i.e. the system resolution takes place
at the cell vertex. The fluid and solid temperatures thus cannot be exactly
the same at convergence of the entire coupling problem. Thus, the relaxation
term in the Robin equation:

q̂ns = −inter t
(
qn−1
f

)
+ αn−1

f

(
inter t

(
T n−1
f

)
− T̂ ns

)
on Γs at tk (11)

does not cancel at convergence. Moreover, if the coupling coefficient αn−1
f is

large, the relaxation term could significantly exceed the inter t
(
qn−1
f

)
term,

resulting in a large dependence of the transient solid problem on the re-
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laxation term value. This will be illustrated in section 3 where a strong
dependence on the coupling coefficient will be observed.

2.9.2. Linear interpolation in time of just fluid heat flux (DR2)
In the Dirichlet-Robin procedure, the temperature is already available on

the solid side and thus can be used directly with no interpolation errors. This
modified Dirichlet-Robin interface condition (named DR2 ) can be expressed
as: {

q̂ns + αn−1
f T̂ ns = −inter t

(
qn−1
f

)
+ αn−1

f T n−1
s on Γs at tk

T̂ nf = T ns on Γf at tc
(12)

Consequently, the Robin condition applied to the solid solver becomes:

q̂ns = −inter t
(
qn−1
f

)
+ αn−1

f

(
T n−1
s − T̂ ns

)
on Γs at tk (13)

where the new relaxation term will cancel or become negligible at conver-
gence. Indeed, the difference

(
T n−1
s − T̂ ns

)
is very small at convergence

making the relaxation term negligible. Using this method, the solution of
the coupled problem does not depend on the coupling coefficient.

2.9.3. Linear relationship between heat flux and temperature (DR3)
A linear temporal interpolation is a priori unfounded. It has been used

because it is a direct and practical means to obtain solid BC when no fluid
states are available. Assuming a linear variation in time of the heat flux
could be a good approximation in the case of small periods of time, but in
specific scenarios, such as the cruise phase in an aircraft flight, this may not
be valid.

In contrast, Newton’s law of cooling states that the heat flux is directly
proportional to the difference in the temperatures between the body and its
surroundings:

q = h (T − Tref ) (14)
where T is the surface temperature of the body and Tref is a reference temper-
ature, usually the temperature of the surrounding fluid far from the surface.

Therefore, an other option may be to linearly interpolate the heat flux as
a function of the temperature:

q (T (t)) = q (T (t1)) +
q (T (t2))− q (T (t1))

T (t2)− T (t1)
(T (t)− T (t1)) t1 ≤ t ≤ t2

(15)
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The equations characterizing this methods are:
{
q̂ns + αn−1

f T̂ ns = −interT
(
qn−1
f

)
+ αn−1

f T n−1
s on Γs at tk

T̂ nf = T ns on Γf at tc
(16)

where interT
(
qn−1
f

)
indicates the linear interpolation with respect of the

temperature of the heat flux.
As will be shown, this relationship is more accurate than the DR2 method

but it is less robust. Indeed, the denominator in Eq. 15 (T (t2)−T (t1)) may
cancel, unlike the time interpolation of the DR2 method where the time is a
growing function (i.e. t2 > t1). It is important to emphasize that Newton’s
law (Eq. 14) is valid with small temperature differences (Tw − Tref ) and for
a constant reference temperature Tref , as Davidzon (2012) has shown. If
the reference temperature varies in time, it is necessary to take into account
also this variation. In this case, the heat flux is linearly dependent on the
difference (T (t)− Tref (t)). For simplicity sake, T (tx) will be typed as Tx,
as well as q (T (tx)) ⇒ qx and Tref (x) ⇒ Trefx , where x = 1, 2. The linear
relationship becomes:

q (t) = f (Tw (t)− Tref (t)) (17)

q (t) =
(q2 − q1) [T (t)− Tref (t)] + (T2 − Tref2) q1 − (T1 − Tref1) q2

T2 − Tref2 + Tref1 − T1

(18)

Note that for a constant reference temperature Eq. 18 becomes Eq. 15.

2.9.4. Reference solution (DR0)
The previous methods have been compared to a reference solution, named

DR0. This solution has been obtained by coupling the fluid and solid prob-
lem systematically at very solid physical time step. This means that no
interpolation of the fluid states is needed, i.e. a steady CFD calculation is
carried out at every solid increment in time. The solid time step has been
chosen in such a way to have the mesh Fourier number Ds ≈ 0.5 correspond
to the stability criterion for explicit timestepping in one dimension. Using
this value the thermal transfer is stable and a high-resolution of the transient
heat conduction in the solid is obtained.

2.9.5. Summary of the methods
Table 2 summarizes the main features of the methods just described.

Information is included to highlight the difference between the methods re-
quiring the interpolation of the available fluid states (DR1, DR2, DR3). The
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reference solution (DR0) needs no interpolation, and therefore no relaxation
(Neumann condition) should be used to ensure the conservativity on the
fluid-solid interface.

Method ∆tc
Sub-

iterations qn−1
f

αn−1
f

Tn−1
f

DR0 ∆ts No qn−1
f

0. -

DR1 ∆tc Yes intert

(
qn−1
f

)
∀αn−1
f

∈ R+ intert

(
Tn−1
f

)
DR2 ∆tc Yes intert

(
qn−1
f

)
∀αn−1
f

∈ R+ Tn−1
s

DR3 ∆tc Yes interT

(
qn−1
f

)
∀αn−1
f

∈ R+ Tn−1
s

Table 2: Summary of the characteristics of the methods

In the case of the other methods it is necessary to use an iterative method;
the coupling problem should then theoretically converge to the same solution
for all values of the coupling coefficient.

2.10. Improving the accuracy of the Dirichlet-Robin interface treatment
In practical applications, coupling problems are usually solved by trans-

ferring quantities at the cell center of both fluid and solid faces. For the fluid
domain, usually solved with the FVM, the cell center is the best location to
send and receive information. However, for the solid domain, where the FEM
is used, the cell center is not a good choice because neither the temperature
nor the heat flux are evaluated there. Indeed, in the FEM, since the Robin
condition combines temperature (Dirichlet condition) and heat flux (Neu-
mann condition), it is necessary to evaluate the integral on the boundary
where it is applied. This integral is computed using a quadrature method
that approximates the definite integral of the function, usually stated as a
weighted sum of function values at specified points within the domain of in-
tegration. In FEM, they are usually the Gauss points, and, only using these
n points, the quadrature can provide the exact result for polynomials of de-
gree 2n− 1 or less (Ern and Guermond (2004)). To increase the precision of
the coupling process, it is then essential to have the values of the quantities
at the integration points. In a few words, all quantities used in Section 2.9
should be evaluated at the Gauss points. This is valid for any quadrature
method using its own integration points.
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2.11. Importance of the high solid mesh resolution
In a coupling system, the precision and the stability of the computation

depend on the level of accuracy in each code. While refining the fluid mesh
at the wall for a good boundary layer resolution is a common practice, this
is far from being the case in the solid domain. It is generally agreed that, as
thermal conduction is linear, a first order coarse mesh can provide a mean-
ingful estimation of the temperature field. However, in transient thermal
analysis, where it is possible to encounter locally large thermal gradients,
this estimation may not be sufficiently accurate. This inaccuracy may affect
the precision of the coupled problem solution. The coupled problem is solved
through an iterative process in which the solution error may grow over time,
i.e. a part of the information is lost at each transfer. It is essential to bear
in mind that the heat flux is a quantity derived from the temperature field,
resulting in an order of resolution lower than the temperature. In thermal
analysis, a first-order mesh is generally used in the solid domain, so the heat
flux in each direction is constant in the cell. This is not adequate for large
temperature gradients. This can be particularly devastating if a solid heat
flux (Robin condition) is applied on the fluid side. Indeed, the fluid problem
will converge to another solution computed with the averaged heat flux sent
by the solid solver. Therefore, the coupled problem will converge to a solution
different from the real solution, without any suspicion from the user. In test
case section, a clear example will be shown. To remedy this situation it is
necessary to refine the solid mesh near the interface and/or use a high-order
resolution of the solid problem.

3. Test case

In this section a comparison between the DR1, DR2, DR3 numerical schemes
is provided through a simple test case with strong aerothermal coupling,
employing DR0 as a reference computation solution.

3.1. Test case description
The test configuration is a 2D flat plate with dimensions of 350mm

(length) × 3mm (thickness). The plate is preceded by a 150mm long "buffer
zone" with an adiabatic wall condition (see Figure 4), which provides coher-
ent conditions at the leading edge of the plate (at x = 0), computed from
the inlet flow (at x = −150mm).
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x

y

Test case 1: T = f(t)
Test case 2: T = 1000 K

Coupled interface
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T∞ = 1200 K



 Test case 1

U∞ = f(t)

T∞ = f(t)





Test case 2

Adiabatic Wall

150 mm

Figure 4: Flat plate with upstream buffer zone. Operating conditions for the two test
cases. The green circle highlights the leading edge of the flat plate.
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(b) Fluid inlet operating conditions

Figure 5: Unsteady conditions for the two configurations
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This physical test configuration will be used for two sets of comparisons
on the various numerical schemes defined above. Unsteadiness can come from
either:

1. a temperature ramp on the underside of the solid plate (see Fig. 5a);

or

2. temperature and velocity ramps on the inlet flow (see Fig. 5b).

In Figure 4, the boundary conditions for the two set of comparisons are
illustrated.

The aim of this study is not to provide optimal coefficients at the fluid-
solid interface (see Errera et al. (2017) and the summary in Section 2.7) but
to show how the traditional schemes, based on various αf , can lead to large
discrepancies.

At this point, two topics are now emphasized:

• solution-independency with respect to the coupling coefficient.

• space location of the interfacial quantities on the solid domain.

The precision metric will be based on the computed time-wise profiles of
temperature and heat flux, comparing first between α = 0. and α = 1.e5,
and second with the reference solution provided by the (costly) DR0 scheme,
which does not use time interpolation since each computed point is a coupling
point. Comparisons will be made here on the upper surface of the plate, at
its leading edge (green circle in Fig. 4), using the Dirichlet-Robin boundary
condition.

Notice that the leading edge of the plate, at the limit between the adi-
abatic wall and the coupling interface, is a singular point for the thermal
problem; in its neighborhood the heat flux reaches the highest values of this
test case, with a very steep gradient, see Fig. 6. Consequently, this region is
critical (stiff initialization of parabolic problem) for aerothermal coupling.

3.2. Numerical tools
Three numerical tools are used for the numerical solution of the coupled

aerothermal problem:

• elsA (ONERA-Airbus-Safran property), a FVM solver, for the CFD
problem (Cambier and Gazaix (2002); Cambier et al. (2013));
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Figure 6: Heat transfer profile h along the coupled interface

• Z-set/Zébulon, a FEM solver, for the thermal problem in the solid plate
(Zset-software (2018));

• CWIPI, a coupling library, for the space-interpolation between the solid
and fluid meshes (CWIPI (2018)).

3.3. Numerical parameters
The mesh on both the solid and the fluid sides must be considerably

refined in the x (stream flow) direction at the leading edge of the plate, to
ensure a good representation of the high values of the h transfer coefficient in
this region, as illustrated in Fig. 6. The first mesh cell size in the x-direction
has thus been set at 0.33 mm. The solid mesh in the y direction (normal to
the plate) is generated using 10 points, for a minimal mesh size of 0.33 mm.
In this study, the turbulence is modeled with the Reynolds-Averaged Navier-
Stokes (RANS) approach with the Spalart-Allmaras model. The fluid mesh
near the wall has been refined enough to have the dimensionless wall distance
near the unit (y+ ≈ 1). This feature allows to solve accurately the boundary
layer without needing a wall law. Figure 7 shows the mesh refinement near
the leading edge. Matching meshes at the coupled interface are used.
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Figure 7: Solid (blue area) and fluid meshes (the buffer zone is green and the fluid
coupled domain is in red) near the leading edge (the unit of length is the meter, with

different scales for the x and y axes).

The coupling instants (except for the DR0 scheme) are chosen as the defin-
ing points of the temperature ramp. Convergence of the coupling is defined as
∆T ≤ 10−3, where ∆T = ‖T ns − T n−1

s ‖, computed on the coupled interface.

3.4. Test case 1: unsteadiness from a temperature ramp in the solid domain
A steady fluid flow (U∞ = 83 m/s, T∞ = 1200K) is imposed on the

upper side, and a transient temperature ramp T (t) is imposed uniformly on
the lower side (see Fig. 4). The imposed temperature starts a 1000K at
t = 0s, raises to 1120K at t = 0.5s, and returns to 1000K at t = 1s (see
Fig. 5a). The Reynolds number Re is 2.9 · 10−5 and the dimensionless wall
distance y+ ≈ 0.9.

We will illustrate here the differences, in terms of precision, obtained with
the DR1, DR2, DR3 numerical schemes, and DR0.

We will focus our attention to the leading edge of the plate (the start of
the coupled interface), which is – theoretically and practically – the region
where most difficulties are experienced.

3.4.1. Parameters
Table 3 summarizes the most important parameters characterizing the

thermal problem.
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k ρCp ∆ys ∆ts Ds Bi

13.6 1.36 ·106 3.3 · 10−4 1.67 · 10−2 1.53 0.1

Table 3: Summary of the numerical & physical parameters for test case 1

The Biot number Bi has been chosen to be very small in order to have
stable computations, even with no relaxation. Indeed, as Errera et al. (2017)
show in their paper, in the case of low Biot number a computation using the
Dirichlet-Robin interface condition is unconditionally stable for every value
of the coupling coefficient.

3.4.2. Temperature ramp definition
The temperature distribution is a simple ramp T (t) made up of linear

sections, see Figure 5a, uniformly imposed to the underside of the plate (Fig.
4).

3.4.3. DR1 scheme
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Figure 8: DR1 scheme

Figure 8 depicts a comparison of the solutions at αf = 0. and αf = 1.e5
for the temperature and heat flux profiles at the leading edge, using the
DR1 scheme based on the linear interpolation with respect to time of the
temperature as in Eq. 10 (same as for the flux) defined in 2.9.1.

These Figures show that the thermal evolution in the solid domain
strongly depends on the value of the coupling coefficient. This confirms the
discussion of Section 2.9.1. Herein the large coupling coefficient amplifies the
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relaxation term in Eq. 11, causing the linear behavior of the temperature pro-
file. As mentioned before, the coupling coefficient should by no means affect
the solution at convergence, therefore from now on this method is excluded
from the final comparison with the reference solution.

Note that large values of the coupling coefficient necessarily mean large
Biot numbers, i.e. a strong fluid-solid thermal interaction. In these cases a
Neumann condition imposed on the fluid side should be more appropriate.

3.4.4. DR2 scheme
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Figure 9: DR2 scheme

DR2 scheme using the element centers. Figure 9 shows that the solutions
for α = 0. and α = 1.e5 for the temperature and heat flux profiles at the
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leading edge using the DR2 scheme. It is based on the linear interpolation with
respect to time of the fluid heat flux and on the reuse of the solid temperature
computed in the previous coupling iteration, as already explained in 2.9.2.

Figure 9a shows that these solutions seem very close. However, a small
influence of the coupling coefficient can be noticed when examining a zoomed
view of the temperature profile or the heat flux profile (see Figures 9c and
9b). The DR2 method considerably reduces the solution dependency on the
coupling coefficient. The remaining difference is due to the application of the
coupled quantities at the element center, which is not the most appropriate
location for the Gaussian quadrature method.

DR2 scheme using the Gauss points. This section illustrates the additional
precision gained applying the Robin condition quantities at the Gauss Points,
i.e. the most appropriate location for the Gaussian quadrature as discussed
in Section 2.10.

Figure 10 shows the solutions at α = 0. and α = 1.e5 for the tempera-
ture and heat flux profiles at the leading edge, using the DR2 scheme with
Gauss points, compared to the standard scheme using the element centers,
as described in the previous paragraph.

The temperature profile in Figure 10a seems mostly unaffected by the
various choices. The heat flux profile, on the other hand, is noticeably (about
6%) different when using Gauss points or elements, see Figures 10b, 10c. Note
the minuscule difference on the heat flux, about 100 W/m2 (undetectable on
the Figure), between the calculation using α = 0. (red line) and the one
using both α = 105 and the application at the Gauss points (green line).
This is the result of the product of the coupling coefficient (α = 105) and
the convergence criterion on the temperature (∆T ≤ 10−3 K). This product
corresponds to the relaxation term of the Robin condition (Eq. 13), i.e. the
expected error in accordance with the chosen convergence level.

DR2 scheme: influence of the y-mesh refinement. Figure 11 illustrates the
influence of the y-mesh refinement on the heat flux time-wise profile in a
thermal coupled problem. In this example a zero coupling coefficient is used
to impose only the heat flux on the solid solver (Neumann condition). In
each Figure we have plotted (1) the fluid heat flux received at the Gauss
points in the solid interface before the solid computation, (2)the heat flux
sent by the solid element center to the fluid after the computation, and (3)the
solid heat flux computed by the solid solver at the cell center. Theoretically,
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Figure 10: DR2 scheme, Gauss points vs. elements

when a Neumann condition is applied on the solid side, all these quantities
are expected to be equal. Figure 11a shows that the heat flux computed by
the solid solver and the one sent to the fluid are the same, i.e. the solid
solver correctly sends the computed value. But there is a large difference
between the heat flux received before the computation and the one sent
after the computation. This discrepancy means that the solid mesh near
the coupled interface is not appropriate for the level of amplitude of the
thermal gradient. As explained in Section 2.11, in a FEM linear mesh cell
the heat flux is constant along one direction. Indeed, the computed value
of the normal heat flux (23134.8 W/m2 in the leading edge at t = 0.5 s for
example) in the first solid cell is the average of the imposed heat flux and
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Figure 11: DR2 scheme, influence of y-mesh refinement

the one computed in the second cell (see Fig. 12). The legend of the same
figure stresses the discrepancy in the heat flux for this test case: a variation
of 6.745e + 05 W/m2 is observed along the thickness (2.313e + 04 W/m2 at
the leading edge and −6.514e + 05 W/m2 at the bottom surface of the flat
plate). Obviously this large gradient in temperature cannot be well captured
using only 9 cells. By refining the mesh, the resolution of the heat flux can be
improved, as Figure 11b illustrates. Theoretically, it is possible to have the
exact solution by making the first solid cell infinitely small. In practice, this
is impossible. In addition to the mesh refinement, it may be appropriate to
implement a high-order resolution of the solid problem. The use of a coarse
mesh in the previous studies does not put into question the results of the
coupled problem because the Dirichlet condition is used on the fluid side.
The solid heat flux is not transferred in the coupling process. However, a
good resolution of the heat flux would have been essential if a Neumann or
Robin condition were used.

From now on, the refined mesh will be used.

3.4.5. Reference computation DR0
The DR0 reference "scheme" completely avoids the interpolation issues

– for which the DR1, DR2 and DR3 schemes will be analyzed – by enforcing
coupling at every time station. Moreover, a low Fourier number (Ds = 0.5)
is used to ensure adequate precision.

29



70798.09885

Figure 12: Heat flux field in the solid leading edge cell at t = 0.5 s
(base y-mesh (∆y = 3.3 · 10−4 mm))

Figure 13 depicts the temperature and heat flux time-wise profiles for this
reference solution on the current test case. This will be the comparison basis
for the DR1, DR2 and DR3 schemes. We have changed the initialization of the
computation to facilitate the execution of the costly DR0 computation. This
explains the different form of heat flux computed during this last computation
compared to the previous simulations.

3.4.6. DR3 scheme, comparison with DR0 and DR2
Figure 14 shows the solutions for the temperature and heat flux profiles

at the leading edge, using the DR3 “precise” scheme, compared to the DR2 and
DR0 schemes. Note that all the corrections seen before (the solid boundary
condition using Gauss points values and the refined mesh) are applied in
these last computations.

The temperature and heat flux profiles for the DR3 and DR0 schemes are
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Figure 13: DR0 reference scheme

visually superimposed, see Figures 14a and 14b, whereas the DR2 scheme
leads to noticeably different results, particularly in the second part of the
computation. Here the temperature profile computed with the DR2 method
exhibits a small difference compared with the reference and the DR3 results
(see Figure 14c). The DR2 scheme imposes a time-wise linear heat flux that
apparently is not appropriate. Moreover, the linear interpolation of the flux
on the solid temperature (DR3 method) gives a good thermal behavior of the
coupled system.

Temperature Heat Flux
DR2 0.062% 16.06%
DR3 0.0008% 0.13%

Table 4: Accuracy error for test case 1

Table 4 provides the percent error of the DR2 and DR3 methods compared
to the reference solution DR0. The DR3 results are two orders of amplitude
more accurate than the DR2 method on both temperature and heat flux fields.

3.5. Test case 2: unsteadiness from temperature and velocity ramps on the
inlet flow

This section illustrates the comparison of the different methods on the
same flat plate meshes shown in the previous test case section, this time using
a time variation of the fluid inlet conditions and a constant temperature on
the bottom surface of the solid, as shown in Fig. 4.
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Figure 14: DR3 scheme, comparison with DR2 and DR0

3.5.1. Inlet conditions
Since only steady CFD computations are carried out, the inlet conditions

will be different between coupling times. These are indicated by the markers
in Fig. 5b. A time variation of both temperature and velocity at the fluid
inlet is imposed.

For the reference computation (DR0 ) it is necessary to change the fluid
conditions at every solid time step, so a linear interpolation of the operating
conditions, used for the other methods, is applied (solid lines in Figure 5b).
The Reynolds number value Re ranges between 3.6 · 10−5 and 4.3 · 10−5

according to the fluid inlet conditions. The dimensionless wall distance is
y+ ≈ 0.9.
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3.5.2. Parameters
The main parameters used for this case test are summarized in Table 5.

They have been chosen to obtain a Fourier number close to 0.5 and a Biot
number large enough to show that the proposed methods are effective even
when the fluid-solid thermal interaction is strong.

k ρCp ∆ys ∆ts Ds Bi

0.1 1.7 · 106 2.7 · 10−5 0.006 0.48 17.1

Table 5: Summary table of the important parameters for test case 2

3.5.3. Results
Figure 15 depicts the solution for the temperature and the heat flux pro-

files at the leading edge, using the DR2 and DR3 methods, compared to the
reference computation DR0.
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Figure 15: 3 scheme, comparison with 2 and 0

The temperature profile is represented in Figure 15a. Clearly, the
DR2 method produces large discrepancies after the second coupling instants
(t = 0.9) when the heat flux is not linear anymore, as we can see in Fig.
15b. Indeed, DR2 and DR3 closely follow the temperature profile of the
reference computation while the heat flux displays linear behavior, which is
in turn due to a large temperature gradient from the fluid inlet. But once
the gradient generated by the fluid inlet decreases, only DR3, which uses a
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linear interpolation between heat flux and temperature defining in Eq. 17,
demonstrates a very good behavior through the whole temporal process.

Temperature Heat Flux
DR2 1.21% 35.65%
DR3 0.36% 19.69%

Table 6: Accuracy error for test case 2

Table 6 shows the percent error for this last test case. This time the
error is larger than the one in the previous test case. This confirms that
considering the fluid as a sequence of steady states is not a very accurate
approximation when a strong unsteadiness comes from the fluid flow. The
DR3 method produces more accurate results than those of the DR2 method.

4. Conclusion

In a flight cycle, the solid calculations in the CHT process must be un-
steady in order to analyze the "slow" response of the metal heat conduction to
the changing of loading conditions of the engine, while a "fast" fluid convec-
tion is adopted. This is the first simplifying assumption in the quasi-dynamic
procedure, imposed at ramp points, where environmental parameters are de-
fined. Furthermore, as a further approximation, between two end points of
a ramp, the transient solid solution is obtained with interpolated boundary
conditions estimated by a linear interpolation. In this paper, a CHT refer-
ence computation not based on these two assumptions has been carried out
in order to assess and to improve the accuracy of the basic procedures.

First, as expected, it has been demonstrated that a temporal interpolation
is not the most appropriate way of estimating the flow boundary conditions.
Indeed, this approximation seems unfounded in most situations and can lead
to serious temporal inaccuracies. On the contrary, on the basis of Newton’s
law of cooling, the heat flux can be estimated as a linear function of the
temperature. This remains an approximation, but all the results presented
in this paper show that this physics-based relationship yields significantly
better results. This is key point since the interpolation method between two
ramp points has a significant impact on the temporal prediction of metal
temperatures

Second, it has been shown that a little inaccuracy on the temperature
estimation may lead to inconsistent results. A larger Biot number leads to
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greater inaccuracy in estimation. It then becomes fundamental to properly
define the integral contribution of the boundary condition using the values
at the Gauss points in the FEM solid code instead of the value at the cell
centers of the faces. This point is rarely mentioned in the CHT literature.

Moreover, it is important to note that particular attention should be paid
to sufficient refinement of the solid mesh in order to have a good evaluation
of the solid heat flux. This is all the more important since a finite-element
solid solver is used.

Finally, it is worth noting that, as expected, the influence of the fluid un-
steadiness is negligible for a ramp representing steady flight conditions (idle,
cruise conditions). However, in the case of a sudden acceleration or decelera-
tion, results obtained with a steady CFD model are questionable. However,
this was not the main objective of this paper and other tests involving sudden
rapid changes in the flow domain are needed.

As a general conclusion it appears that the simulation results, based
on the interpolation procedures proposed in this paper, compare very well
against a reference solution computed with a method using no interpolation.
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