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A PRIVACY-PRESERVING METHOD TO OPTIMIZE DISTRIBUTED RESOURCE
ALLOCATION *

OLIVIER BEAUDE ', PASCAL BENCHIMOL}, STEPHANE GAUBERT §, PAULIN JACQUOT'§, AND
NADIA OUDJANET

Abstract. We consider a resource allocation problem involving a large number of agents with individual constraints
subject to privacy, and a central operator whose objective is to optimize a global, possibly nonconvex, cost while satisfying
the agents’ constraints, for instance an energy operator in charge of the management of energy consumption flexibilities
of many individual consumers. We provide a privacy-preserving algorithm that does compute the optimal allocation of
resources, avoiding each agent to reveal her private information (constraints and individual solution profile) neither to
the central operator nor to a third party. Our method relies on an aggregation procedure: we compute iteratively a global
allocation of resources, and gradually ensure existence of a disaggregation, that is individual profiles satisfying agents’
private constraints, by a protocol involving the generation of polyhedral cuts and secure multiparty computations (SMC).
To obtain these cuts, we use an alternate projection method, which is implemented locally by each agent, preserving her
privacy needs. We address especially the case in which the local and global constraints define a transportation polytope.
Then, we provide theoretical convergence estimates together with numerical results, showing that the algorithm can be
effectively used to solve the allocation problem in high dimension, while addressing privacy issues.

1. Introduction.

1.1. Motivation. Consider an operator of an electricity microgrid optimizing the joint produc-
tion schedules of renewable and thermal power plants in order to satisfy, at each time period, the
consumption constraints of its consumers. To optimize power generation or market costs and the
integration of renewable energies, this operator relies on demand response techniques, that is, taking
advantage of the flexibilities of some of the consumers electric appliances—those which can be con-
trolled without impacting the consumer’s comfort, as electric vehicles or water heaters [18]. However,
for privacy reasons, consumers are not willing to provide neither their consumption constraints nor
their consumption profiles to a central operator or any third party, as this information could be used
to infer private information such as their presence at home.

The global problem of the operator is to find an allocation of power (aggregate consumption)
p = (pt): at each time period (resource) t € T, such that p € P (feasibility constraints of power
allocation, induced by the power plants constraints). Besides, this aggregate allocation has to match
an individual consumption profile &, = (2, +)ie7 for each of the consumer (agent) n € N considered.
The problem can be written as follows:

1.1 i

(1.1a) . ¢ )

(1.1b) Ty, €X,, YneN

(1.1c) Z Tni=pt, VEET,
neN

The (aggregate) allocation p can be made public, that is, revealed to all agents. However, the individual
constraint set &}, and individual profiles x,, constitute private information of agent n, and should not
be revealed to the operator or any third party.
It will be helpful to think of problem (1.1) as the combination of two interdependent subproblems:
i) given an aggregate allocation p, the disaggregation problem consists in finding, for each agent n,
an individual profile x,, satisfying her individual constraint (1.1b), so that constraint (1.1¢) is satisfied,
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or equivalently, solve the problem:

(1.2a) FINDz € )YpNX

(1.2b) where Y,  {y € RN |y "1y = p} and ¥ = ] . .
neN

When (1.2) has a solution, we say that a disaggregation exists for p;
ii) For a given subset Q C P, we define the master problem,

(1.3) min f(p) .

pEQ

When @ is precisely the set of aggregate allocations for which a disaggregation exists, the optimal
solutions of the master problem correspond to the optimal solutions of (1.1).

Aside from the example above, resource allocation problems (optimizing common resources shared
by multiple agents) with the same structure as (1.1), find many applications in energy [25, 18], logistics
[22], distributed computing [24], health care [29] and telecommunications [37]. In these applications,
several entities or agents (e.g. consumers, stores, tasks) share a common resource (energy, products,
CPU time, broadband) which has a global cost for the system. For large systems composed of multiple
agents, the dimension of the overall problem can be prohibitive: a solution is to rely on decomposition
and distributed approaches [7, 28, 32]. Besides, agents’ individual constraints are often subject to
privacy issues [17]. These considerations have paved the way to the development of privacy-preserving,
or non-intrusive methods and algorithms, e.g. [36, 20].

In this work, except in Section 4, we consider that each agent n € A has a global demand constraint
(e.g. energy demand or product quantity), which confers to the disaggregation problem the particular
structure of a transportation polytope [8]: the sum over the agents is fixed by the aggregate solution p,
while the sum over the T resources are fixed by the agent global demand constraint. Besides, individual
constraints can also include minimal and maximal levels on each resource, as for instance electricity
consumers require, through their appliances, a minimal and maximal power at each time period.

1.2. Main Results. The main contribution of the paper is to provide a non-intrusive and dis-
tributed algorithm (Algorithm 3.4) that computes an aggregate resource allocation p, optimal solution
of the—possibly nonconvex—optimization problem (1.1), along with feasible individual profiles @ for
agents, without revealing the individual constraints of each agent to a third party, either another agent
or a central operator. The algorithm solves iteratively instances of master problems min,cp) f(p)
by constructing successive approximations P(*) C P of the aggregate feasible set of (1.1) for which a
disaggregation exists, by adding to the set P(¥) a new constraint on p (i.e. a cutting plane), before
solving the next master problem. We shall see that this cutting plane can computed and added to the
master problem without revealing any individual information on the agents.

More precisely, to identify whether or not disaggregation (1.2) is feasible and to add a new con-
straint in the latter case, our algorithm relies on the alternate projections method (APM) [31, 14] for
finding a point in the intersection of convex sets. Here, we consider the two following sets: on the one
hand, the affine space of profiles & € RMT aggregating to a given resource allocation p, and on the
other hand, the set defined by all agents individual constraints (demands and bounds). As the latter is
defined as a Cartesian product of each agent’s feasibility set, APM can operate in a distributed fashion.
The sequence constructed by the APM converges to a single point if the intersection of the convex
sets is nonempty, and it converges to a periodic orbit of length 2 otherwise. If the APM converges to
a periodic orbit, meaning that the disaggregation is not feasible, we construct from this orbit a poly-
hedral cut, i.e. a linear inequality satisfied by all feasible solutions p of the global problem (1.1), but
violated from the current resource allocation (Theorem 3.3). Adding this cut to the master problem
(1.3) by updating Q to a specific subset, we can recompute a new resource allocation and repeat this
procedure until disaggregation is possible. At this stage, the use of a cryptographic protocol, secure
multiparty computation, allows us to preserve the privacy of agents. Another main result stated in
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this paper is the explicit upper bound on the convergence speed of APM in our framework (Theo-
rem 3.2), which is obtained by spectral graph theory methods, exploiting also geometric properties of
transportation polytopes. This explicit speed shows a linear impact of the number of agents, which is
a strong argument for the applicability of the method in large distributed systems.

1.3. Related Work. A standard approach (e.g. [28, 33, 30]) to solve resource allocation problems
in a distributed way is to rely on a a Lagrangian based decomposition technique: for instance dual
subgradient methods [6, Ch. 6] or ADMM [13]. Such techniques are generally used to decompose a
large problems into several subproblems of small dimension. However, those methods often require
global convexity hypothesis, which are not satisfied in many practical problems (e.g. MILP). We refer
the reader to [6, Chapter 6] for more background. On the contrary, our method can be used when the
allocation problem (1.1) is not convex.

As developed in Section 4, the method proposed here can be related to Bender’s decomposition
[5]. The difference with Bender’s approach is in the way of generating a new cut to add in the master
problem: instead of solving linear programs, we use APM and our theoretical results, which provides a
decentralized, privacy-preserving and scalable procedure. In contrast, at each stage, Benders’ algorithm
requires to solve a linear program requiring the knowledge of the private constraints of each individual
agent (see Subsection 4.1 for more details).

The problem of the aggregation of constraints has been studied in the field of energy, in the
framework of smart grids [25, 2|. In [25], the authors study the management of energy flexibilities and
propose to approximate individual constraints by zonotopic sets to obtain an aggregate feasible set. A
centralized aggregated problem is solved via a subgradient method, and a disaggregation procedure of a
solution computes individual profiles. In [2], the authors propose to solve the economic power dispatch
of a microgrid, subject to several agents private constraints, by using a Dantzig-Wolfe decomposition
method.

The APM has been the subject of several works in itself [14, 3, 4]. The authors of [9] provide
general results on the convergence rate of APM for semi-algebraic sets. They show that the conver-
gence is geometric for polyhedra. However, it is generally hard to compute explicitly the geometric
convergence rate of APM, as this requires to bound the singular values of certain matrices arising from
the polyhedral constraints. A remarkable example where an explicit convergence rate for APM has
been established is in [27], where the authors consider a different class of polyhedra arising in submod-
ular optimization. A common point with our results is the use of spectral graph theory arguments to
estimate singular values.

1.4. Structure. Section 2 describes the class of resource allocation problems we address in this
paper, and formulate the idea of the decomposition with the disaggregation subproblems. In Section 3,
we focus on APM, the subroutine used to solve the disaggregation subproblems. After stating results
on the convergence of APM, In Subsection 3.1, we show the key result on which relies the proposed
decomposition: how to generate a new cut to add in the master problem, from the output of APM.
In Subsection 3.2, we show how to improve the privacy of the proposed procedure by using secure
multiparty computation techniques. In Subsection 3.3 , we prove an explicit upper bound on the rate of
convergence of APM in our case. In Section 4, we generalize part of our results and propose a modified
algorithm in the case where agents constraints are polyhedral. Finally, in Section 5, we propose
numerical examples of the method: Subsection 5.1 gives an illustrative toy example in dimension
T = 4, while in Subsection 5.2, we consider a larger scale, nonconvex example, coming from the
microgrid application exposed at the beginning of the introduction.

Notation. In the remaining of the paper, bold font « is used to denote a vector, while x refers
to a scalar quantity. v' denotes the transpose of vector v. Calligraphic letters such as 7, N, X are
used to denote sets, and if To C T, the set T = {t € T \ 7o} denotes the complementary set of To.
The notation U([a,b]) stands for the uniform distribution on [a,b]. The notation Pc(.) refers to the
Euclidean projection onto the convex set C. For d € N, 1 denotes the vector of ones (1...1)" € R%.

2. Resource Allocation and Transportation Structure.
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2.1. A Decomposition based on Disaggregation. As stated in the introduction, we consider a
centralized entity (e.g. an energy operator) interested in minimizing a possibly nonconvex cost function
p — f(p), where p € R” is the aggregate allocation of T dimensional resources (for example power
production over T time periods). This resource allocation p is to be shared between a set A of N
individual agents, each agent obtaining a part x,, € &, where X,, denotes the individual feasibility
set of agent n.

The global problem the operator wants to solve is described in (1.1). The idea behind the results
of this paper is that, in problem (1.1), the constraints set A,, and individual profile x,, are confidential
to agent n and should not be disclosed to the central operator or to another agent.

Let us define the set Pp of feasible aggregate allocations that are disaggregable as:

(2.1) ’PDdéf{pEP|3w€X;p:ann}.

Feasibility of problem (1.1) is equivalent to having Pp not empty.
Constraints for each agent are composed of a global demand over the resources and lower and
upper bounds over each resource, as given below:

ASSUMPTION 1. For each n € N, there exists E,, > 0, T, € RT, z, € RT such that :
(2.2) X,={z e RT . ZteT Tpy=FEn and 2, < xpy < Tntt #0.

In particular, X, is convex and compact. Given an allocation p, the structure obtained on the matrix
(@n,t)n,t, where sums of coefficients along columns and along rows are fixed, is often referred to as
transportation problem which has many applications (see e.g. [1, 26]). We focus on this case in
Sections 2 and 3, while in Section 4, we shall give a generalization of some of our results in the general
case where X, is a polyhedron.

Given a particular allocation p € P, the operator will be interested to know if this allocation is
disaggregable, that is, if there exists individual profiles (x,,)nenr € [],, &, summing to p, or equivalently
if the disaggregation problem (1.2) has a solution.

Following (1.2), the disaggregate profile refers to @, while the aggregate profile refers to the alloca-
tion p. Problem (1.2) may not always be feasible. Some necessary conditions for a disaggregation to
exist, obtained by summing the individual constraints on A/, are the following aggregate constraints:

(2.3a) p'1r=E"1y
(2.3b) and 'y <p<T 1y .

Those conditions are not sufficient in general, as explained in the the following section.

2.2. An equivalent flow problem and Hoffman conditions. The particular structure of
the problem we consider implies that we can write it as a flow problem in a graph, as stated in
Proposition 2.2. We refer the reader to the book [11, Chapter 3] for the terminology.

DEFINITION 2.1. Consider a directed graph G = (V, &) with vertices V and edges € C V x V,
and demands d : V — R (where d, < 0 means that v is a production node), edge lower capacities
{: & — Ry and upper capacities u : € — Ry. A flow on G is a function x : € — Ry such
that x satisfies the capacity constraints, that is Ve € £ by < xo < Ue, and Kirchoff’s law, that is,
Yo eV, Zeezsj Te =dy + Zeeé,; Te, where 8, (resp. 8, ) is the set of edges ending at (resp. departing
from) vertezx v.

The following proposition is immediate:

PROPOSITION 2.2. Consider the bipartite graph G with vertices V = T UN and edges € =
{(t,n)}teT men- Define demands on nodes T by di = —p; and demands on nodes N by d,, = E,.
Assign to each edge (t,n) an upper capacity u,; = Tn and lower capacity £y, ; = Z, - Then, finding
a solution x to (1.2) is equivalent to finding a feasible flow in G.
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Figure 2.1: Example of a flow representation of the disaggregation problem (T' = 2 and N = 3,
x = 0,T = 1). Here, the aggregate constraints (2.3) are verified, but condition (2.4) written with
A ={t1,n1} (dashed nodes) does not hold.

Hoffman [16] gave a necessary and sufficient condition for the flow problem to be feasible. This
generalizes a result of Gale (1957). The stated condition is intuitive: there cannot be a subset of nodes
whose demand exceeds its “import capacity”.

THEOREM 2.3 ([16]). Given a digraph G = (V,€) with demand d € RY such that d(V) = 0 and
capacities £ € (RU{—00})¢ and u € (RU )¢ with £ < u, there exists a feasible flow x € £ — R, on
G if and only if:

(2.4) VACY, > ue=d di+ Y L
eedt(A) vEA ecot(Ae)

where §4(A) o {(u,v) € E|lu € A%, v € A} is the set of edges coming to set A and A° ey VA
The following Proposition 2.4 translates Theorem 2.3 in our framework:

PROPOSITION 2.4. Disaggregation is possible iff:
(2.5) VIO C T VNG CN, > pe— D Ent+ > 2,y < Y. Ty

teTo neNy t¢To,neNy teTo,ngNo
Proof. We apply (2.4) with A def Ts UNG and use the equality d(V) =0=> - dy+ >, c e do.0

From Theorem 2.3 or Proposition 2.4 above, one can see that the aggregate constraints (2.3) are
in general not sufficient to ensure that the disaggregation problem has a solution.
For a given set Tg, there is a choice of Ny which leads to the strongest inequality (2.5), namely:

(2.6) o< min § D> Bo- >zt Y, T

teTo neNy t¢To,nEND teTo,ngNo

In this way, we get 27 — 2 inequalities corresponding to the proper subsets 7o C 7. Moreover, in
general, these 27 — 2 inequalities are not redundant. Although this is not stated in [16], this is a
classical result whose proof is elementary.

3. Disaggregation based on APM.

3.1. Generation of Hoffman’s constraints with APM. In this section, we propose an algo-
rithm that solves (1.1) while preserving the privacy of each agent constraints X, and individual profile
x, € RT. To do this, the proposed algorithm is implemented in a decentralized fashion and relies on
the method of alternate projections method (APM) to solve the disaggregation problem (1.2).

Let us consider the polyhedron enforcing the agents constraints:

def def _
XE X X+ x Xy where X, = {(BnERI| Yover Tne = Epand Vt, z,, <2y <xn’t} .

n,t
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Besides, given an allocation p € P, we consider the set of profiles aggregating to p :

Vo & {2 e RNT |Vt € T, Y p ni = Di} -

Note that ), is an affine subspace of RN (to be distinguished from P which is a subset of R”), and
that Yp N X is empty iff p ¢ Pp, according to the definition of Pp in (2.1). The idea of the proposed
algorithm is to build a finite sequence of decreasing subsets ('P(S))ogsgs such that:

P=PO >PW 5...5PE) 5pp .

At each iteration, a new aggregate resource allocation p(*) is obtained by solving an instance of the
master problem introduced in (1.3) with Q = P():

(3.1a) E%ﬂm
(3.1b) st.pe P .

In the remaining of the paper, we will refer to (3.1) as an instance of master problem. Our procedure
relies on the following immediate observation:

PROPOSITION 3.1. Ifp®®) is a solution of (3.1), and Yy NX # 0 and x € Vp NX, then (p(s), x)
is an optimal solution of the initial problem (1.1).

Having in hands a solution p(®), we can check if Vpns N X # () using APM on X and Vp(s), as
described in Algorithm 3.1 below (where Y = Vp).

Algorithm 3.1 Alternate Projections Method (APM)

Require: Start with y(©, k =0, ey, a norm ||.|| on RN7
1: repeat
2. D Py (yR)
3 y(k—i-l) s Py(a:(k+1))
4 k< k+1
5. until Hac(k) — :c(k_l)H < Ecvg

The idea of using cyclic projections to compute a point in the intersection of two sets comes from
von Neumann [31], where the idea was applied for affine subspaces. Convergence of APM is proved by
Theorem 3.2:

THEOREM 3.2 ([14]). Let X and Y be two closed convex sets with X bounded, and let (x*));, and

(y™*))y be the two infinite sequences generated by APM on X and Y (Algorithm 3.1) with Ecvg = 0.
Then there exists > € X and y>° € Y such that:

(3.2a) B — x> yB) oy

k— o0 k— 00
3.2b -y, = i — .
(3.2b) 12 —y=lly = min_ iz —yl,

In particular, if X N Y # 0, then (), and (y*))y converge to a same point x> € X N Y.

The convergence theorem is illustrated in Figure 3.1 in the case where X N'Y = (), that is, when the
disaggregation problem (1.2) is not feasible. The idea of the algorithm proposed in this paper is, in the
case where V) NX = 0, to use the resulting vectors > and y* to construct a new subset P10 by
adding a constraint of type (2.5) to P(*): indeed, from Proposition 2.4, we know that, if Vpry NX =1,
there exists at least one inequality (2.5) violated.

The difficulty is to guess one of this violated inequality among the set of 27 possible inequalities.
It turns out that, using the output of APM, we can build such an inequality.
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Figure 3.1: Alternate projections method (APM) on two sets X and Y. When XNY =0, APM cycles
over two points x> and y°.

Suppose that we obtain *° # y°° as defined in Theorem 3.2: we get a periodic cycle of the APM,
that is, we have £ = Py (y*) and y>° = Py(x*°), and the couple (x>, y>°) is the solution of the
following optimization problem:

(3.32) min &~ 3
(3.3b) VneN, Y wn,=Ey (An)
teT
(3.3¢) YneN,Vte T, Tpt S Tt S Tnyt (Hnytvﬁn,t)
(3.3d) VEET, Y Yni =i ()
neN

where A\, € R, M e € R, and v; € R are the Lagrangian multipliers associated to the constraints
(3.3b),(3.3¢),(3.3d), with the associated Lagrangian function:

1 2 T
Ly, A p,v)=llz—yl; - A (Cane =B, —p'(@—z)—g' @—2)—v' (3,9, —p).
We notice that the stationarity condition of the Lagrangian with respect to the variable y,, ; yields:
(34) Vn € N, Vt € T, Vit = Tn,t — Ynit -

Let us consider the sets 7o C 7 and Ny C N defined from the output of APM on X and ), as:

(35) T {te€T | IMEN, yne >Tns} and No © {n €N | By = g 2y — Yyers Tnt < 0}
In Theorem 3.3 below, we show that applying the inequality (2.5) with the sets Ty and Ny defined in
(3.5) defines a valid inequality for the disaggregation problem violated by the current allocation p.

The intuition behind the definition of 75 and ANy in (3.5) is the following: 7g is the subset of
resources for which there is an over supply (which overcomes the upper bound for at least one agent).
Once Ty is defined, Nj is the associated subset of N' minimizing the right hand side of (2.6). Indeed,
(2.6) can be rewritten as:

Z Dt g ./\/.I(I)lél}\f{ Z (En - Zt@% %,t - Zte'ﬁ) xn,t)} + Z fn,t.

teTo neNy teTo,neEN

The following Theorem 3.3 is the key result on which relies the algorithm proposed in this paper.

THEOREM 3.3. Consider the sequence of iterates (x*), y*)) ey generated by the APM on X and
YVp (see Algorithm 3.1). Then one of the following holds:
(i) if XN\ Yp # 0, then ¥ y*) P x® € XN YVp;
c— 00
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(it) else, if X N Yp = 0, then (k) fd x® € X and y* e y>* € Vp. Then, considering the
sets To and Ny as defined in (3 o) gives an inequality of Hoﬁman (2.5) violated by p, that is:

(36) Z E, — Z Pt + Z Tt — Z Ty p < 0.

neNy teTo tcTo,ngNo t&To,nENo

Moreover, this Hoffman inequality can be written as a function of €>° as:

(3.7) Ar, (x> Z pr with Ar, (x def Z Z Ty -

teTo teTo neN

Before giving the proof of Theorem 3.3, we need to show some technical properties on the sets Tg, Np.
For simplicity of notations, we use & and y to denote £*>° and y° in Proposition 3.4 and the proof of
Theorem 3.3.

PROPOSITION 3.4. With & # y solutions of problem (3.3) (outputs of the APM on X and Y, with
Eevg = 0),
(1) Yt € To,Yn & No, Ynt = Tny and Tpy =Ty ;
(it) To={t|ve >0} ={t|p: > >, Tns}, where v, is the optimal Lagrangian multiplier associated
o (3.3d);

(iii) ¥n € Ny, A <0 ;

(iv) Vit gé %,Vn S NQ, Tnt =Tpy

(v) the sets To, T, No and N§ are nonempty.

The proof of Proposition 3.4 is technical and given in Appendix A. With Proposition 3.4, we are now
ready to prove Theorem 3.3.

Proof of Theorem 3.3. We have:

ZE"+ Z Tt — Z in,t_zpt

neNy teTo,ngNo t&To,neNy teTo

Y ot X Bu- X - Y (om (5
neNyg t tE'To,nf./\/‘o t¢7’0,n€./\/o t€To

= Z Z;n,t—Fan,t + Z Tt — Z Tyt — Zpt (from Prop.3.4 (i) and (iv))
neNo \t¢To teTo teTo,ngNo t¢To,neNy teTo

S O[O IS S I PED 9] DR 3y

teTo neNy ng¢No teTo teTo \neN neN

—ut> ¥ (— S s y|>
teTo neN teTo neN

using the stationarity conditions (3.4) and for all ¢ € Ty, v; > 0 by Prop.3.4 (ii). Moreover, using:

(38) Z Z (xn,t - yn,t) = Z E, — Zpt =0 5

teT neN neN teT

we see that:

(3.9) > (= lone = waal ) = =(lz—yl)/2 <0,
teTo neN
8



which shows (3.6). We now show that inequality (3.7) is obtained by a rewriting of (3.6), indeed:

Z En + Z En,t - Z Qn,t

neNo teTo,néNo t¢To,neNo

= Z anyt + Z Tnt — Z Tt (from Prop.3.4 (i) and (iv))
neNy teT teTo,n¢No t¢To,nENy

= D Tt D Taa= ), ) W = Ax(a) 0
teTo,nENy teTo,ngNo teTo nEN

Suppose, as before, that the two sequences generated by the APM on X and ) converge to two
distinct points > and y*°. Then, at each round k, we can define from (A.1) and considering any

def

n € N, the multiplier v®) = yflk) — :cgf) tends to yo° — xo° = v™. The set Ty of Theorem 3.3 is:

(3.10) T Y e T | 0< ),

which raises an issue for practical computation, as v°° is only obtained witimately by APM, possibly in
infinite time. To have access to T in finite time, that is, from one of the iterates (v(*));,, we consider
the set:

(3.11) T Yt € T | Beeg < v},

where ecyg is the tolerance for convergence of APM as defined in Algorithm 3.1, B > 0 is a constant,
and K (depending on ecvg) is the first integer such that H:c(K) — (K- H < Ecvg-

We next show that we can choose B to ensure that 76(K) = T¢® for e¢vg small enough. We rely on
the geometric convergence rate of APM on polyhedra [9, 27]:

PROPOSITION 3.5. [27] If X and ) are polyhedra, there exists p € (0,1) such that the sequence
(™), and (y™®), generated by APM verify for all k > 1:

H$<k+1> _m(mH < pr(k) _w(k—l)H and Hy<k+1> _y(mH < pHyoc) _y(k—l)H _
2 2 2 2

Proposition 3.5 applies to any polyhedra X and ). In Subsection 3.3 we shall give an explicit upper
bound on the constant p in the specific transportation case given by (1.1c) and (2.2).
From the previous proposition, we can quantify the distance to the limits in terms of p:

LEMMA 3.6. Consider an integer K such that the sequence (w(k))k>0 generated by APM satisfies
H(E(K) — w(K’l)H < Ecvg, then we have for any K'>K-1:

Ecvg
<15,

e

Proof. From Proposition 3.5, we have for any k > K:

’

k—K'
’ ’ ! 1
Hm(k) _2®)| < Z Hm(K+s+1) — K| < Z ° 2D (KD« - pgcvg ,
s=0 5=0
so that, by taking the limit £ — oo, one obtains H:cOO —zE)| < i%i- o

With this previous lemma, we can state the condition on B ensuring the desired property:

PROPOSITION 3.7. Define v o min{|v°| > 0} (least nonzero element of v°°). If the constants B
and ecvg > 0 are chosen such that B > ﬁ and ecvg X 2B < v, and Algorithm 3.1 stops at iteration
K, then we have:

K 00
T =T
9



Proof. Let t € 75°, that is v;° > 0 which is equivalent to v° > v by definition of v. We have:

V§K)_%(pt—z ") Pt ant ant Zx(K)

_ scvg  Eeve 1
>y oy Z V= 1oy > acvg(QB 1_p) ,

and this last quantity is greater than Becyg as soon as B > lflp, thus ¢ € 7B(K).

Conversely, if t € 76(K)7 then:

- 1 o 1 K)
Vi :N(Pt—zxmt)zﬁ(pt_ o) - Z o Zx
> ) B> (B B 20,

so that t € 7;°. Furthermore, the “approximated” cut Zte% (Zne N J;ﬁf? — pt) > 0 is violated by

the current value of p (or p(*) at iteration s) in the algorithm as:

5 (Z S ) <y (z o5 _z;ft> S (Z xs;jt_pt>

teTo \neN teTo \neN teTo \neN

1
() =5 [ = y>l,

< |z 3

—

ooH

using (3.8) and (3.9). This last quantity is negative as soon as ||£C(K) - cL'OOH1 < 1 ||lz> — y>°||,, which
holds in particular if Beeyg < 3 [|> — y™|;. d

This second proposition shows a surprising result: even if we do not have access to the limit x>
we can compute in finite time the ezact left hand side term A, (£>°) of the cut (3.7):

PROPOSITION 3.8. Under the hypotheses of Proposition 3.7, we have:

.’IZ(K ZZZ‘ A76 )

teTo neEN

Proof. We start by showing some technical properties similar to Proposition 3.4:

LEMMA 3.9. The iterate %) satisfies the following properties:

(i) Vt € To,¥n & No, 2l = 220, =Ty

(11) ¥t & To,Yn € Ny, it =T =Ty
The proof of Lemma 3.9 is similar to Proposition 3.4 and is given in Appendix B. Then, having in
mind that 76(K) = T¢° from Proposition 3.7, and N is obtained from 75 by (3.5), we obtain:

A= 3 (Se e Y)Y mar Y e

neNo  t¢To teTo t¢To,nENY teTo,n¢No
< Z Z x;{? — Z Tyt Z Tpe (from Lemma 3.9)
neNy teT t¢To,neNy teTo,ngNo
which equals to A7 (£*°) as we have ), xﬁth) = E, for each n € N. |

Before presenting our algorithm using this last result, we focus on the technique of multiparty
secure computation (SMC) which will be used here to ensure the privacy of agent’s constraints and
profiles while running the APM.

10



3.2. Privacy-preserving Projections through SMC . APM, as described in Algorithm 3.1,
enables a distributed implementation in our context, by the structure of the algorithm itself: the
operator computes the projection on ), while each agent n can compute, possibly in parallel, the
projection on X, of the new profile transmitted by the operator. This enables each agent (as well
as the operator) to keep her individual constraint and not reveal it to the operator or other agents.
However, each agent has to transmit back her newly computed individual profile to the operator for
the next iteration.

Using a secure multi-party computation (SMC) protocol as introduced by [34], we can avoid this
communication of individual profiles and perform APM without revealing the sequence of agent profiles
x to the aggregator.

For this, we use the fact that ), is an affine subspace and thus the projection on ), can be
obtained explicitly component-wise. Indeed, summing (3.4) on 7, we immediately obtain:

(3.12) VneN, [Py, (@)]n =Tn+ %P — X en Tm) -

Thus, having access to the aggregate profile S def > nen Tn, cach agent can compute locally the
component of the projection on ), of her profile, instead of transmitting the profile to the operator
for computing the projection in a centralized way.

Using SMC, the sum S can be computed in a non-intrusive manner and by several communications
between agents and the operator, as described in Algorithm 3.2. The main idea of SMC is that, instead
of sending her profile x,,, agent n splits x,, ; for each ¢ into N random parts (S, ¢,m)m, according to
an uniform distribution and summing to @, (Lines 2-3). Thus, each part s, taken individually
does not reveal any information on «,, nor on X,,, and can be sent to agent m. Once all exchanges of
parts are completed (Line 5), and n has herself received the parts from other agents, agent n computes
a new aggregate quantity o, (Line 7), which does not contain either any information about any of
the agents, and sends it to the operator (Line 8). The operator can finally compute the quantity
S = .’BTﬂN = UTﬂN.

Algorithm 3.2 SMC of Aggregate (SMCA) > .\ @,

Require: A profile x,, for each agent n €¢ N’
: for each agent n € N do
Draw Vi, ($,.¢.m)N—1 €U([0, A]N)

m=1
def N-1
and set Vt,s,,¢ N = Tnp — Zmzl Sn,t,m

Send (Sn,t,m)teT to agent m € N

: done

: for each agent n € N do

Compute Vt, 00t = > crr Smitin

Send (0y,,¢)teT to operator

: done

: Operator computes § =) . 0, (and broadcasts it to agents)

© X NPT R N

1

o

REMARK 1. As o, and s, are random by construction, an eavesdropper aiming to learn the
profile &, of n has no choice but to intercept all the communications of n to all other agents (to learn
(Sn,t,m)men and (Sm.t.n)m=n) and to the operator (to learn o, ).

We sum up in Algorithm 3.3 below the procedure of generating a new constraint as stated in
Theorem 3.3 from the output of APM in finite time (see Proposition 3.7) and in a privacy-preserving
way using SMC.

To choose B and e.yg satisfying the conditions of Proposition 3.7 a priori, one has to know the
value of v. Although a conservative lower bound could be obtained by Diophantine arguments if we
consider rationals as inputs of the algorithm, in practice it is easier and more efficient to proceed
in an iterative manner for the value of €. Indeed, one can start with e, arbitrary large so that

11



Algorithm 3.3 Non-intrusive APM (NI-APM)

Require: Start with y(©, k=1, Ecvg, Edis, norm ||.|| on RNT
1: repeat

2:  for each agent n € A do

3: zF Py, (y%k_l))

4: done

5. Operator obtains S*) <-SMCA(z*)) (cf Algo. 3.2)
6:  and sends v +(p—8™) e RT to agents N

7. for each agent n € N do

8: Compute ) « 2 +v® & from (3.4) and (3.12), y® = Py, (z®)
9: done

10 k+k+1

11: until H:c(k) — :I:(’“’l)H < Ecvg

12: if ||:c(k) —y®) H < eqis then > found a eqis-solution of the disaggregation problem
13: Each agent adopts profile w%k)

14:  return DISAG < TRUE

15: else > have to find a valid constraint violated by p
16:  Operator computes T < {t € T | Becyg < Vt(k)}

17:  Operator computes Ay < SMCA( (xﬁ’”)te%)

18 if Ay — >, pr <0 then

19: return DISAG <+ FALSE, Ty, A7,

20:  else © need to run APM with higher precision

21: Return to Line 1 with ecvg < €cvg/2

22: end

23: end

APM will converge quickly, and then check if the cut obtained is violated by the current value of p
(Subsection 3.2): if it is not the case, we can continue the iterations of APM with convergence precision
improved to €cyg/2 (Subsection 3.2). Proposition 3.7 ensures that this loop terminates in finite time.

The parameter eq;s > 0 (Line 12 of Algorithm 3.3) has to be chosen a priori by the operator,
depending on the precision required. In general in APM, x°° = y° will only be achieved in infinite
time, so choosing e4;s strictly positive is required.

We end this section by summarizing in Algorithm 3.4 the global iterative procedure to compute an
optimal and disaggregable resource allocation p, solution of the initial problem (1.1), using iteratively
NI-APM (Algorithm 3.3) and adding constraints as stated in Theorem 3.3.

Algorithm 3.4 iteratively calls NI-APM (Algorithm 3.3) and in case disaggregation is not possible
(Line 11), a new constraint is added (Line 13), obtained from the quantity Az, defined in (3.7), to
the feasible set of resource allocations P(*) in problem (3.1). This constraint is an inequality on p
and thus does not reveal significant individual information to the operator. The algorithm stops when
disaggregation is possible (Line 9). The termination of Algorithm 3.4 is ensured by the following
property and the form of the constraints added (3.6):

PROPOSITION 3.10. Algorithm 3.4 stops after a finite number of iterations, as at most 2T — 2
constraints (Line 13) can be added to the master problem (Line 2).

The following Proposition 3.11 shows the correctness of our Algorithm 3.4.

PROPOSITION 3.11. Let B and ecvg Satisfy the conditions of Proposition 3.7 and 3.8. Then:
e if the problem (1.1) has no solution, Algorithm 3.4 exits at Line 4 after at most 27 —2 iterations;
o clse, Algorithm 3.4 computes, after at most s < 27 —2 iterations, an aggregate solution p®) € P,

12



Algorithm 3.4 Non-intrusive Optimal Disaggregation

Require: s =0, PO = P ; DisaG— FALSE
1: while Not DisAG do

2 Solve minyep) f(p)

3: if problem infeasible then

4: Exit

5: else

6: Compute p®) = arg min,cpe) f(p)

7 end

8:  DIsAG+ NI-APM(p®)) (Algo. 3.3)

9: if DIsAG then

10: Operator adopts p(*)

11: else

12: Obtain 76(5), A%) from NI-APM(p())
13: Pl PN {p| Zte%m P < A%)}
14: end

15: s4—s+1

16: done

associated to individual profiles (x*),, = NI-APM(p'®) ) such that:
p®eP, WneWN, x, € X, || D onen T —p(S)H <eas  ond f(P®)) < f* |

where f* is the optimal value of problem (1.1).
Proof. The proof is immediate from Theorem 3.3, Proposition 3.7 and Proposition 3.8. ]

REMARK 2. The upper bound on the number of constraints added has no dependence on N because,
as stated in (2.6), once a subset of T is chosen, the constraint we add in the algorithm is found by
taking the minimum by taking a minimum over the subsets of N.

Although there exist some instances with an exponential number of independent constraints, this
does not jeopardize the proposed method: in practice, the algorithm stops after a very small number
of constraints added. Intuitively, we will only add constraints “supporting” the optimal allocation
p. Thus, Algorithm 3.4 is a method which enables the operator to compute a resource allocation p
and the N agents to adopt profiles (x,),, such that (x,p) solves the global problem (1.1), and the
method ensures that both agent constraints (upper bounds %, lower bounds z,,, demand E,); and
disaggregate (individual) profile x,, (as well as the iterates (2*)); and (y®)); in N-LAPM) are kept
confidential by agent n and can not be induced by a third party (either the operator or any other agent

REMARK 3. A natural approach to address problem (1.1) in a distributed way, assuming that
both the cost function p — f(p) and the feasibility set P are convez, is to rely on Lagrangian based
decomposition techniques. FExamples of such methods are Dual subgradient methods [6, Chapter 6],
auziliary problem principle method [10], ADMM [13],[35] or bundle methods [23].

One can think of a privacy-preserving implementation of those techniques, where Lagrangian mul-
tipliers associated to the (relaxed) aggregation constraint ), @, = p would be updated using the SMC
technique as described in Algorithm 3.2. However, those techniques usually ask for strong convexity
hypothesis: for instance, in ADMM, in order to keep the decomposition structure in agent by agent, a
possibility is to use multi-blocs ADMM with N +1 blocs (N agents and the operator), which is known to
converge in the condition that strong convexity of the cost function in at least N of the N +1 variables
holds [12]. The complete study of privacy-preserving implementations of Lagrangian decomposition
methods is left for further work.
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The advantage of Algorithm 3.4 proposed in this paper is that convergence is ensured (see Propo-
sition 3.10) even if the cost function p — f(p) and the feasibility set P are not convex, which is the
case in many practical situations (see Subsection 5.2).

REMARK 4. Algorithm 3.4 solves problem (1.1) in a privacy-preserving manner. For this, we
use both the results stated in Theorem 3.3 and SMC to securely transmit the aggregate profile to the
operator at each step. For the latter point, other techniques could be used instead of SMC such as
consensus-based aggregation algorithms [15]. A comparison of the different possible techniques, relying
on quantitative privacy indicators, would be interesting and is an avenue for further work.

In the next section, we focus on the convergence rate of APM in the particular case of transporta-
tion constraints, precising the geometric rate stated in Theorem 3.2.

3.3. Complexity Analysis of APM in the Transportation Case. In this section we analyze
the speed of convergence of the alternate projections method (APM) described in Algorithm 3.1 on
the sets X and ), defined in Section 2.

A general result in [9] gives an upper bound of the sequences generated by APM on X and Y if
these two sets are semi-algebraic. In particular, it establishes the geometric convergence for polyhedral
sets. However, as stated in [27], given two particular polyhedral sets X and ), it is not straightforward
to deduce an explicit rate of convergence from their result.

The authors in [27] established in a particular case a geometric convergence with an explicit upper
bound on the convergence rate. They consider APM on two sets P and @), where P is a linear subspace
and @ is a product of base polytopes of submodular functions.

In this section, we also establish an explicit upper bound on the convergence rate of APM in the
transportation case, that is with X and ), defined in (2.2) and (1.2b):

THEOREM 3.12. For the two sets X and Yp, the sequence of alternate projections converges to
x* € X, y* € XT satisfying ||x* — y*|| = infzex yey, & —yl|, at the geometrical rate:

k
k * 4
Hw( = X (1 - N(T+1)2(T71)) )

<2 Hw(o) —x*

and the symmetric inequalities hold for (y*))y.

For the remaining of this section, we will just use ) to denote Vp, as p remains fixed during APM.
For the result stated in Theorem 3.12 above, we use several partial results of [27].

Proof. First, we use the fact stated in [27] that APM on subspaces U and V' converge with geometric
rate cp(U, V)2, where the rate is given by the square of the cosine of the Friedrichs angle between U
and V, given by:

cr(U, V) =sup{uTv |u e UNUNV)Hoe VN (UNV)E |lu) <1,|v] <1}

An intuitive generalization of this result for polyhedra X and ), considering all affine subspaces
supporting the faces of X and Y is given in [27]:

LEMMA 3.13 (|27]). For APM on polyhedra X and Y in R, the convergence is geometric with
rate bounded by the square of the maximal cosine of Friedrichs angle between subspaces supporting faces
of X and Y:

(3.13) max cp (affo(Xz), affo(Vy)),

.Y

where, for any x € RP, X, et arg maxy,cy T ' v is the face of X generated by direction © and affo(C) =
aff(C') —c for some ¢ € C' denotes the subspace supporting the affine hull of C, for C = Xy or C =Yy,

In the remaining of the proof, we bound the quantity (3.13) for our polyhedra X and ).

For this, we use the space RV? = R” x - .. x RT| where the (n—1)T+1 to nT entries correspond to
the profile of agent n, for 1 <n < N. As in [27], we use a result connecting angles between subspaces
and the eigenvalues of matrices giving the directions of these spaces:
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LeMMA 3.14 ([27]). If A and B are matrices with orthonormal rows with same number of columns,
then:
o if all singular values of ABT are equal to one, then cF(Ker A, Ker B) =0;
e clse, cF(Ker A, Ker B) is equal to the largest singular value of ABT among those that are
smaller than one.

We are left with finding a matricial representation of the faces of polyhedra X and ) and, then,
bounding the corresponding singular values.

In our case, the polyhedra ) is an affine subspace J = {x € RNT |Ax = \/]Vilp} where:

e —1
AY VN hy® I,

where ® denotes the Kronecker product. The matrix A has orthonormal rows and the linear subspace
associated to ) is equal to Ker(A).

Obtaining a matricial representation of the faces of X is more complex. The faces of X are
obtained by considering, for each n € N, subsets of the time periods that are at lower or upper bound
(respectively T, and T,,, with 7, NT,, = (}). Considering a collection of such subsets, a face of X can
be written as:

Aﬁ"ﬂ— ) déf{(:c)n’t IV, > Zne = Epand Vt € T, xn = 2,,, and Vi € To,Tnt = En,t} )

~Ln/m

For some particular collection of subsets (7,7, )n, the set "4(7n T might be empty. The linear
subspace associated to A | is given by {x € RNT| Bz = 0} = Ker(B), where the N first rows
of B, corresponding to the constraints ), x, + = E,,, are given before orthonormalization by:

-1
VT In®Ji7,

and the matrix B has b < >, | Tn| more rows, where 7, o T U Ty, corresponding to the saturated

bounds. Each of this row is given by the unit vector e;t € RN for n € N, t € T,,, which gives already
an orthonormalized family of (unit) vectors. Therefore, a simple orthonormalized matrix B giving the
direction of A + | is given by:

B B T
B (diag (VI=TTT 15 VT 18 ) | diag (Brs. Br)) - € Mviar(R)

where 17 € RT is the vector where the indices in 7,¢ are equal to 1 and 0 otherwise, and Br, def

> 1<k<|Ta|  Ewe, is the matrix |7,| x T" with indices of 7,,. We obtain the double product:
To={t1,t|7}

1 LygT,nteT, 1 T
(ABTATE) = 7 (X, AT + BT By,
N T=1Tal Jichecr N Xn: '
1 Lep oyere 1
(ST ) ¥ X, St

1<t<T

We observe that:
o if ty € ﬂfvzl 7., then ey, is an eigenvector associated to eigenvalue \;, =1 ;

def — def . . . .
e the vector 1+ = (Lign, 7, )teT € RT, where T = U, 7,5, is an eigenvector associated to eigenvalue
15



A = 1. Indeed, if we denote by Ny = {n € N0 € T,}, then [1+]g = 1 & N¢ # (), and for each 6 € T:

> > Lﬁ?ﬂ L)+ > Toer, [17]o

iENS ¢

[(ABT)(ATB)le1 =

==

1 T —|Tal NG|+ Nol[17]e
N ieZNc ‘T' + EZNG X T N [ T]0

To bound the other eigenvalues of the matrix (ABT)(A" B), we rely on spectral graph theory
arguments. Consider the weighted graph G = (T, &) whose vertices are the time periods 7 and each

edge (k,¢) € T x T with k # ¢ has weight Sy = % > % (if this quantity is zero, then there

is no edge between k and ¢).
The matrix P % I — (ABT)(AT B) verifies for each k € T:

(3.14) Z—szz Z Z L, 5}‘;7’[ — 1 Z ﬂkeTc |7~T| nl —1)

£k i#£k n

]lk€T°
(315) = % Z(l - ]lk:EIF,L N Z ‘7- | k?k? 9

which shows that P is the Laplacian matrix of graph G. As Sp(ABTATB) = 1-Sp(P), we want to
have a lower bound on the least eigenvalue of P greater than 0, that we denote by ;.

By rearranging the indices of 7 in two blocs T and T¢, we observe that P can be written as a
block diagonal matrix P = diag(P7,07.). As we are only interested in the positive eigenvalues of P,
we can therefore study the linear application associated to P restricted to the subspace Vect(e;),c7.

As 17 is an eigenvector of P associated to Ag = 0, from the minmax theorem, we have:

-
. u' Pu

(3.16) At = min ———

ullsu#0 U'U

Let us consider an eigenvector u realizing (3.16). Let ug- def max; u; and g« def min; u; and let dg« 4=

be the distance between s* and ¢* in G, and let (s*-t*) denote a shortest path from s* to t* in G. As

P is a Laplacian matrix, we have:

(upe — uge)®

b
g -

DN | =

1 .
(3.17) u' Pu= 3 Z—Pk,e(uk —ug)? > Z —Pyoo(up —ue)? > L min (—Pre)
kT (k £} e(s*-t%) ke (sm-t)

where the last inequality is obtained from Cauchy-Schwartz inequality.

Let us write the path (s*-t*) = (to,?1,...,ta). As (s*-t*) is a shortest path, for each k € {0,d—1},
the edge (tx,tr+1) exists so there exists n € N such that {¢x,tx41} C T,°. Moreover, for each n, we
have TSN {to,...,tk—1,tk+2,-.-,ta} = 0, otherwise we could “shortcut” the path (s*-t*), thus we have
[T.| = d — 1. We obtain:

1 ]]'{t)c tr }CTC 1
7P _ sbk+1 n 2 .
b bhts N; T — T, N(T —d+1)

On the other hand, we have (us;+ — ug) = we- + 755 = TTlut* > ﬁ [l
Using these bounds and (3.17), we obtain:

(ugs — ugr)? aT 2 4 2
— > sz lullz = s ez -
N(T — dye - + 1)dye o ~ N(T+ 12(T — 1) NT+ 12T —1)
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Therefore, A\; > W def . ~,7 and the greatest singular value lower than one of (ABT)(ATB)

is 1 — Ky, . We conclude by applying successively Lemma 3.14 and Lemma 3.13, to obtain the
convergence rate stated in Theorem 3.12. 0

Ai(P)

102}

10!
T
Figure 3.2: Evolution of the convergence rate, given as A1 (P) (lowest nonzero eigenvalue of P), with
N =6and T € {4,6,8,12,20,60}. The worst convergence rate is evaluated by taking 100 X T random
draws of the sets T, C T for each n, and evaluating the eigenvalue of the matriz. The slope is around

-0.93, which indicates that in practice the convergence rate is O(T~1), faster than the upper bound in
O(T=3) established in Theorem 3.12.

4. Generalization to Polyhedral Agents Constraints. In this section, we extend our results
to a more general framework where for each n € N, X, is an arbitrary polyhedron, instead of having
the particular structure given in (2.2). Let us now consider that (X,,), are polyhedra with, for each n:

(4.1) X, ={z, eRT|A,z, <b,},

with A,, € Mpy, (R) with k, € N. The disaggregation problem (1.2), with p € P fized, writes:
(4.2a) mrer]g]rvlT 0

(4.2b) s.t. Aoz = Bp (Ao)

(4.2¢) Apz, < by, YneN (A,) .

where Ag = Jy n®I7, B = I, (such that (4.2b) corresponds to the aggregation constraint @, = p)
and Ag € RY, (A,)nen € REnFn are the Lagrangian multipliers associated to (4.2b) and (4.2c).
With the polyhedral constraints (4.1), the graph representation of the disaggregation problem,
as illustrated in Figure 2.1 is no longer valid. Consequently, one can not directly apply Hoffman’s
theorem (Theorem 2.3) to obtain a characterization of disaggregation feasibility by inequalities on p.
However, using duality theory, Proposition 4.1 below also gives a characterization of disaggregation:

PROPOSITION 4.1. A profile p € P is disaggregable iff:
(43) V(Ao,)\l,...AN) €A, A(—Jer—I_ZneN}‘Ibn =20,

where A < {Xg € R¥ Yn € N, A, € RE" | AT XgAg + AT (Ap)n = 0}, with A diag(An)nen.

Proof. From strong duality, we have:

(4.4) min max Ag(Aoac — Bp) + Z )\I (Apx, — by)

ERNT 5 eRko X, €RE

max ~AgBp—)> A'b,
(4.5) = Xo€RFo X, €RE? 0 zn:
st Ag Ao+ (M) A=0
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If the polytope VpNX given by the constraints of (4.2) is empty, then there is an infeasibility certificate
AT =(Ad Al ... AY) € RT x [T, RE" such that:

(4.6) Ag Ao+ A)pA=0and A\ Bp+ (X)), b<0. u|

On the other hand, if Y, N X is nonempty, then a solution to the dual problem (4.5) is bounded, which
def

implies that VA = (Ao, (An)n) €A, AJBp+ Y., A b, >0.
As opposed to Hoffman circulation’s theorem where disaggregation is characterized by a finite number
of inequalities, Proposition 4.1 involves a priori an infinite number of inequalities.

However, we know that the polyhedral cone A can be represented by a finite number of generators

(edges), that is, there exists A* e (X XD} such that:

(4.7) A= {Zlgigd X @ | (a); € Ri} :

Thus, we obtain the following corollary to Proposition 4.1:

COROLLARY 4.2. There ezists a finite set A* C A such that, for any p € P, p is disaggregable iff:
(4.8) V(Ao, (An)n) €A™, XoBp+>., Ayb, >0 .

REMARK 5. In the transportation case (2.2), we can write each agent constraints in the form
Anx, < by, (writing the equality Zt Tnt = By is written as two inequalities), and Hoffman conditions
(2.5) can be written in the form (8). Moreover, Theorem 3.3 ensures that one possibility for A* of
Corollary 4.2 is to consider the collection of 27 multipliers corresponding to the subsets To C T and
Ny minimizing (2.6). We skip the details here for brevity.

As in the first part of the paper, we want to use APM to decompose problem (1.1) and, in the case
where disaggregation is not possible, use the result of APM to generate an inequality (4.3) violated by

the current profile p.
In the case of impossible disaggregation, the APM converges to the orbit (y*°, ), and p def

. _ _ 4 g0 . . def _
— x> defines a separating hyperplan & 4+ pu+ , where & = ¥ '2”” , that satisfies, with a« = &.u

oo

Yy
(note that & can be replaced by any y € [y, x*°]):

Ve € Vp; uT:c>a VweX;a>uT:l:,

which give lower bounds on the linear problems (the second one is decomposed because A is a block-
diagonal matrix, but it can also be written in one problem):

. T _l_
max —Ay B
(4.9) mgﬁé% Ko _ AOE]R}’EO 0o bP
Aoz = Bp (Xo) w=—AgdXo
max pnIy min n b;ern
(4.10) and VneWN, =eRNT - An ERY

Strong duality on these problems implies that there exist Ag and A such that:
(4.11) puw=—A) X and a < —\] Bp p=X Aanda>b"X.

Thus, we obtain (Ag, A) € A satisfying (8), that is, Aj Bp +b" A < 0, and we can use this to add a
new valid additional inequality on p of form (4.3), that will change the current profile p:

(4.12) A Bp+ATb>0

In Algorithm 4.1 below, we summarize the proposed decomposition of problem Equation (1.1).
This is a generalization of the decomposition principle used for Algorithm 3.4.
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Algorithm 4.1 Non-intrusive optimal disaggregation with polyhedral constraints

Require: Start with A® = {}, k = 0, DisAG= false
1: while not DisAG do
2 get solution p(*) of problem minpep{f(p) | A\g BP+ATb >0, YA € AF)}
3 get p) =y — 2 APM(V,0, X)
4 if u*) £ 0 then
5: obtain )\ék)  maxy, cpro {—AJ BP® | p®) = —AJ X}
6
7
8
9

obtain for each n, AM  maxy so{b A | /VLSL’C) =24}

nz=

add A®+D) = A® U (AP A)

else
: Return DIsAaG = true, p*) as optimal solution
10: end
11: k+—k+1
12: done

REMARK 6. We use the fact that p = y>° —x> although, as before, we only have an approximation
of this quantity. The approximation has to be precise enough to ensure that the solution obtained verifies
Ad Bp+b" X < 0. In practice, one can proceed as in the transportation case and Algorithm 3.3 use a
large ecvg as stopping criteria in APM, then compute (Ao, X) € A and check if AdBp+b'"A<0. If
this is not the case, restart with €cvg = €cvg/2.

REMARK 7. When Y, = {z € RNT|Agz = Bop} = {z|>, ., = p}, we can obtain a non-
intrusive version of APM on Y, and X, similar to Algorithm 3.3. In this case, (4.11) ensures that we
have iy, = —[Xolt for each n € N, and Ny is fized by p). The only difference with the transportation
case for a non-intrusive APM in the general polyhedral case, is in the way of computing the valid
constraint violated by p. Thus, Lines 16 to 19 of Algorithm 3.3 have to be replaced by Algorithm 4.2.

Algorithm 4.2 Modification of Lines 16-19 of Algorithm 3.3 for NI-APM with polyhedral constraints
16: for each agent n € N do

17:  compute M,, optimal value of (4.10).

18: done

19: Operator computes M < SMCA((M,,),)

20: if —v.p+ M <0 then

21:  return DISAG < FALSE, —v, M

4.1. Link with Benders’ decomposition. In this generalized case, we obtain an algorithm
related to Benders’ decomposition [5] (recall that in our specific case (4.2), the cost function does not
involve the variable & but only variable p).

The difference between the proposed Algorithm 4.1 and Benders’ decomposition is on the way
of generating the new cut. Benders’ decomposition would directly solve the dual problem (4.5):
maxx{—AJ Bop — (An)1b | AoAg + (A,)nA = 0} and obtain a cut if it is unbounded. However,
this problem involves the constraints of all users (through A and b), and is it not straightforward to
obtain a method to solve this problem in a decentralized and efficient way.

5. Numerical examples.

5.1. An illustrative example with T=4. In this section we illustrate the iterations of the
method proposed in this paper on an example with 7' = 4 and N = 3. Assuming that we have to
satisfy the aggregate constraint ) ,p, = Y E,, we can use the projections on this affine space of
solutions of master problems (p®)), to visualize them in dimension 3.

One can wonder if, in the transportation case, applying Algorithm 3.4 or Algorithm 4.1 will always
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lead to the same cuts and solutions: the answer is no, as shown by the instance considered in this
section, for which Algorithm 3.4 converges in 3 iterations and Algorithm 4.1 needs 4 iterations.

We consider the problem (1.1) with agents constraints (2.2) with parameters z 10 and:

1 [08,02,07,01] By =18 y
(51)  ®=[05,01,03,06] , B,=04, VpeR' f(p)= > 08xp +0.1xp}.
. . . . 3 = 1. 1<t<4
[0.1,0.1,0.7,0.2] E5=1.1

Considering the aggregate equality constraint ), <t<aPt = > <n<3 Bn = 3.3, we use the canonical
projection of 4 dimensional vectors into the 3 dimensional space (p1,p2,p3) to visualize the cuts and
solutions. In this example, there exist 27 — 2 = 14 nontrivial Hoffman inequalities characterizing
disaggregation from Theorem 2.3. The projection of the obtained polytope Pp, as defined in (2.1), is
represented in Figure 5.1a. One can remark that this polytope has only 6 facets. Our Algorithm 3.4
applied on this instance with eg;s = 1073 and Ecvg = 1075 converges in 3 iterations, with successive
solutions of the master problem (3.1) and cuts added:

pM =1[1.,0.4,1.,0.9) S prtpetpa<19
p® =1[0.75,0.4,1.4,0.75] 5 potps+pa<24

p® =10.9,0.4,1.4,0.6] .

Figure 5.1b represents in the projection space the three successive solutions and the two generated
cuts (in red for each iteration).

On the other hand, applying Algorithm 4.1 with the same precision parameters(egis, €cvg), there
are 3 cuts generated and 4 resolutions of master problem needed for convergence, given by (we refer
the reader to Remark 6 for the numerical precision obtained in the values):

P =1[1.,04,1.,0.9] 5 —0.25p; — 0.25p + 1.0ps — 0.5p4 > 0.75
p? = [0.8097,0.4,1.3984,0.6919] <% L0p1 — 0.509p; + 0.018p; — 0.509p4 > 0.4161
P =[0.9062,0.4,1.3823,0.6115] <% —0.333p; — 0.333py + 1.0ps — 0.333ps > 0.7666
P =0.9,0.4,1.4,0.6] .

The 4 successive solutions and the 3 added cuts are represented in the three dimensional space on
Figure 5.1c: we observe that the last cut needed to obtain the convergence of Algorithm 4.1, corresponds
to the first one added with Algorithm 3.4.

Due to the strict convexity of the cost function p — f(p), the final solution obtained is the same,
unique aggregated optimal solution of (1.1). The 4 successive solutions and the 3 added cuts are
represented in the three dimensional space on Figure 5.1c: we observe that the last cut needed to
obtain the convergence of Algorithm 4.1, corresponds to the first one added with Algorithm 3.4.

5.2. A nonconvex example: management of a microgrid. In this section, we illustrate the
proposed method on a larger scale practical example from energy. We consider an electricity microgrid
[21] composed of N electricity consumers with flexible appliances (such as electric vehicles or water
heaters), a photovoltaic (PV) power plant and a conventional generator. The operator of the microgrid
aims at satisfying the demand constraints of consumers over a set of time periods 7 = {1,...,T}, while
minimizing the energy cost for the community. We have the following characteristics:

e the PV plant generates a nondispatchable power profile (p}"):c7 at marginal cost zero;

e the conventional generator has a starting cost C®", minimal and maximal power production

p?,p?, and piecewise-linear and continuous generation cost function p? — f(p9):

f(pg)zak—l—ckpg, if p? € Iy, def [ek_l, 9].3[, k=1...K,

where 6 2 ) and 6 K def pY;
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Figure 5.1: Illustration of the iterations of the proposed decomposition method. The cut ps > 1.4,
which is added at first for Algorithm 3.4 | is only added at the third iteration of Algorithm 4.1

e cach agent n € N has some flexible appliances which require a global energy demand E,, on T,
and has consumption constraints on the total household consumption, on each time period ¢t € 7T, that
are formulated with x,,, @,,. These parameters are confidential because they could for instance contain
some information on agent n habits.

The master problem (3.1) can be written as the following MILP (5.2):

(5.2a) min Z (albe + Z ckpr, + CSTb§T>
k

p,p9,(p}),(by),boN bET

teT
(5.2b) Pl =i pl, VET
(5.2¢) bt (O — Ox—1) < P, < bp1,4(0k — Ok1), VIS k<K, Ve T
(5.2d) byt > b — 0PNy, Ve {2,...,T}
(5.2e) pIoN < pf <pIOYN, Vte T
(5.2f) b b b1ty b1 € 0,1}, VEE T
(5-2g) p<p” +p’
(5.2h) p'ly=E'"1y
(5.2i) z' Iy <p<zT ly.

In this formulation (5.2b-5.2¢), where bg ¢ 4f 1 and br .t def 0, are a mixed integer formulation of the
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generation cost function f. One can show that the Boolean variable by, ; is equal to one iff pJ > 0 for
each k € {1,..., K — 1}. Note that only a; appears in (5.2a) because of the continuity of f.

Constraints (5.2d-5.2e) ensure the on/off and starting constraints of the power plant, (5.2g) ensures
that the power allocated to consumption is not above the total production, and (5.2h-5.2i) are the
aggregated feasibility conditions already referred to in (2.3). The nonconvexity of (5.2) comes from the
existence of starting costs and constraints of minimal power, which makes necessary to use Boolean
state variables b7, b°V.

We simulate the problem described above for different values of N € {2425 2627 28} and one
hundred instances with random parameters for each value of N. A scaling factor xny = N/20 is applied
on parameters to ensure that production capacity is large enough to meet consumers demand. The
parameters are chosen as follows:

e T = 24 (hours of a day);

e production costs: K =3, § = [0,70,100,300]xx,c = [0.2,0.4,0.5], p? =50kn,p9 =300k, a1 =4
and C°" = 15; B

e photovoltaic: p}¥= [50(1—005(%)4—1/{([0, 10])}&1\; for t € {6,...,20}, pi¥ = 0 otherwise;

e consumption parameters are drawn randomly with: z, , ~ U([0,10]), Z,; ~ U([0,5]) + z,, , and
E, ~U([1} z,,1}E,]), so that individual feasibility (X,, # () is ensured.

I N S O R
# master | 193.6 | 194.1 | 225.5 | 210.9 | 194.0
4 projs. | 9507 | 15367 | 24319 | 26538 | 26646

Table 5.1: number of subproblems solved (average on 100 instances)

We implement Algorithm 3.4 using Python 3.5. The MILP (5.2) is solved using Cplex Studio 12.6
and Pyomo interface. Simulations are run on a single core of a cluster at 3GHz. For the convergence
criteria (see Lines 11 and 12 of Algorithm 3.3), we use £4i;s = 0.01 with the operator norm defined
by |||z|| = max,en Y., [Tns| (to avoid the v/N factor in the convergence criteria appearing with
[|.1l5), and starts with ecye = 0.1. The largest instances took around 10 minutes to be solved in this
configuration and without parallel implementation. As the CPU time needed depends on the cluster
load, it is not a reliable indicator of the influence on NV on the complexity of the problems. Moreover,
one advantage of the proposed method is that the projections in APM can be computed locally by
each agent in parallel, which could not be implemented here for practical reasons.

Table 5.1 gives the number of master problems solved and the total number of projections com-
puted, on average over the hundred instance for each value of N.

One observes that the number of master problems (5.2) solved (number of “cuts” added), remains
almost constant when N increases. In all instances, this number is way below the upper bound of
224 > 1,6 x 107 possible constraints (see Proposition 3.10), which suggests that only a limited number
of constraints are added in practice. The average total number of projections computed for each
instance (total number of iterations of the while loop of Algorithm 3.3, Line 1 over all calls of APM in
the instance) increases in a sublinear way which is even better that one could expect from the upper
bound given in Theorem 3.12.

6. Conclusion. We provided a non-intrusive algorithm that enables to compute an optimal re-
source allocation, solution of a—possibly nonconvex—optimization problem, and affect to each agent an
individual profile satisfying a global demand and lower and upper bounds constraints. Our method
uses local projections and works in a distributed fashion. Hence, the resolution of the problem is still
efficient even in the case of a very large number of agents. The method is also privacy-preserving, as
agents do not need to reveal any information on their constraints or their individual profile to a third
party.

Several extensions and generalizations can be considered for this work. Section 4 generalizes the
procedure to arbitrary polyhedral constraints for agents. However, the number of constraints (cuts)
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added to the master problem is not proved to be finite as done in the transportation case. Proving
that only a finite number of constraints can be added (maybe up to a refinement procedure of the
current constraint obtained) will enable to have a termination result for the algorithm in the general
polyhedral case. In the transportation case, we showed the geometric convergence of APM with a rate
linear in the number of agents. Moreover, the number of cuts added in the procedure is finite but the
upper bound that we have remains exponential. In practice however, the number of constraints to
consider remains small, as seen in Section 5. A thinner upper bound on the number of cuts added in
the algorithm in this case would constitute an interesting result.

Appendix A. Proof of Proposition 3.4.

Proof of Item (i). Let us write the stationarity conditions associated to problem (3.3):
(A1) VneNVEeT, 0= (nt—Ynt)— An— B e and  yng = o+ vy

By summing the preceding equalities on 7 and N, we obtain the three equalities:

(A2) Zl/t :Zyn,t_En, V’I’LEN Pt :an,t+NVt7 VteT
t t n
(A3) T =B Y = S s = 3 FarVn e N
teT, teTy? t€ETn

where we define for each n € NV:
Tt | 2y < Tnp <Ts}y To={t| @y =zn,} and Tn={t| Ty =Tns} .
From (A.2) and the aggregate equality > FE, = >, p; we obtain: ), v, = 0 and:
(A.4) VneN, > crynt = En.
Suppose that Item (i) is false: there exists n ¢ Ny and £ € Tg such that z,; <T,; We have:
Tpi ZYpit A=, 0+ = A <0
Immediately, we have T, C To: indeed, for t € T ,,, we have:

yn,t“”)\n)En,t :>yn,t>fn,t*>\n>fn,t :>t€76 .

From the condition (A.4) and from v; > 0 for each ¢t € T, because T,, C Ty, we get:

0 :Z(yn,t - xn,t) = Z(yn,t - @mt) + Z(*)\n) + Z v < Z(yn,t - ln,t) = Z An - Z Vi,

teT teIn tet? te?" teIn tet? te?n

which is strictly negative: this implies that there exists ¢ € T, such that y, s < Z,, . Necessarily,
t' ¢ To because vy = yp ¢ — Tp < 2,y — L, = 0. Then, as we have Y\ Ym v =py = > T, 4,

there exists m € N such that Ym,tr > Ty yr- If A\, <0, and as Ty 1 = Ympr — Vg > Ly, 11, WE get:

Tt/ = min(fm,tﬂym,t’ + )\m) < Ym,t/ + )\m < Ym,t/ = Tm,t! + < Tt

which is impossible, thus A,, > 0. Now, we observe that 7,7 C 7. Indeed, otherwise, if t” € 7> N T,
we have vy = =X, > 0 and Ty 1 = Ym,pr — Ve < Ym,p» < Tpn 7, thus we get:

Tm,t7 = max(gm_t”aym,t” + >\m) > Ym, + Am > Ym,» = Tm,t” + vy + )\m > Tm,t”

which is impossible, thus 7,7 C 7To.
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Finally, since 7’2 # (), consider tg € arg min, g7 {Znt—ynt}. By (A.3), we obtain:

(A.5) Ynyto T An < Tty = Ep — Z Lnt — Z Yn,t — Z Tne <|T7[(Fnto — Un,to)
teT,, teTe teT,
and thus:
En* Z gn,tiz fn,t == En - Z lmt + Z gmt - Z En,t - Z fn,t (aS 77-71 U 7;0 C 76)
teTy teTo teT,, teT,NTo teT ,UT2 teT,NTo
(A.6) <D @ate = Ynito) = @t = Ynt) + Y (Tpy —Tnys)  (from (A.5))
teT,° T,.NTo
(A7) <0 (from the definition of tg and z,, , < Ty 1),
which contradicts n ¢ Ay and terminates the proof for Item (i). d
Proof of Item (ii). To prove (ii), we see that if ¢ is such that v; > 0, then all the facts said before
are true for n ¢ Ny if we consider 7 def {t|v+ > 0} instead of 7. In that case we will have A, < 0.
However we cannot have ¢” € 7,> N 7;¢ because this would mean v» = —\, > 0 but we have v» <0

because t” ¢ 7Tj. Thus 7, is necessarily empty, and if there is ¢ € T,, N 7y, the same sequence
of inequalities as (A.6-A.7) show a contradiction. Consequently, for each t € T, zn: = Tpn, and
Ynt = Tnt + V4 > T, thus t € Tp and Ty C To. The other inclusion is immediate. 0

Proof of Item (iii). Suppose on the contrary that there exists n € Ay such that \, > 0. For
t €Ty, we have vy = —\,, <0, thus, 7,7 C 75. Then, if t € Ty and if =, < T, we would have:

Tyt = Max(Z,, 4 Ynt + An) = Top +0+ 14 > Tpy

which is impossible, thus z,, ; = %y, ¢, and To C T . As we show independently in Item (v) that To # 0,
we know T, # (). Let us consider tg € arg mingg 7 {Ynt — ,,,}. By (A.3), we obtain:

(A8) Yn,to +An > L to = E,- Z Lpt — Z Yn,t — Z fﬂi > |7::‘(gn,t0 - ynyto)
teT teTy? T
and thus: +n n t€Ty
En - Z §n7t _Z En,t :En - Z gn,t - Z gn,t - @mt - an,t + Z fn,t (as 76 C 7-n)
teTy To teT, teTEN T n teTy teT n teTENT n
(A.9) > (Wt = o) = Wt = Tugy)) + D Tug — 2, (from (A8))
ey tETE T
(A.10) >0 (from the definition of ¢y and z,, , < Tn ),
which contradicts n € Ny and terminates the proof of Item (iii). O

Proof of Item (iv). From (ii), we know that 7F = {t|vy < 0}, thus, if t ¢ 75 and n € Ny, if
Tpt > T, , then we would have zp, ¢+ < Ynt + An = Tnt + vt + Ap < Zp ¢, which is a contradiction. 0O

Proof of Item (v). From >, 1, = 0, we see that if 7y = (), then this means that v, = 0 for all
t € T, and thus y = « which is a contradiction. Thus there exists to such that v;, > 0 and for the
same reason, there exists ¢ such that vy, < 0.

If Ny = 0, then using (i), we would have for all n, yn ¢, > Tn,t, and thus py, > > -\ Tn,t,, Which
contradicts the aggregate upper bound constraint V¢, p; < Y, car Tne-

If N§ = 0, then using (iv), we would have for all n, y,, < Ty and thus py < 30 a2y 40
which contradicts the aggregate lower bound constraint Vt, p; > > - Lyt 0

Appendix B. Proof of Lemma 3.9.
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Proof of Item (i). From x5) = Py(yE—1) and y&) = Py, (2(5)), we obtain, similarly to (A.1):

(B.1) VneNVteT, 0= (x(K) — y,(f;_l)) N /L(K) + u( ) and y(li) = x(K) + I/(K) .

n,t

where the Lagrangian multipliers )\% M(K ), st t) (resp. Ut(K)) are associated to the quadratic problem

characterizing the projections Py (y5~ 1)) (resp. y&) = Py(x5))). We obtain equalities similar to
(A.2, A.3). We proceed as for Proposition 3.4(i) and suppose that there exists n ¢ Ny and ¢ € Ty

such that z, ; <, ;. Then, as Hy(K) -y~ < ?Tvi and ZteTy,gK) = > e Y, we have for each

neN,teT, |ynt —yn] < E"gp) and thus we get:

_ Ecvg K) _ fo's) Ecvg K
(B.2) Tni 2T, 5 2 Yy q 2 Ypi T a0 p)+>‘( f=aly it —2(1,p)+>\,(1)
: K cvg o0 B CV, J—
— A\ < 2(51_p)v — v < 25— 2Becyg = —3Becyg

. —(K
as V¥ 2 v > 2Becyy. Let us now consider t e 7;0(K) U 'Tfl ), then:

(B.3) vy =yl) — 2l >yl — ) A0 > e 8Be > Beoyy + 555 (B — 1) > Beeyg
which shows that ¢’ € 76(K) = Ty° and thus 7;"(K)U7';K) C To. Then, the same sequence of inequalities
as (A.5, A.6, A.7) applied to y &~ gives a contradiction to n ¢ Nj. O
Proof of Item (ii). The proof of Item (ii) is symmetric to the one of Item (i): if we suppose
that there exists n € Ny and ¢ ¢ To such that xff? >z, 7

that A\ > —2(51”5 5- Then, considering t' e T(K) U TO(K , we show, symmetrically to (B.3), that

Ut(, ) < Begyg ie. t' ¢ T and thus T(K U TO(K) C T¢. We conclude by obtaining a contradiction to
n € Np by the same sequence of inequalities as (A.8, A.9, A.10). ]

we obtain, symmetrically to (B.2),
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