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ABSTRACT 

Macroautophagy is an evolutionarily conserved process of the lysosome-dependent degradation 

of damaged proteins and organelles and plays an important role in cellular homeostasis. 

Macroautophagy is upregulated after myocardial infarction (MI) and seems to be detrimental during 

reperfusion and protective during left ventricle remodeling. Identify new regulators of cardiac 

autophagy may help to maintain the activity of this process and protect the heart from MI effects. 

Recently, it was shown that non-coding RNAs (microRNAs and long non-coding RNAs) are involved on 

autophagy regulation in different cell types including cardiac cells. In this review, we summarized the 

role of macroautophagy in the heart following MI and we focused on the non-coding RNAs and their 

targeted genes reported to regulate autophagy in the heart under these pathological conditions. 

 

 

1. INTRODUCTION 

Myocardial infarction (MI) is a cardiovascular event caused by obstruction of one or more arteries 

supplying the heart. This area of the heart is therefore no longer supplied with oxygen and nutrients 

leading to the death of cardiomyocytes. Coronary reperfusion is the only recognized method to 

reduce the size of the infarct if it is performed within hours after MI. Despite its beneficial effect, 

several deleterious events such as increased oxidative stress and cell death are observed during the 

reperfusion process. If the infarcted zone is very extensive, there is a decrease in the contractile 

function of the heart. In order to compensate for this loss and maintain normal blood flow, the heart 

will undergo structural changes such as thinning of the infarcted zone, fibrosis, cardiomyocyte 

hypertrophy and left ventricle (LV) dilatation 1. Left ventricle remodeling (LVR) is initially a protective 

mechanism but in the long term can lead to heart failure (HF) 2–4.  Despite current therapy, acute MI 

and HF, remain the leading causes of death and disability worldwide. New therapeutic strategies are 
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therefore required to protect the heart against the detrimental effects of acute ischemia/reperfusion 

(I/R) injury, in order to prevent cardiomyocyte death and reduce myocardial infarct size, preserve LV 

ventricle function, and prevent the onset of HF. 

Macroautophagy is an important and non-selective proteolytic mechanism that regulates the 

homeostasis of long-lived proteins, macromolecules including lipids and cell organelles by 

surrounding them in a double- membrane vesicle, known as autophagosome in order to deliver them 

to lysosome for degradation 5. It plays an essential role for maintaining heart structure and function 

under baseline conditions 6–8. Several studies showed that macroautophagy is upregulated in heart 

following MI and suggested that this process may protect heart against MI effects 9–11. Recently, it 

was shown that non-coding RNAs (microRNAs (miRNA) and long non-coding RNAs (lncRNA)) are 

involved on autophagy regulation in different cell types including cardiac cells 12–14. In this review, we 

summarized the role of macroautophagy in the heart following MI and we focused on the non-coding 

RNAs and their targeted genes reported to regulate autophagy in the heart under pathological 

conditions. 

2.  MACROAUTOPHAGY MECHANISM 

Macroautophagy proceeds in several successive steps and involves different proteins as 

previously described 5. In summary, autophagy induction is mainly regulated by the ULK (unc-51-like 

kinase) complex which is composed of ULK1/2, ATG13 (autophagy-related gene 13), ATG101, and 

FIP200 (focal adhesion kinase family interacting protein with a 200 kDa mass). Activation of the PI3K 

complex contributes to the vesicle nucleation, the first step of autophagosome formation. This 

complex is composed of Beclin-1, ATG14, VPS34 (Phosphatidylinositol 3- kinase vacuolar protein 

sorting 34) and VPS15. Finally, two ubiquitin-like protein conjugation systems are required to the 

vesicle elongation, the first to form ATG12-ATG5-ATG16L1 complex and the second to form LC3II 

(microtubule-associated protein 1 light chain II), the lipidated form of LC3. For this latter step, ATG4 

cleaves pro-LC3 to LC3I before its conjugation to phosphotidylethanolamine by ATG7, ATG3 and 

ATG12-ATG5-ATG16L1 complex. Several pathways were shown to regulate autophagy by activation 

or inactivation of one of these ATG proteins. For example, mTOR (mammalian target of rapamycin) 

activation inhibited autophagy by decreasing ULK1 activity 15 and ATG14/VSP34-35 complex 

formation 16. AMPK (adenosine monophosphate- activated protein kinase) positively regulated 

autophagy by increasing Beclin-1 phosphorylation leading to its interaction with VSP34 17. However, 

Bcl-2 interacts with Beclin-1 for blocking its interaction with VSP34 18.  

2. 1. Macroautophagy during ischemia/reperfusion 

The regulation of autophagy is different during ischemia and reperfusion 10. During heart 

ischemia, nutrient and oxygen supplies to the cardiac cells decrease, inducing mitochondrial and 

cellular dysfunction that lead to cell death. To protect them, the cardiac cells induce autophagy via 

the AMPK/m-TOR pathway in order to degrade/eliminate damaged organelles and proteins and 

provide the substrates necessary for their survival. During reperfusion, there is an increase of 

reactive oxygen species (ROS) production inducing a strong expression of Beclin-1 which on one 

hand, promotes the formation of autophagosomes and on the other hand, inhibits the expression of 

genes involved in the fusion of autophagosomes with lysosomes 19. In addition, ROS inhibit the 

expression of LAMP-2, a protein involved in the fusion of autophagosomes with lysosomes. 

Autophagy is then induced excessively during reperfusion but is inactive. Blocking the degradation of 

the contents of autophagosomes promotes oxidative stress, decreases mitochondrial permeability 

and causes cell death. Partial inhibition of Beclin-1 expression (heterozygous mice) has been shown 



to protect against apoptosis induced during reperfusion while its total deletion is deleterious 10. 

These data showed that autophagy is a protective mechanism during ischemia but its excessive 

induction during reperfusion is deleterious. 

2.2. Macroautophagy during LVR in post-MI 

The activity of autophagy and its role in LVR post-MI have been studied in murine models with 

permanent ligation of the left coronary artery. Autophagy is induced in non-infarcted area of the 

heart during the sub-acute (1 week) and chronic (3 weeks) stages after MI 11. Inhibition of autophagy 

by Bafilomycin (a pharmacological agent that blocks the fusion of the autophagosome with the 

lysosome) promoted LVR and worsens cardiac dysfunction. In contrast, administration of Trehalose 

(a non-naturally reduced disaccharide) in mice after ligation, activated autophagy, reduced LVR, and 

improved cardiac function at 4 weeks post-MI 20. However, this protective effect of trehalose on the 

heart was not observed in mice invalidated for the Beclin-1 gene, but an increase in the activity of 

mTOR was observed in the non-infarcted area of the heart. It has been shown that the inhibition of 

mTOR activity induced autophagy leading to a decrease of LVR and an improvement in cardiac 

function in post-MI 21. All these data showed a protective role of autophagy in later stages in post-MI 

but its activity remained insufficient to prevent LVR and cardiac dysfunction. 

3. Macroautophagy regulation by non-coding RNAs during and following MI 

About 99% of the human genome do not encode proteins, but are transcriptionally highly active 

and give rise to a broad spectrum of non-coding RNAs (ncRNAs) with regulatory and structural 

functions. Based on the size criteria of 200 nucleotides (nt), ncRNAs are divided into long (>200 nt) 

and short ncRNAs (<200 nt).  

The ncRNAs are modulated in some cardiovascular diseases including MI 22,23. The significant 

changes in their expression pattern upon MI highlighted their contribution in regulation of 

pathogenesis of MI. Furthermore, it was shown that ncRNAs could regulate autophagy in some 

cardiac disorders including MI, hypertrophy and HF 12–14. In this part, we summarized the non-coding 

RNAs which have been reported to regulate cardiac autophagy during and following MI and 

highlighted their specific autophagic targets and their importance as new therapeutic targets to 

protect heart against I/R injury and prevent cardiac remodeling and dysfunction (Figure 1). 

3.1. Macroautophagy regulation by mRNAs  

MiRNAs are defined as single-stranded non-coding RNAs around 22 nucleotides and are highly 

conserved between species 22. Once synthetized and matured through several steps, these miRNAs 

bind to the complementary 3’UTR of their target mRNA and either degrade or silence them. A near 

perfect match between the seed region of the miRNA (8 nucleotides at its 5’ UTR end) and its target 

leads to complete degradation of mRNA, while a partial complementary results in the suppression of 

the gene expression. MiRNAs may have one or multiple mRNA targets and are involved in the 

regulation of numerous biological processes in the heart including autophagy.   

3.1.1. Antiautophagic-miRNAs with protective effects  

Several miRNAs were modulated during I/R and seems to have a protective effect by decreasing 

excessive autophagy induced-cell apoptosis by targeting one of the ATG genes. MiR-188-3p levels are 

reduced in cardiomyocytes treated with anoxia/reoxygenation and in MI-mice. Overexpression of 

miR-188-3p in MI-mice attenuated autophagy by targeting autophagy mediator Atg7 and decreased 

the  infarcted area size 24. It was shown that miR-638 suppressed the expression of Atg5 by targeting 

its 3’UTR region. It is down-regulated in human cardiomyocytes after hypoxia/reoxygenation (H/R) 



and its overexpression improve the viability of these cells. However, enforced expression of Atg5 

reversed the effect of miR-638 on autophagy and cell apoptosis suggesting that miR-638 attenuated 

the effects of H/R treatment by regulating ATG5-mediated autophagy in human cardiomyocytes 25. 

Also, overexpression of miR-129-5p in H9c2 cells treated by hydrogen peroxide inhibited autophagy 

by targeting Atg14 gene and activating PI3K/AKT/mTOR pathway resulting in decreased cell apoptosis 
26.  

Other miRNAs play their protective effect by regulating one of the pathways involved on 

autophagy regulation. The levels of miR-223 are significantly upregulated in the heart of post-MI HF- 

rats and in hypoxia-treated neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. The increased miR-

223 levels protect NRCMs and H9c2 cells from hypoxia-induced apoptosis whereas decreasing miR-

223 expression had contrasting effects. This protective effect of miR-223 is explained by the decrease 

of its target gene expression PARP-1 (poly(ADP-ribose) polymerase 1) resulting in inhibition of 

excessive autophagy via the Akt/mTOR pathway 27. However, miR-204 expression is decreased in the 

heart of rat upon I/R injury associated with increased autophagy as observed by the increased LC3II 

levels 28. Also, it was shown that transfection of miR-204 in H9c2 cells attenuated cell apoptosis 

induced by H/R treatment. The protective effect of miR-204 is explained by targeting SIRT1-mediated 

autophagy 29. The expression of miR-34a is also decreased during I/R and overexpression of this miR 

decreased TNFα expression resulting in reduced autophagy and apoptosis levels on NRCMs  after H/R 
30. Lower miR-29b-3p levels were found in HF patients and in hypoxia-stimulated H9c2 cells. The 

overexpression of miR-29b-3p inhibited autophagy and apoptosis induced in hypoxic-induced H9c2 

cells through targeting SPARC and inhibiting TGFβ-1/Smad3 pathway 31. 

3.1.2. Antiautophagic-miRNAs with deleterious effects 

Some miRNAs contribute to ischemic/reperfusion injury by inhibiting the autophagy process. The 

miR-497 is dramatically down-regulated in infarcted heart and in hypoxic cardiomyocytes and its 

overexpression in murine MI model increased the infarcted size. It was shown that miR-497 inhibited 

autophagy by targeting LC3B gene and induced cell apoptosis by targeting Bcl-2 gene suggesting that 

decreasing miR-497 levels is a protective mechanism of the heart in response to MI 32. The expression 

of miR-30e was also decreased after myocardial I/R. Its silencing in H9c2 cells  increased autophagy 

and attenuated oxidative stress and cell apoptosis, that are reversed by treating the cells with 3-

methyladenine, an inhibitor of macroautophagy. These results suggest that decreasing the miR-30e 

levels protected the heart against I/R injury by autophagy induction 33. 

3.1.3. Proautophagic-miRNAs with protective effects 

Higashi et al. 34 showed that 30 min of coronary occlusion followed by 2 days of reperfusion 

caused a significant decrease in the rabbit cardiac tissue expression of miR-145 in the border and 

infarcted areas of the myocardium compared to the remote non-infarcted area. Injection of 

liposomes containing miR-145 after the beginning of reperfusion reduced the infarcted area size, 

improved the LV function and remodeling, these beneficial effects were abolished by chloroquine 

treatment. Further study showed that miR-145 promoted autophagy in cardiomyocyte by directly 

targeting FRS2 (fibroblast growth factor receptor substrate 2) mRNA resulting in the  acceleration of  

the transition of LC3I to LC3II, an important step of autophagosome maturation 34. The protective 

effect of miR-145 is also observed in H9c2 cells after H/R. In this study, the authors demonstrated 

that miR-145 inhibited H/R-induced apoptosis by promoting autophagy via Akt3/mTOR signaling 

pathway 35. The miR-99a was shown to be down-regulated in infarcted heart and in neonatal mice 

ventricle myocytes exposed to hypoxia. Lentivirus-mediated overexpression of miR-99a in infarcted 



heart inhibited cardiac remodeling and improved heart function at 1 and 4 weeks after its 

administration. It was shown that miR-99a decreased mTOR protein levels without any effect on its 

mRNA levels suggesting that miR-99a regulated mTOR expression at a post-transcriptional level. 

Consequently, the autophagy induced was associated with a decrease of cell apoptosis. This study 

demonstrated that overexpression of miR-99a improved post-MI cardiac function by up-regulating 

autophagy via targeting mTOR pathways, inhibiting apoptosis and attenuating pathological 

remodeling 36. The miR-144 levels were reduced in the heart of MI mice with permanent left anterior 

descending artery (LAD) ligation. The miR-144 k/o mice showed a worse HF phenotype with 

ventricular dilatation and impaired contractility after LAD ligation. However, miR-144 administration 

decreased myocardial infarcted size and improved post-MI remodeling. Further study allowed 

authors to conclude that miR-144 increased autophagy and decreased fibrosis and apoptosis by 

targeting mTOR 37.   

 

3.2. Macroautophagy regulation by lncRNAs 

LncRNAs are non-coding RNAs longer than 200 nucleotides that regulate both gene expression 

and protein translation 22. Nuclear localized lncRNAs can regulate gene expression at both the 

epigenetic and transcriptional levels. Cytosol-based lncRNAs can modify protein translation by 

blocking, stabilizing/destabilizing, or sponging miRNAs. The lncRNAs are involved in the regulation of 

numerous biological processes including autophagy in cardiac and non-cardiac cells.   

3.2.1. Antiautophagic- lncRNA with protective effects  

Liu et al. 38 showed that the expression of lncRNA CAIF (cardiac autophagy inhibitory factor) was 

significantly decreased in a mice model of I/R injury and in cardiomyocytes treated with H2O2. 

Conversely, overexpression of CAIF inhibited autophagy inducing cardiomyocyte cell death and 

cardiac dysfunction caused by I/R. In this study, the authors demonstrate that CAIF directly binds to 

p53 protein and blocks its interaction with the myocardin promotor. Myocardin, a smooth muscle 

and cardiac muscle-specific transcriptional activator, is upregulated after I/R and H2O2 treatment, 

and is involved on autophagy regulation in cardiomyocytes by increasing Beclin 1 expression. These 

data suggest CAIF-P53-myocardin pathway as a novel regulator of autophagy in cardiomyocytes and 

as a potential therapeutic target in order to inhibit excessive autophagy and improve cardiac function 

after I/R 38. 

3.2.2. Proautophagic- lncRNA with protective effects 

On the other hand, it was shown that the lncRNA H19 expression was decreased in a mice model 

of acute MI and that its overexpression decreased infarcted size and improved cardiac function 

associated with autophagy upregulation; however, the mechanisms by which autophagy is regulated 

by H19 is still unknown. These results suggest that H19 protects the heart from MI by increasing 

cardiac autophagy 39. 

3.2.3. Proautophagic- lncRNAs with deleterious effects 

Some lncRNAs are upregulated after I/H and enhanced autophagy-target genes expression by 

inhibiting miRNAs expression. Yin et al. 40 showed that the lncRNA Galont (GATA1 activated lncRNA) 

is upregulated in neonatal mice cardiomyocytes in response to anorexia/reoxygeneation; however, 

miR-338 expression is downregulated. Overexpression of miR-338 directly decreased the formation 

of autophagic vesicules and induced cell death after anorexia/reoxygeneation treatment without any 

effect on control cells. The antiautophagic effect of miR-338 is explained by its direct targeting of the 



autophagic mediator Atg5.  It was shown that Galont directly bound to miR-338 and decrease its 

expression. Consequently, Atg 5 expression is increased resulting in excessive cardiac autophagy and 

cell death 40. Also, the lncRNA APF (Autophagy promoting factor) enhances cardiac autophagy and 

cell death by inhibiting miR-188-3p expression resulting in the increase of its target gene expression, 

Atg7 24. Furthermore, the lncRNA AK088388 is upregulated during reoxygenation in mouse cardiac 

myocytes associated with the decreased miR-30a expression. Overexpression of miR-30a decreased 

the expression of its target gene Beclin-1 resulting in inhibition of autophagy induction and 

decreased cell death. The co-overexpression of lncRNA AK088388 inhibited the protective effect of 

miR-30a. However, the mutation of the miR30-a binding site in AK088388 failed to block the effect of 

this miRNA on autophagy and cell survival. These results suggest that the lncRNA AK088388 regulates 

autophagy through miR-30a/Beclin-1 pathway to affect cardiomyocyte injury 41. The lncRNA HRIM 

(hypoxia/reoxygenation injury-related factor in myocyte) was upregulated after H/R in H9c2 cells. 

HRIM silencing prevented death of cells by suppressing the autophagic activity in H/R-treated cells. 

However, the target genes of this lncRNA and the detailed mechanism of its autophagic effect need 

to be elucidated 42. Other lncRNAs were highly expressed in diabetic murine heart and contributed to 

I/R injury by regulating autophagy. It was shown that Neat-1 (Nuclear-enriched abundant transcript 

1) and AK139328 seemed to induce autophagy by upregulating Foxo1 expression and decreasing 

miR-204-3p levels, respectively 43,44. 

The lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is expressed at 

high levels in patients with acute MI 45 and is closely associated with the pathogenesis of myocardial 

I/R injury 46,47. It was shown, on one hand, that MALAT1 contained binding site for miR-204 48 and, in 

the other hand, that miR-204 protected the cardiomyocytes against I/R injury via inhibiting 

autophagic cell death 28. Also, MALAT1 targeted miR-558 to enhance ULK1-mediated autophagy in 

isoproterenol treated-cardiomyocytes 49. It will be important to know if lncRNA MALAT increased 

cardiomyocyte autophagy and myocardial injury during I/R by negatively regulating miR-204 or miR-

558 expression. 

4. CONCLUSION 

Despite current therapies, acute MI and HF which often follows, remain the leading causes of death 

and disability worldwide. New therapeutic strategies are therefore required to protect the heart 

against the detrimental effects of acute ischemia/reperfusion injury. Inhibition of macroautophagy 

during reperfusion prevented cardiomyocyte death and reduced myocardial infarct size, however its 

induction during LVR preserved LV function and prevent the onset of HF. The most pharmacological 

agents used up to date for regulating macroautophagy are not specific and may interfere with other 

cellular processes, so it will be necessary to identify new therapeutic approaches to regulate 

autophagy. Several non-coding RNAs were shown to be modulated during I/R and involved on 

cardiac autophagy regulation. The tissue specific expression of some non-coding RNAs and their easy 

manipulation show their potential as novel targets for clinical developments to treat autophagy 

related-diseases. Identification of specific cardiac non-coding RNAs that regulate autophagy could be 

a good opportunity to protect heart from MI injury without affecting the autophagy activity in other 

organ.  
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Figure 1: Outline summarizing the non-coding RNAs regulating cardiac autophagy, their targets and function. Green and red arrows indicate activation and 

inhibition, respectively   


