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Abstract

This paper studies the optimal scoring of multiple choice tests by using stan-

dard estimation theory where obtained scores are efficient estimators of examinees’

ability. The marks for wrong selections and omissions jointly minimize the mean

square difference between obtained score and ability. Examinees are loss averse, ie.

disproportionately weight the penalty for wrong selection in their utility function,

which entails a preference for omission. With a limited number of items, it is effi-

cient to incentivize the lowest able to omit as their answers essentially reflect noise.

The shorter the test, the stronger the incentives to omit. Loss aversion improves

estimators efficiency by inducing more omission, which reduces the need to bias

the marks to foster omission. The model also sheds new lights on the statistical

properties of two widely used scoring methods: number right and formula scoring.
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1 Introduction

Multiple-choice tests are a popular type of assessment in education. They have several

advantages like fast and easy scoring, wide sampling of the content and grading exempt

from rater bias. A major drawback is the difficulty of dealing with guessing by examinees.

Examinees who have no clues about which answer is right may still select one at random

and reap a point if lucky. More generally, examinees often have partial knowledge and

select answers which they judge to be more likely. While an incorrect selection is always

the result of a lack of knowledge, a correct one may result either from knowing, supposing

or guessing, without the possibility to tell the three apart.

Guessing adds an error component to scores. Suppose that a test-taker has a prob-

ability 0.8 of selecting the right option. She may be lucky and gets an average score of

90%, or unlucky and gets a score of 70%. In both cases, her true ability is mismeasured.

If the number of items is large enough, the law of large numbers applies and ensures that

the measurement error converges to zero. But for practical reasons, most tests have a

limited number of items.

The aim of this paper is to design a scoring rule, a mark which penalizes wrong

selections, so that the measurement error is as low as possible. The task is complicated by

the possibility given to examinees to leave some items blank if they are unsure about the

right option. Omission suppresses the uncertainty due to the chance factor but introduces

another type of measurement error which stems from the impossibility to distinguish

examinees with different levels of partial knowledge. The problem is especially acute if

a significant fraction of examinees omit. An efficient scoring rule should also include a

mark for omission which gives the best estimates of omitters’ ability.

The problem differs from a standard mean estimation procedure as the marks serve

two purposes at once. They provide an estimation of ability through the computation

of a score for each examinee, but they also influence examinees in their choice between

answering and omitting, which in turn changes the conditions under which abilities are

estimated. How do the marks affect incentives also depends on the extent to which

examinees are reluctant to risk answers on the basis of their knowledge. To study to
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what extent those two objectives interact and may possibly conflict, I pose an estimation

model in which the marks jointly minimize the mean square difference between examinees’

scores and abilities.

Several studies have shown that examinees do not answer all items even when ex-

pected mark from guessing is greater than for omitting (Sheriffs and Boomer, 1954, Ebel,

1968, Cross and Frary, 1977, Bliss, 1980, Pekkarinen, 2015). Those observations are not

consistent with examinees being risk neutral score maximizers. A departure from risk

neutrality is introduced by assuming that examinees are loss averse: they dislike receiving

a bad mark by a larger extent than they like getting a full mark when they are right.

This creates a bias toward omission, which consequences for the design of efficient scoring

are investigated.

I find that the efficient scoring rule is fundamentally sensitive to the size of the test.

When a limited number of items is proposed to examinees, answers by the less able are

too noisy to allow accurate estimation of their ability. The efficient mark for omission

is positive to induce them to omit and reveal their low ability. The fewer items, the

more omitters and the higher the mark. Loss aversion generally improves estimators

efficiency by inducing spontaneously more omission and thereby reducing the need to

bias the mark upward to favor omission. When the test has a large sample of questions,

ability of low able examinees is estimated with accuracy when they answer, eliminating

the need to induce them to omit. The mark for omission drops to negative values so

that all examinees answer. The penalty for wrong answers is essentially insensitive to the

number of items and the scoring strategy.

The model sheds new lights on statistical properties of the two most used scoring

methods, number right and formula scoring. Number right scoring (NRS) counts the

number of right selections and divides the sum by the total number of items. Omitted

items and wrong selections count for zero. Formula scoring (FS) imposes a penalty for

incorrect selection equal to −1/(m− 1), where m is the number of options in items. The

formula equalizes the expected scores of pure guessing and omission (Thurstone, 1919,

Holzinger, 1924). I find that the two scoring rules estimate examinees ability with similar

degree of accuracy. On the one hand, FS induces more omission by penalizing mistakes,
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which reduces the error component in a fully efficient model. On the other hand, omitters

ability is poorly estimated with a zero mark for omission. NRS rules out omission, which

is only efficient with a large number of items, but avoids any estimation bias problem

arising from omissions.

While the two scoring methods produce similar measurement errors, they both un-

derperform compared to an efficient scoring rule. I find in a calibrated model that a

test-maker using FS or NRS would have to increase the number of items by on average

30% to obtain the same estimation accuracy than an efficient scoring rule. NRS and FS

share two shortcomings. First they do not adjust the marks for finite sample, that is they

do not induce more omissions when the number of items is smaller. Second they both set

the mark for omission to zero, which induce too much or too few omission, depending of

the length of the test.

Multiple choice tests as an assessment tool have a long history. They were first

administered on a large scale during the World War I by the US Army to quickly identify

the competencies of hundred of thousands of recruits (Ebel, 1979). Its adoption then

spread rapidly in various domains, like intelligence testing (Pintner, 1923) or in education.

Kelly (1916) is the first researcher to report and investigate the use of multiple choice

tests in measuring children reading skills. The standardization of the evaluation process

proved to be particularly adapted to large scale and high stake exams, like the Scholastic

Aptitude Test (SAT) and Graduate Record Examination (GRE), to take two prominent

examples in the USA.

To what extent tests provide accurate and valid measures of ability, skills or educa-

tional achievement has been studied for more than a century by psychometrics, a research

domain at the intersection of psychology and statistics. Many of its results have been

incorporated into what is regarded today as classical test theory (see e.g. McDonald,

1999). It is based on the central assumption that a person’s obtained score on a test is

the sum of a true score and an error score (Harvill, 1991). It has developed around two

key concepts: reliability and validity. A measure is reliable if it produces similar results

under consistent conditions. Reliable scores are reproducible from one test to another

(Traub and Rowley, 1991). A valid measure is one that measures what it is intended to
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measure.

A voluminous theoretical and empirical literature has applied those concepts to the

properties of different scoring rules (e.g. Diamond and Evans, 1973; Burton, 2001; Lesage

et al., 2013). The superiority of one of those rules to the other is still debated. By imple-

menting negative marking and correcting for guessing behavior, FS encourages omission,

which increases reliability (Lord, 1975, Mattson, 1975, Burton, 2001). Some authors have

argued that FS not only measures the mastery of domain knowledge but also students’

answering strategies and risk-taking behavior (e.g. Votaw, 1936; Frary, 1988; Budescu

and Bar-Hillel, 1993). NRS provides strong incentives to answer all questions, which

minimizes the bias.

By assuming that examinees only differ by their knowledge, and not personality traits

like risk aversion, the present model does not address this issue. Its general aim is to

recast the issue of evaluating ability through multiple choice tests into as standard the

framework of estimation theory as possible. By using as a fitness criterion the mean square

error, the error term can usefully be decomposed into a variance and a bias components.

The model finite and large sample statistical properties can be contrasted. A major

finding to this regard is that the efficient scoring rule takes two different forms with a

limited number of items and a large set of items.

The model departs from psychometric studies in two other ways. First, a special

attention is paid to the interplay between the scoring rule, risk preferences and ability

estimation. In most existing studies, risk preferences are not modeled or when they are,

examinees are risk neutral. By posing the realistic joint assumption of loss aversion and

narrow framing, examinees display a bias toward omission, in accordance with empirical

literature (e.g. Akyol et al., 2016). Second, whereas the literature has essentially focused

on existing scoring rules, mostly FS and NRS, they do not derive the marks for wrong

answers and omission from first principles. They are made endogenous here by making

a distinction between a notional mark for wrong answer, essentially a scaling parameter

which pins the true score down, and actual marks which minimize measurement errors

defined as deviations from true score.
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A few articles have also made the marks endogenous. Espinosa and Gardeazabal

(2010) simulate a model of optimal scoring with heterogeneous risk aversion and varying

item difficulty and find a relatively high penalty to dissuade guessing. Budescu and Bo

(2015) also simulate a model of optimal scoring but with different assumptions (heteroge-

neous loss aversion and miscalibration of probabilities). They find that a negative penalty

aggravates the score bias and standard deviation, and decreases the correlation between

simulated and true scores. Akyol, Key and Krishna (2016) model the test-taking behav-

ior of students in the field, and use the model to estimate their risk preferences. They

then simulate counterfactual scoring rules and find that increasing the penalty for wrong

answer has a significant impact on omission, which in turn improves estimation of exam-

inees’ ability. Risk aversion heterogeneity has little influence on simulated scores, which

makes the case for negative penalty. In those articles, only the penalty for wrong answers

may vary, whereas both the marks for wrong answers and omission are endogenous in the

present model.

The remainder of the paper is organized as follows. Section 2 presents the scoring

model and its basic ingredients: true score, loss aversion and mean squared error. Section

3 put forth several analytical properties of the efficient scoring model. Section 4 calibrates

a stylized model and presents simulation results. Section 5 concludes.

2 Scoring model

2.1 Scoring rule

A test composed of n items is taken by examinees. Each item has m possible answers,

one correct and m− 1 incorrect. Items are supposed to be well written, without obvious

answers, traps, or ambiguous formulations. Options are correctly randomized within each

item. There is enough time for all questions to be answered. I assume further that all

items are of equal difficulty, so that examinees have a constant probability p of answering

correctly any of them. The probability varies across examinees and is a measure of their
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ability in the content area covered by the test. The test-maker’s objective is to design a

scoring rule so that examinees receive a score as close as possible to their ability. Every

item has three possible outcomes to which are assigned specific marks. The mark given to

a correct selection is normalized to 1. The mark assigned to wrong selections is denoted

θ and the one to omissions γ. Minimal restrictions are imposed on the marks:

θ ≤ γ < 1

The final score is the summation of marks obtained in all item divided by the number

n of items. Let us consider an examinee who never omits. The number of right selections

is the random variable x̃ which follows a binomial distribution B(n, p) with p examinee’s

probability of a correct selection. Examinees’ score is the sum x̃ ∈ [0, n] of right answers,

plus the sum of wrong answers n− x̃ weighted by the penalty θ, divided by the number

of items:

s̃ =
x̃+ (n− x̃)θ

n
(1)

The score’s first two moments, given success rate p, are E(s̃; p) = p + (1 − p)θ and

V (s̃; p) = 1
n
(1− θ)2p(1− p).

2.2 True score

True score depends on examinee’s ability p. It is the observed score’s component unin-

fluenced by random events (Harvill, 1991) or the score an examinee would get if p were

observable:

s(p) = p+ (1− p)θ∗ (2)

with θ∗ < 1 a notional mark which would prevail in absence of measurement errors.

The notional mark is free here from normative justification. It is essentially a scaling

parameter which does not affect the way examinees are ranked relative to each other.

What will matter for estimation efficiency will be how actual marks for wrong answers

and omissions relate to the notional mark.
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To fix ideas, the notional mark may take a reference value borrowed from one of the

two most used scoring rules, number right scoring (NRS) or formula scoring (FS). In NRS,

the final mark is the number of right answers, implying θ∗ = 0 and s(p) = p. If examinees

without any knowledge select an option at random, their expected score is positive and

equal to the probability of picking the right option among m ones: E(s(1/m)) = 1/m.

FS aims at removing in expectation the reward from pure guessing. It imposes the

penalty θ∗ = −1/(m − 1) whenever an incorrect answer is selected, so that examinee’s

expected score is zero with pure guessing:

E
(
s
( 1

m

))
=

1

m
− m− 1

m

1

m− 1
= 0

If some examinees are misinformed or have false knowledge, they could perform worse

than selecting an option at random. The minimal ability p would lie between 0 and

1/m in this case. NRS also rewards misinformation, albeit to a lesser extent than pure

guessing. Misinformed examinees would obtain a negative mark in expectation under FS.

Misinformation is ruled out in the following by assuming that examinees’ lowest ability,

denoted p0, is equal to 1/m.

2.3 Risk Preferences

Omission delivers a sure mark compared to selection, unless examinees are sure about

which option is right. The choice between a sure outcome and a risky one is modeled

through three assumptions. First, examinees get utility u(x) from mark x of every item,

and not from average or aggregate score. Narrow framing (Tversky and Kahnemman,

1981), the assumption that people do not pool all sources of risk before deciding, has

proven useful in various contexts of decision involving multiple risks (Tversky and Kah-

nemman, 1981, Read, Loewenstein and Rabin, 1999).

Second, examinees focus on losses and gains and overweight losses. They are more

affected by negative outcomes than by positive ones of same magnitude. Loss aversion

is a central feature of Kahneman and Tversky’s (1979) prospect theory of how people

evaluate risks. Its validity is based on extensive experimental evidence, particularly
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when associated with narrow framing. Bereby-Meyer, Meyer and Flascher (2002) provide

evidence of narrow framing and loss aversion in the context of exam taking.1

Third, the utility derived from a positive or negative mark is linear. Applied to the

context of exam taking, the utility loss associated with being wrong is larger than the

utility gain of being right or omitting: u(1) = 1, u(γ) = γ and u(θ) = λθ, with λ the

coefficient of loss aversion.

A wrong selection is edited as a loss by examinees whatever the mark’s sign: λ > 1 if

θ ≤ 0 and λ < 1 if θ > 0. Loss aversion is synthetically defined by the sign condition

θ(λ− 1) ≤ 0

Loss neutrality is equivalent to risk neutrality, a limit case of risk preferences with

λ = 1. Loss averse examinees do not like risk. They always prefer a sure mark to a

random one with the same expectation.

Given a scoring rule {γ, θ}, omitting is preferred to responding if its mark is greater

than the loss-weighted expected mark of a response:

γ > p+ (1− p)λθ

Marginal examinees are test-takers whose ability p̄ makes them indifferent between

selecting and omitting:

γ̂ = p̄+ (1− p̄)λθ̂

Compared to the case of risk neutrality, loss aversion raises the threshold probability

p̄:

p̄ =
γ − λθ
1− λθ

>
γ − θ
1− θ

(3)

Examinees omit when they are not confident enough in their selection: p ≤ p̄, which

depends positively on the mark γ and negatively on penalty θ.
1 See also Budescu and Bo (2015). The joint assumption that people tend to focus on individual gains

and losses rather than on average outcomes is sometimes labeled myopic loss aversion (Barberis, Huang,
and Thaler, 2006; Barberis and Huang, 2008). Narrow framing is also in accordance with observations
showing that individuals do not become risk neutral when they take large tests involving many inde-
pendent items, which risk vanishes once aggregated (Pekkarinen, 2015; Akyol, Key and Krishna, 2016;
Iriberri and Rey-Biel, 2018).
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2.4 Mean squared error

Examinees’ true score is either estimated thanks to respondents’ success rate, or by

assigning a constant mark to omissions, which exploits the fact that omitting reveals a

low ability on average. Both methods produce error measurements.

Consider first an examinee whose ability is p > p̄. Because her ability does not vary

across items and all items have the same difficulty, she answers all of them and gets the

score s̃ defined in (1). The score is interpreted as a point linear estimator of true score

s(p). Its quality can be measured by common statistical methods and optimized by the

adequate choice of the marks θ and γ. The mean squared error (MSE) of observed score

s̃ taken by examinee with ability p is the average squared difference between s̃ and true

score s(p):

mse(θ; p) = E
((
s̃− s(p)

)2
)

(4)

MSE is a commonly used measure of estimators performance. It is analytically

tractable and lends itself to the intuitive decomposition:

E
(
(s̃− s(p))2

)
= V (s̃; p) + (E(s̃; p)− s(p)

)2 (5)

The first component is observed score’s variance. The second one is squared bias,

which measures by how far the expected score deviates from its theoretical mean. The

MSE criterion controls this way both for sample fluctuations and estimator’s accuracy.

MSE of an unbiased score (E(s̃) = s(p)) is equal to score’s variance.

Consider now a test-taker whose ability is p ≤ p̄. Because her ability is constant across

items, she omits all of them and gets the score γ. She would obtain the true score s(p)

if her ability was perfectly measured. Hence examinee’s quadratic error is the squared

deviation of γ from true score s(p), or squared bias:

sb(γ; p) =
(
s(p)− γ

)2 (6)

While individual abilities are not observed by the test-maker, their distribution is

assumed to be known. Let f(p) denote the ability probability density function. The test-
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maker chooses the marks θ and γ so as to minimize the MSE averaged over examinees:

min
γ,θ

MSE(γ, θ) =

∫ p̄

p0

sb(γ; p)f(p)dp+

∫ 1

p̄

mse(θ; p)f(p)dp

=

∫ p̄

p0

(
s(p)− γ

)2
f(p)dp+

∫ 1

p̄

E
((
s̃− s(p)

)2
)
f(p)dp (7)

Like the MSE component from answers, the MSE component from omissions, normal-

ized by their proportion F (p̄) in the population, lends itself to a decomposition:

1

F (p̄)

∫ p̄

p0

(
s(p)− γ

)2
f(p)dp = E|omit

(
(s(p)− γ)2

)
= V|omit

(
s(p)

)
+
(
s̄(p)− γ

)2 (8)

where E|omit is expectation conditional on examinees being omitters. s̄(p) is omitters’

average ability:

s̄(p) = E|omit
(
s(p)

)
=

1

F (p̄)

∫ p̄

p0

s(p)f(p)dp (9)

and V|omit
(
s(p)

)
= E|omit

(
(s(p)− s̄(p)

)2
) is the conditional variance of omitters’ ability.

Total omitters’ measurement error has two components. The variance term classically

measures how far omitters’ ability deviates from its mean. The more omitters (the higher

p̄), the larger the dispersion and the higher the MSE. The second term is squared bias

which measures by how far the mark deviates from omitters’ average ability.

Given a proportion F (p̄) of omitters, the MSE is minimized for γ̂ = s̄(p). When the

proportion F (p̄) is endogenous and responds to variations of the marks, we will see that

it may be efficient to bias γ̂ to induce more or less omission.

It also follows that, as long as some examinees omit, the variance term in (8) is a lower

bound whatever the number of items that compose the test. This is a major difference

with the MSE component from answers where the average error can be brought to zero

with n large enough.
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3 Efficient scoring

3.1 Optimality conditions

Assume that a non-empty group of examinees with ability p ∈ [p0, p̄] omit. First order

conditions of the minimization program (7) are:

∂MSE
∂γ

(γ, θ) =
(
sb(γ̂; p̄)−mse(θ̂; p̄)

)dp̄
dγ
f(p̄) +

∫ p̄

p0

∂sb

∂γ
(γ̂; p)f(p)dp = 0

∂MSE
∂θ

(γ, θ) =
(
sb(γ̂; p̄)−mse(θ̂; p̄)

)dp̄
dθ
f(p̄) +

∫ 1

p̄

∂mse

∂θ
(θ̂; p)f(p)dp = 0

or

∂MSE
∂γ

=
(
sb(γ̂; p̄)−mse(θ̂; p̄)

) 1

1− λθ̂
f(p̄) + 2

∫ p̄

p0

(
γ̂ − s(p)

)
f(p)dp = 0 (10)

∂MSE
∂θ

= −
(
sb(γ̂; p̄)−mse(θ̂; p̄)

)(1− p̄)λ
1− λθ̂

f(p̄)

+ 2

∫ 1

p̄

(
(1− p)2(θ̂ − θ∗)− 1

n
p(1− p)(1− θ̂)

)
f(p)dp = 0 (11)

The common term in the two equations

sb(γ̂; p̄)−mse(θ̂; p̄) =
(
γ̂ − s(p̄)

)2 − E
[
(s̃− s(p̄))2

]
=
(
γ̂ − s(p̄)

)2 −
(
V (s̃; p̄) +

(
E(s̃; p̄)− s(p̄)

)2
)

=
(
γ̂ −

(
p̄+ (1− p̄)θ∗

))2

−
( 1

n
(1− θ̂)2p̄(1− p̄) + (1− p̄)2(θ̂ − θ∗)2

)
(12)

is a replacement effect caused by marginal examinees with ability p̄ changing their choice

from selection to omission. This impacts the MSE by substituting a measurement error

from answering by one from omitting. dp̄/dγ and dp̄/dθ are the effects of a variation of

γ and θ on threshold probability p̄ (see (3)). Raising γ or reducing θ both encourage

omission and expand the group of omitters:

dp̄

dγ
=

1

1− λθ̂
> 0

−dp̄
dθ

=
(1− p̄)λ
1− λθ̂

> 0
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Two model’s particular cases are of interest. In the first case, examinees’ ability is

estimated without omission (Subsection 3.2). In the second case, omission is allowed, but

the number of items included in the test is arbitrarily large (Subsection 3.3).

3.2 No omission

As a preliminary analysis, let us assume that the mark γ is set so that no examinees

find preferable to omit, even the least knowledgeable ones whose ability is p0: γ ≤

p0 + (1− p0)λθ. A possible scoring rule which satisfies this property has the same mark

for omission and wrong selection: γ = θ. An example is NRS where the two marks

equal zero and for which it is never optimal to omit. We are left with one endogenous

parameter, the mark θ, which minimizes the MSE:

min
θ

MSE(θ) =

∫ 1

p0

mse(θ; p)f(p)dp =

∫ 1

p0

V (s̃; p) + [E(s̃; p)− s(p)
]2
f(p)dp

=

∫ 1

p0

( 1

n
(1− θ)2p(1− p) + (1− p)2(θ − θ∗)2

)
f(p)dp

The variance term V (s̃; p) is minimized by θ = 1 and the squared bias by θ = θ∗.

Hence, the efficient mark θ̂ lies somewhere between those two values. After some calcu-

lations, θ̂ satisfies:
θ̂ − θ∗

1− θ̂
=

1

n

∫ 1

p0
p(1− p)f(p)dp∫ 1

p0
(1− p)2f(p)dp

(13)

Proposition 1 (i) θ∗ < θ̂ < 1, (ii) θ̂ decreases with n and (iii) θ̂ → θ∗ when n→∞.

Proof (i): the right hand term of (13) is positive. The case θ̂ > 1 is ruled out by θ∗ < 1.

(ii) and (ii) are straightforward from Condition (13). �

A reduced penalty (a higher θ) lowers the score’s variance, which is traded off against

accuracy. The resulting score lessens the penalty, compared to a scoring with the notional

mark: θ̂ > θ̂∗. Contrary to the variance, the bias is independent of n. Hence when

n increases, its relative weight in the MSE also increases, which makes the bias more

costly. In other words, as more items are included in the test, abilities are estimated

13



with increasing precision, making less necessary to bias the mark to reduce statistical

fluctuations.

3.3 Large sample properties

When the number of items in the test is arbitrarily large, scores are perfect estimators of

ability. Omission should be discouraged as a result, except in a borderline case.

Proposition 2 θ̂ → θ∗ when n→∞; γ̂ < p0 +(1−p0)λθ∗ if λ > 1, or γ̂ ≤ p0 +(1−p0)θ∗

if λ = 1.

Proof The MSE minization program is:

min
γ,θ

MSE(γ, θ) = min
γ,θ

∫ p̄

p0

(
γ − (p+ (1− p)θ∗)

)2

f(p)dp

+

∫ 1

p̄

( 1

n
(1− θ)2p(1− p) + (1− p)2(θ − θ∗)2

)
f(p)dp

The variance term asymptotically tends to zero with n:

lim
n→∞

MSE =

∫ p̄

p0

(
γ − (p+ (1− p)θ∗)

)2

f(p)dp+

∫ 1

p̄

(
(1− p)2(θ − θ∗)2

)
f(p)dp

The MSE is minimized for θ̂ = θ∗ and γ̂ < p0+(1−p0)λθ∗ such that all examinees answer,

implying that the first integral is zero. If λ = 1, the condition γ̂ = (p0 + (1 − p0)λθ∗

allows the least knowledgeable to omit since their MSE is also zero in this case. �

When the number of items is arbitrarily large, respondents’ abilities are accurately

estimated. To the contrary, omitters create measurement errors which do not vanish with

test length, since omission signals low ability only on average.

Under risk neutrality (λ = 1), the unbiasedness condition for the least able coincides

with the incentives given to them to omit. If γ̂ = p0 + (1 − p0)θ∗, they are indifferent

between answering and omitting. If they omit, they get the unbiased mark γ̂ = p0 + (1−

p0)θ∗ = s(p0). If they answer, they obtain the same score p0 + (1− p0)θ∗. It results that

efficient marks may indifferently induce the least able to answer or to omit.
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3.4 Finite sample properties

When the number of items is finite, examinees’ ability is estimated with errors due to

finite-sample fluctuations. How does it affect efficient marks θ and γ? A major deter-

minant is the sign of the replacement effect presented in Subsection 3.1. A negative

replacement effect means that the MSE is reduced when marginal examinees switch from

selection to omission. Lemma 1 indicates under which condition the replacement effect

is negative.

Lemma 1 sb(γ̂; p̄) − mse(θ̂; p̄) < 0 if (i) λ = 1, or (ii) θ̂ > θ∗ and 0 < −θ̂(λ − 1) ≤

2(θ̂ − θ∗).

Proof sb(γ̂; p̄)−mse(θ̂; p̄) < 0 if
(
γ̂ − s(p̄)

)2
<
(
E(s̃; p̄)− s(p̄)

)2
+ V (s̃; p̄) (see (12)). If

λ = 1, γ̂ = E(s̃; p̄), the two biases cancel off exactly, sb(γ̂; p̄)−mse(θ̂; p̄) < 0. If λ is close

enough to 1: 0 < θ∗ < θ̂ implies 0 < p̄+(1−p̄)θ∗ < p̄+(1−p̄)λθ̂ < p̄+(1−p̄)θ̂ and therefore

0 < γ̂ − s(p̄) < E(s̃; p̄) − s(p̄). Higher loss aversion reduces γ̂ further and the bias sign

may reverse: γ̂ < s(p̄). The replacement effect is still negative if s(p̄)− γ̂ ≤ E(s̃; p̄)−s(p̄),

or, after some calculations, if −θ̂(λ− 1) ≤ 2(θ̂ − θ∗). �

Omission by marginal examinees entails an estimation bias as the corresponding mark

γ̂ = p̄+ (1− p̄)λθ̂ typically differs from true score s(p̄) = p̄+ (1− p̄)θ∗. But if examinees

are risk neutral or if they are moderately loss averse (with −θ̂(λ − 1) a measure of loss

aversion), and the penalty is above the notional mark, the bias from omitting is lower

than the measurement error from answering. It can be proved in this case that omission

by the less able examinees is efficient:

Proposition 3 γ̂ > p0 + (1− p0)λθ̂ if −θ̂(λ− 1) < 2(θ̂ − θ∗).

Proof If γ̂ = p0 + (1 − p0)λθ̂, all examinees answer, except possibly the least able

whose ability is p0. Without omission, the efficient penalty, denoted θ̂A satisfies θ̂A > θ∗

(Condition 13). Given θ̂A, omission by the least able is efficient if −θ̂A(λ−1) < 2(θ̂A−θ∗)

(Lemma 1). For γ̂ = p̄ + (1 − p̄)λθ̂A > p0 + (1 − p0)λθ̂A, the replacement effect remains
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negative under the same condition. First order condition (10), with γ̂A the efficient mark

given θ̂A, writes:

(
sb(γ̂A; p̄)−mse(θ̂A; p̄)

) γ̂A

1− λθ̂A
f(p̄) + 2

∫ p̄

p0

(
γ̂A − s(p)

)
f(p)dp = 0

implying γ̂A > s̄(p) (see (9)) if the replacement effect is negative. Let p̂ denote average

omitters’ ability. γ̂A > p̂+(1− p̂)θ̂A ≥ p̂+(1− p̂)λθ̂A > p0 +(1−p0)λθ̂A. Hence, omission

by the less able is efficient, given penalty θ̂A. Now let {γ̂, θ̂} be efficient marks, solution of

optimality conditions (10) and (11). Suppose ad absurdum that γ̂ ≤ p0+(1−p0)λθ̂, hence

θ̂ = θ̂A, but we have just proved that MSE(γ̂A, θ̂A) < MSE(γ, θ̂A) ∀γ ≤ p0 + (1− p0)λθ̂ if

−θ̂(λ− 1) < 2(θ̂ − θ∗), hence {γ̂, θ̂} cannot be efficient. �

It is efficient that the less knowledgeable omit if they are not too loss averse. Since

those examinees select options with no or little knowledge, their score essentially reflects

noise. It is therefore efficient to induce them to omit and thereby reveal their low ability.

The superiority of omission for the less able breaks if loss aversion exceeds a certain level.

Fig. 1 (in Appendix II) explains why. If examinees are risk neutral (diagram (a)),

estimated ability of marginal omitters and respondents are equally biased: γ̂ − s(p̄) =

E(s̃; p̄) − s(p̄). The mark γ̂ is biased upward to induce examinees to omit, but so is

respondents’ score s̃. If examinees are loss averse (diagram (b)), the mark γ̂ is moving

to the left. The resulting omission bias is lower than the answer bias. Compared to

loss neutrality, more examinees spontaneously omit, which limits the need for rewarding

omission and distorting γ. Hence moderate loss aversion improves efficiency compared

to loss neutrality. If examinees are "excessively" loss averse (diagram (c)), the mark γ̂

is now moving away from true score and the omission bias may become larger than the

answer bias. The mark is not intended to foster omission anymore, but to refrain too

many examinees to omit. Its value is so low that it becomes a poor estimate of omitters’

ability, which makes omission inefficient.

Lemma 1 shows that if examinees are not too loss averse, inducing more examinees

to omit improves efficiency. A direct consequence is that the mark γ̂ is greater than

omitters’ average ability s̄(p) (defined in (9)).
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Proposition 4 γ̂ > s̄(p) if −θ̂(λ− 1) < 2(θ̂ − θ∗).

Proof First order condition (10) is:

2

∫ p̄

p0

(
γ̂ − s(p)

)
f(p)dp = −

(
sb(γ̂; p̄)−mse(θ̂; p̄)

) γ̂

1− λθ̂
f(p̄) > 0

if the replacement effect is negative. It follows:

γ̂ >
1

F (p̄)

∫ p̄

p0

s(p)f(p)dp = s̄(p)

�

It is efficient to bias the mark upward to induce more omission.

4 Simulated properties

4.1 Simulation strategy

This section presents some numerical results from the statistical model of scoring. Regard-

ing risk preferences, Tversky and Kahneman (1992) estimate a loss aversion coefficient

λ = 2.25 in cumulative prospect theory. It is however not entirely clear how a parameter

estimated from choices involving monetary outcomes translates to the context of grades.

I assume three conservative and plausible levels of loss aversion: loss neutrality (λ = 1),

moderate loss aversion (λ = 1.5) and stronger loss aversion (λ = 2.5). In the cases where

a mistake is positively marked (θ > 0), it is assumed to be still edited as a loss. The

mark is reduced by the coefficient 1/λ in this case.

Actual ability distributions are expected to vary with test’s difficulty relative to exami-

nees’ proficiency. Some distribution may be U-shaped with two modes close to the bounds

(absence of knowledge and perfect ability), others bell-shaped with a higher proportion

of examinees around mean ability. Estimating the ability distribution from real tests is

beyond the scope of this article. Without population and exam-specific informations, I

choose a simple uniform distribution over the space of ability [p0, 1].
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The MSE (7) is computed over a double grid of values for parameters θ ∈ [θ, θ∗]

and p̄ ∈ [1/m, 1]. The mark γ is retrieved for each couple (θ, p̄) by the condition γ =

p̄+(1− p̄)λθ. The two grids are composed of 2500 points each, so that 25002 = 6, 250, 000

different values of MSE are computed. The efficient marks correspond to the lowest value

calculated.

I use as a metric of fitness the root mean square error (RMSE):

RMSE(γ, θ) =

√∫ p̄

p0

(
γ − s(p)

)2
f(p)dp+

∫ 1

p̄

E
(
(s̃− s(p))2

)
f(p)dp

It is the geometric mean of measurement errors for all examinees. A RMSE of 0.10 for

instance means that obtained scores deviate on average from true scores by this amount,

which can be compared to the scales of a full point if a right answer and the notional

mark θ∗ (classically equal to −1/(m− 1) or 0) if a wrong one.

I also compute the bias on omitters’ score γ̂− s̄(p), which is estimated omitters’ ability

minus average omitters’ ability s̄(p) (see its expression (9)). It informs about to what

extent omission is fostered (if positive) or dissuaded (if negative). The bias depends on

the incentives to omit, which is measured by the mark differential γ − θ.

4.2 Efficient scoring

I first study a baseline model in which the test is composed of various numbers of items

(n = 1, 5, 10, 20, 40, 80, 200, ∞). Each item has m = 3 options. True score s(p) is

computed for notional mark θ∗ = −1/(m − 1), which corrects for pure guessing, as in

formula scoring. Loss aversion coefficient is set to 1.5.

Table 10 in Appendix I presents the efficient marks and main statistics in function of

n for the baseline calibration. Fig. 2 and Fig. 3 display the full profile of mark γ̂ and

the proportion of omitters respectively in function of n.

Two distinct scoring strategies emerge. When the number of items is below a threshold

(here less than 170) omission is encouraged to palliate inaccurate estimation of low able

examinees ability. The mark for omission is positive and above average omitters’ ability.
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Except for very limited number of items, it slowly decreases around 0.1 (Fig. 2). The

proportion of omitters is also decreasing with n (Fig. 3). When the test has a large

number of items, omission is dissuaded altogether. The mark for omission drops to

negative values, around −0.15. The mark differential γ̂ − θ̂ is reduced from around 0.6

to 0.33. The proportion of omitters follows logically the same profile with a sudden fall

to zero, the efficient proportion for large sample. All examinees answer, including the

lowest able.

Except for the extreme case n = 1 where the mark differential is 2.4 and 83.5% of

examinees omit, the efficient penalty θ̂ is greater (milder) than notional mark θ∗ (Table

10). It lies in the close neighborhood of the notional mark, which suggests that a scoring

rule with a fixed penalty equal to the notional mark might prove a good approximation

of the efficient rule (more in Subsection 4.6). The penalty for wrong answers varies little

with n, compared to the mark for omission. The behavior of low able is indeed better

targeted by the mark for omission than by the penalty which impacts all examinees,

including the most proficient who will always answer.

Efficient scoring departs from actual scoring rules like number right scoring (NRS) or

formula scoring (FS) in two ways. First, the marks are adjusted for finite sample, which

seems particularly relevant for tests of small and medium sizes. In FS or NRS, the marks

are fixed whatever the test length. Second, a mark for omission set to zero is not efficient.

It is either positive and even biased upward to foster omission or conversely negative to

dissuade omission (Fig. 2). For n not too large, the efficient value of γ is strictly positive

for two reasons. First, insofar as a significant proportion of examinees omit, the mark

should reflect omitters’ average ability and credit partial knowledge. Second, it exceeds

omitters’ average ability in order to foster omission further, which has been shown to

reduce measurement errors in the analytical section (Prop. 4).

The quantitative importance of adjusting for test length and setting γ above zero can

be evaluated by comparing measurement errors of efficient scoring with notional penalty

θ∗ = −1/(m− 1), and FS where actual penalty is −1/(m− 1) and the mark for omission

is fixed and equal to zero. Table 1 extracts root mean squared errors (defined in (4.1))

from Tables 10 and 18 with m = 3 options.
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Table 1: Efficient scoring vs formula scoring with moderate loss aversion and 3 options
per item

number of items (n) 1 5 10 20 40 80 200 ∞

Efficient scoring RMSE 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.00

Formula scoring RMSE 0.584 0.263 0.187 0.134 0.097 0.072 0.051 0.031

Compensated nb of items 3 7 13 25 48 99 285 -

Variation rate (%) 200 40 30 25 20 24 42 -

Notes. Examinees are moderately loss averse (λ = 1.5). Efficient scoring: notional mark
corrects for pure guessing (θ∗ = −0.50). See Table 10 for detailed statistics. Formula
scoring: the penalty corrects for pure guessing (θ = −0.50), the mark for omission is
set to zero (γ = 0), no adjustment is made for finite sample. See Table 18 for detailed
statistics. RMSE: root mean squared error. Compensated nb of items: number of items
which must be added to the test with FS to achieve the same level of accuracy than the
efficient test. Variation rate: rate of increase of the number of supplementary items.

As expected, measurement errors are larger with formula scoring than with efficient

scoring. The efficiency loss is significant for tests with a limited number of items due to

a lack of omission in formula scoring. The proportion of omitters is constant and equal

to 14.3% (Table 18), compared to 25% with efficient scoring and n = 20 (Table 10), and

18.6% with n = 80. Insufficient omission comes from a too low mark differential γ − θ

equal to 0.50, compared to 0.61 for n = 20 and 0.57 for n = 40 with efficient marks.

The error differences between the two scoring rules are decreasing with n and become

negligible in absolute terms for n > 40, except for very large n where a bias on omitters

ability still remains with FS. Table 1’s third and fourth lines show a persistent difference

once expressed in additional items FS must include to perform as well as efficient scoring.

The rate of increase is between 20% for n = 40 and 42% for n = 200.
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4.3 Efficient scoring and risk preferences

To what extent risk preferences interact with the scoring rule and estimators efficiency?

Loss averse examinees overweight utility loss from mistakes, which generates a preference

for omission. Its consequences for omission are however ambivalent when the scoring

rule is efficient. On the one hand, the proportion of omitters increases with loss aversion

(Table 2). For n = 20, it is 14.4% if examinees are risk neutral (λ = 1), 24.9% if they

are loss averse (λ = 1.5), and up to 32.8% if they are strongly loss averse (λ = 2.5). On

the other hand, the stronger loss aversion, the smaller the number of items above which

omission is dissuaded. Omission is discouraged for n > 171 if examinees are moderately

loss averse, and as soon as n > 57 if they are strongly loss averse.

Table 2: Proportion of omitters and loss aversion

number of items (n) 1 5 10 20 40 80 200 ∞

risk neutrality (%) 43.4 26.0 19.6 14.4 10.5 7.6 4.9 0.00

moderate loss aversion 83.5 39.4 30.6 24.9 21.1 18.6 0.00 0.00

strong loss aversion 85.7 46.8 38.0 32.8 29.9 0.00 0.00 0.00

Notes. Baseline model: m = 3 options per item, notional mark corrects for pure guessing
(θ∗ = −0.50). Risk neutrality: λ = 1; moderate loss aversion: λ = 1.5; strong loss
aversion: λ = 2.5. See Tables 9, 10 and 11 for detailed statistics. Reading: 26% of risk
neutral examinees omit in a test with 5 items.

The reason is explained in Subsection 3.4 and Fig. 1. When examinees are loss averse,

the mark which induces the less able to omit is below the unbiased mark. The more loss

averse, the larger the discrepancy and the omission bias. The analytical part has also

shown that, at least for moderate levels, loss aversion enhances efficiency, as omission by

low able examinees is obtained by distorting less the mark for omission (see Prop. 3).

Root mean squared errors (RMSE) are reported in Table 3 for three loss aversion

levels. They are decreasing with loss aversion for tests with a limited number of items

n ≤ 40. There are no visible differences for tests with larger n.
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Table 3: Root mean squared error and loss aversion

number of items (n) 1 5 10 20 40 80 200 ∞

risk neutrality 0.406 0.241 0.181 0.133 0.097 0.070 0.045 0.00

moderate loss aversion 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.00

strong loss aversion 0.324 0.196 0.151 0.119 0.097 0.072 0.046 0.00

Notes. Baseline model: m = 3 options per item, notional mark corrects for pure guessing
(θ∗ = −0.50). Risk neutrality: λ = 1; moderate loss aversion: λ = 1.5; strong loss
aversion: λ = 2.5. RMSE: root mean squared error. See Tables 9, 10 and 11 for detailed
statistics.

4.4 Number right and formula scoring

The model allows a comparison of the two most used scoring methods, NRS (θ = γ = 0)

and formula scoring (θ = −1/(m−1) and γ = 0), in which the marks are not adjusted for

test length. In NRS, omissions earn zero points, whereas a response can never earn less,

while affording a positive probability of earning a point. Hence rational examinees should

answer all items, whatever their level of loss aversion.2 Omission is also sub-optimal under

FS but only if examinees are risk neutral.

With no omission, the two scoring rules are equivalent. FS is a mere rescaling of NRS

which does not affect examinees’ relative standings. Certainly, the root mean square

deviation (RMSE) with NRS is smaller than the one with FS (compare Tables 16 and

17), but the difference is entirely explained by FS spreading marks over a broader interval

(between −1/(m− 1) and 1) than NRS (between 0 and 1).

The two scoring rules are not equivalent anymore when examinees are loss averse.

Contrary to NRS, FS penalizes wrong answers, which discourages low able examinees to

answer. In the numerical baseline, the proportion of omitters is 14.3% for moderate loss

aversion (Table 18) and 25% for stronger loss aversion (Table 19).
2 This is true if mistakes and omissions are treated the same manner by loss averse examinees, either

as a loss or as a gain, which is plausible given that the two results receive the same mark. The alternative
assumption, not investigated here, that only wrong selections are edited as a loss could explain why some
examinees still omit despite the answers being not penalized (Grandy, 1987).
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Although the two scoring rules cannot be compared prima facie, they differ by the

way omission is treated relatively to answering. NRS dissuades omission by setting the

mark differential γ − θ to zero, whereas FS gives some incentives to omit by raising the

mark for omission above the one for incorrect answer. The effect of fostering omission

on efficiency can be isolated by comparing two scoring rules which differ only by the

way omission is rewarded compared to answering. To do so, FS with m = 3 options,

θ = −0.50 and γ = 0 is compared to a scoring method, called extended NRS, with the

same mark for mistakes and omissions (θ = γ = −0.50). The two methods having the

same mark for mistakes, the scores are spread over comparable intervals.

Table 4: RMSE in formula scoring and extended number right scoring

number of items (n) 1 5 10 20 40 80 200 ∞

FS, risk neutrality 0.645 0.289 0.204 0.144 0.102 0.072 0.046 0.00

FS, loss aversion 0.584 0.263 0.187 0.134 0.097 0.072 0.051 0.031

FS, strong loss aversion 0.497 0.243 0.189 0.155 0.135 0.124 0.117 0.111

Extended NRS 0.645 0.289 0.204 0.144 0.102 0.072 0.046 0.00

Notes. RMSE: root mean squared errors. 3 options per item. FS: the penalty corrects
for pure guessing (θ = −0.50), the mark for omission is set to zero (γ = 0). See Tables
17, 18 and 19 for detailed statistics. Extended NRS: penalty θ and mark for omission
γ both set to −1/(m − 1) = −0.50. No adjustment made for finite sample. It is never
optimal to omit under extended NRS, whatever the level of loss aversion.

Table 4 does not show any difference between FS with risk neutrality and extended

NRS. The two scoring methods dissuade omission and score mistakes the same way. With

loss aversion, FS induces the less able to omit. Analytical results suggest that some extent

of omission may reduce estimation errors, except here that the mark for omission is not

set to its efficient value. The bias on omitters’ estimated ability γ̂ − s̄(p) is −0.07 with

moderate loss aversion (λ = 1.5) and −0.17 with strong loss aversion (λ = 2.5), whereas

it is positive with an efficient scoring. The reverse bias offsets potential efficiency gains

from omission and deteriorates RMSE. One may conclude that, once NRS is modified so

that scores are spread over the same intervals as FS, FS performs better with a limited
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number of items and worse with a large sample of items, a situation where omission

should generally be discouraged.

4.5 Efficient scoring and test length

How many items should a test include? How many options per item? Is there a trade-off

between the two margins? While the first question has been rarely investigated in the

psychometric literature,3 the optimal number of options per item has been discussed at

length (see Rodriguez (2005) for a survey).

Increasing the number of response options generally increases the difficulty of the

item (assuming all the alternatives are plausible), which increases the likelihood that a

test-taker will select a distractor item. Pure guessing becomes more hazardous. The

probability of picking the right option is 50% with two options, down to 20% with five

options. At the other extremity, perfectly informed examinees retrieve the right option

whatever the number of distractors. This suggests that examinees with partial knowledge

are expected to be confused by a higher number of distractors, but to a lesser extent they

are more able.

Varying the number of options from m to m′ > m changes the success rate of pure

guessing and therefore minimal ability from p0 = 1/m to p′0 = 1/m′ < p0. Let us consider

an examinee whose ability is p < 1 with m options and p′ < p with m′ > m options.

Assuming that examinees relative standings remain the same whatever the number of

distractors: F (p′) = F (p), stretching the interval of probability from [p0, 1] to [p′0, 1]

mechanically reduces the probability of a correct answer.

In the baseline model with a uniform ability distribution, the assumption F (p′) = F (p)

gives the new probability p′ in function of p, given m and m′, or p0 and p′0:

p′ = p′0 +
1− p′0
1− p0

(p− p0)

Fig. 4 plots examinees ability in function of their relative rank for tests with two and
3 Burton and Miller (1999) is an exception.
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five options per item. In accordance with intuition, the more able an examinee, the less

affected by the inclusion of additional options per item. For instance, low able examinees

whose rank is F (p) = 0.1 have a probability of 55% of correctly answering with two

options, and 28% with five options. At the other extremity, examinees whose rank F (p)

is 0.9 have 95% chance of success with two options, and still 92% with five options.

Fig. 5 shows how fast the root mean squared error (RMSE) declines with the number

of items for m = 2, 3, 4 and 5 options per item. Efficiency gains from additional items are

large for tests with few items, less than 25, whatever the number of options per item. The

gains then decelerate rapidly and reach a quasi-plateau. The RMSE eventually converges

to zero but very slowly. It is around 0.05 for n = 200 and m = 3, and still 0.03 for

n = 1000. Tests with more than 100 items do not seem to be worth devising, considering

the time spent to construct and administer them.

Since the inclusion of additional distractors reduces the influence of blind or educated

guessing, the RMSE are logically decreasing with the number of options for a given

number of items. We can see from Fig. 5 and Table 5 that increasing the number of

options from 2 to 3 significantly reduces the RMSE, even for large n where it becomes

hard to reduce it by adding new items. The gains from increasing the number of options

from 3 to 4 are smaller, and even so from 4 to 5.4

One may wonder whether creating new items might be preferable to devising addi-

tional options, given a fixed number of options summed over all items. This issue has

practical relevance insofar as the total testing time is not extensible and is increasing

with the number of options reviewed.5 To check this point, we compare tests with vary-

ing number of items and options, but constant total number of options, equal to 100.

Table 6 shows that the RMSE hardly varies with test composition. It is almost

equivalent to administer a test with 50 items and two choices or a test with 20 items and

5 options.6

4 See Burton (2001) for similar conclusions.
5 See Budescu and Nevo (1985) for a discussion.
6 The result rests on the assumption that the test-maker is in capacity to find as many as four

plausible distractors (and incidentally up to 50 different items). The consequences of decreasingly effective
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Table 5: Efficiency and number of options per item

number of items (n) 1 5 10 20 40 80 200 ∞

2 options RMSE 0.407 0.244 0.186 0.140 0.106 0.080 0.057 0.00

3 options RMSE 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.00

4 options RMSE 0.371 0.211 0.156 0.114 0.083 0.061 0.041 0.00

5 options RMSE 0.365 0.205 0.151 0.110 0.080 0.058 0.038 0.00

Notes. Root mean squared errors (RMSE) are extracted from Tables 12 (2 options), 10 (3
options), 13 (4 options) and 14 (5 options). Baseline model: finite sample-adjusted for-
mula scoring (the notional mark corrects for pure guessing: θ∗ = −1/(m−1)). Examinees
are moderately loss averse: λ = 1.5.

Table 6: Number of items and number of options, tests with 100 options

number of options per item (m) 2 3 4 5

number of items (n) 50 33 25 20

RMSE 0.096 0.098 0.103 0.110

Notes. Baseline model: finite sample-adjusted formula scoring (the notional mark corrects
for pure guessing: θ∗ = −1/(m − 1)). Examinees are moderately loss averse: λ = 1.5.
The number of items × the number of options is kept constant. RMSE: root mean square
error. See Table 15 for detailed statistics.

The quasi-equivalence holds for efficient scoring. Table 7 shows similar results with

FS, NRS, and extended NRS. RMSE varies weakly with test configuration for all three

methods. At a fine level, two options is marginally best for NRS, and three options for

FS and extended NRS.

distractors with the number of options per item are not investigated here. Likewise, including more items

has the potential to cover more content, a benefit not investigated here.
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Table 7: Number of items and number of options, tests with 100 options

number of options per item (m) 2 3 4 5

number of items (n) 50 33 25 20

FS RMSE 0.110 0.106 0.110 0.116

NRS RMSE 0.058 0.075 0.087 0.097

Extended NRS RMSE 0.115 0.112 0.115 0.121

Notes. RMSE: root mean square error. FS: the penalty corrects for pure guessing (θ =

−0.50), the mark for omission is set to zero (γ = 0). NRS: penalty θ and mark for
omission γ set to zero. Extended NRS: penalty θ and mark for omission γ both set to
−1/(m−1) = −0.50. No adjustment is made for finite sample. Examinees are moderately
loss averse: λ = 1.5.

4.6 Quasi-efficient scoring

Quantitative analyses have shown that efficient penalty θ̂ does not deviate much from

notional mark θ∗ for n > 5 items (see Tables 9 to 14). In the baseline model, the efficient

penalty is close to the notional mark (about 0.10 points below for n = 10 to 40 and

around 0.01 or 0.02 below for n ≥ 80 (Table 10).

It suggests that a simplified scoring rule with a fixed penalty could provide satisfac-

tory estimation of examinees ability. To check this possibility, scoring rule with θ = θ∗

and optimized mark for omission is compared to a fully efficient model with baseline

calibration.

The two scoring rules produce very similar result. The penalty θ is slightly higher than

efficient penalty, which is compensated by a slightly increased mark for omission, so that

the incentives to omit are globally preserved. The differential marks γ− θ are similar, so

are the proportion of omitters. Overall, the RMSE are very close. The simplified scoring

rule is a pretty good approximation of the fully efficient rule.
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Table 8: RMSE in efficient scoring and quasi-efficient scoring

number of items (n) 1 5 10 20 40 80 200 ∞

Efficient scoring 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.000

Quasi-efficient scoring 0.383 0.221 0.166 0.123 0.091 0.069 0.046 0.000

Notes. RMSE: root mean squared errors. 3 options per item. Examinees are moderately
loss averse (λ = 1.5). Efficient scoring: notional mark corrects for pure guessing (θ∗ =

−0.50). Actual mark is adjusted for finite sample. See Table 10 for detailed statistics.
Quasi-efficient scoring: the penalty is fixed and corrects for pure guessing (θ = −0.50).
See Table 20 for detailed statistics.

5 Conclusion

Four main lessons can be drawn from the scoring model. First, a test-maker should

include, if feasible, a large number of items to exploit the law of large numbers. Additional

items proved an effective way to enhance score efficiency, especially for tests with a limited

number of items. Numerical simulations suggest a number greater than 40 and as much

as 100. Raising the number of options per item is another way to improve estimation,

especially from 2 options (true/false type items), to 3 options. Proposing more than 3

options reduces measurement errors to a lesser extent, although the literature on this

issue points to the difficulty of writing more than two plausible distractors (Rodriguez,

2005).

Second, the proportion of omitters and the mark for omission should vary with test

length. If the number of items is large, ability is generally better estimated by answers

than omissions. Omission is dissuaded by setting a negative mark. If it is limited, omission

should be encouraged by a positive mark. The fewer items, the more omission needed

and the higher the mark. The resulting proportion of omitters may be quite significant

in that case.

Third, the omissive behavior of low able examinees is better targeted by the mark

for omission than by the penalty for wrong answers. The penalty is marginally lower

than the notional mark, ie. dissuades omission rather than encourages it. It converges
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gradually to the notional mark when the number of items increases. A fixed penalty is a

satisfactory and easy to implement second best rule.

Last, the instructions, if any, given to examinees should be consistent with the scoring

strategy. If the number of items is small, examinees should be encouraged to guess. In

the contrary case, they should be instructed to answer all questions even if they are not

sure that their answers are correct.

The scoring model allows comparison of the two most used scoring methods, formula

scoring and number right scoring. Both scoring rules set the mark for omission to zero,

which is not efficient. It induces too much or to few omission, depending on the number

of items. By allowing omission, formula scoring is marginally better than number right

scoring when the number of items is limited. The reverse is generally true for longer tests

where ability is better estimated if all examinees answer.

The model has made some simplifying assumptions which implications for estimation

efficiency could be interesting to investigate. First, experimental studies in psychology

suggest that people are generally overconfident about their own knowledge (e.g. Keren,

1991; Yates, 1990). Overconfidence reduces the omission rate and may impact estimation

efficiency, especially if the tendency correlates with ability (Lichtenstein and Bishhoff,

1977; Heath and Tversky, 1991). A related issue is how to score misinformation, which

arises when examinees have erroneous knowledge (Burton, 2004). Second, the tests could

be modeled more realistically by considering items with varying difficulty. Examinees’

probability of being right and their incentives to omit would fluctuate from one item to

another. It could then be interesting to adapt the marks for mistakes and omissions with

item difficulty.
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Appendix I Tables

Risk preferences

Risk neutrality

Table 9: Scoring statistical properties, finite sample-adjusted formula scoring, risk neu-
trality (λ = 1), 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ 0.00 −0.36 −0.43 −0.46 −0.48 −0.49 −0.50 −0.50

γ̂ 0.62 0.33 0.23 0.17 0.12 0.08 0.05 0.00

γ̂ − θ̂ 0.62 0.7 0.66 0.63 0.60 0.57 0.55 0.50

omission bias 40.6 19.7 13.6 9.31 6.36 4.36 2.67 0.00

omitters (%) 43.4 26.0 19.6 14.4 10.5 7.6 4.9 0.00

RMSE 0.406 0.241 0.181 0.133 0.097 0.070 0.045 0.000

Notes. Scoring: the notional mark corrects for pure guessing (θ∗ = −0.50). θ̂: efficient
mark for wrong selections. γ̂: efficient mark for omission. γ̂ − θ̂: a measure of the
incentives to omit. Omission bias = 100

(
γ̂ − s̄(p)): 100 × estimated omitters’ ability

minus average omitters’ ability. Omitters (%): share of examinees who omit. RMSE:
root mean squared error. For n = ∞, γ̂ is the highest mark inducing all examinees to
answer. Any lower value would also be efficient.
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Moderate loss aversion

Table 10: Scoring statistical properties, finite sample-adjusted formula scoring, moderate
loss aversion (λ = 1.5), 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.79 −0.48 −0.46 −0.45 −0.45 −0.46 −0.49 −0.50

γ̂ 0.59 0.30 0.22 0.16 0.11 0.08 −0.16 −0.17

γ̂ − θ̂ 2.39 0.78 0.68 0.61 0.57 0.54 0.33 0.33

omission bias 17.7 10.81 6.6 3.3 1.0 −0.7 0.00 0.00

omitters (%) 83.5 39.4 30.6 24.9 21.1 18.6 0.00 0.00

RMSE 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.000

Notes. Scoring: the notional mark corrects for pure guessing (θ∗ = −0.50). θ̂: efficient
mark for incorrect selection. γ̂: efficient mark for omission. γ̂ − θ̂: a measure of the
incentives to omit. Omission bias = 100

(
γ̂ − s̄(p)

)
: 100 × estimated omitters’ ability

minus average omitters’ ability. Omitters (%): share of examinees who omit. RMSE:
root mean squared error. For n ≥ 200, γ̂ is the highest mark inducing all examinees to
answer. Any lower value would also be efficient.
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High loss aversion

Table 11: Scoring statistical properties, finite sample-adjusted formula scoring, high loss
aversion (λ = 2.5), 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.64 −0.41 −0.36 −0.35 −0.34 −0.48 −0.49 −0.50

γ̂ 0.51 0.28 0.21 0.16 0.14 −0.46 −0.49 −0.50

γ̂ − θ̂ 2.15 0.70 0.57 0.51 0.48 0.02 0.00 0.00

omission bias 8.49 4.44 2.01 0.05 −1.27 0.00 0.00 0.00

omitters (%) 85.7 46.8 38.0 32.8 29.9 0.00 0.00 0.00

RMSE 0.324 0.196 0.151 0.119 0.097 0.072 0.046 0.000

Notes. Scoring: the notional mark corrects for pure guessing (θ∗ = −0.50). θ̂: efficient
mark for incorrect selection. γ̂ − θ̂: a measure of the incentives to omit. Omission bias
= 100

(
γ̂ − Es̄(p)

)
: 100 × estimated omitters’ ability minus average omitters’ ability.

Omitters (%): share of examinees who omit. RMSE: root mean squarer error. For
n ≥ 80, γ̂ is the highest mark inducing all examinees to answer. Any lower value would
also be efficient.
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Number of options

Two options

Table 12: Scoring statistical properties, finite sample-adjusted formula scoring, moderate
loss aversion, 2 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −3.2 −0.96 −0.91 −0.90 −0.90 −0.90 −0.98 −1

γ̂ 0.64 0.35 0.26 0.19 0.15 0.11 −0.24 −0.25

γ̂ − θ̂ 3.90 1.31 1.18 1.10 1.04 1.00 0.74 0.75

omission bias 19.7 11.9 7.35 3.70 0.98 −0.87 0.00 0.00

omitters (%) 87.6 47.0 37.8 31.5 27.3 24.5 0.00 0.000

RMSE 0.407 0.244 0.186 0.140 0.106 0.080 0.057 0.00

Notes. Scoring: the notional mark corrects for pure guessing (θ∗ = −1). Moderate
loss aversion: λ = 1.5. θ̂: efficient mark for incorrect selection. γ̂: efficient mark for
omission. γ̂ − θ̂ is a measure of the incentives to omit. Omission bias = 100

(
γ̂ − s̄(p)

)
:

100 × estimated omitters’ ability minus average omitters’ ability. Omitters (%): share
of examinees who omit. RMSE: root mean square error. For n ≥ 200, γ̂ is the highest
mark inducing all examinees to answer. Any lower value would also be efficient.
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Three options

See Table 10.

Four options

Table 13: Scoring statistical properties, finite sample-adjusted formula scoring, moderate
loss aversion, 4 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.38 −0.31 −0.30 −0.30 −0.30 −0.31 −0.33 −0.33

γ̂ 0.58 0.28 0.20 0.14 0.10 0.07 −0.12 −0.12

γ̂ − θ̂ 1.96 0.59 0.50 0.44 0.40 0.38 0.21 0.21

omission bias 16.9 10.7 6.58 3.42 1.17 −0.36 0.00 0.00

omitters (%) 81.6 34.8 26.4 21.1 17.7 15.3 0.00 0.00

RMSE 0.371 0.211 0.156 0.114 0.083 0.061 0.041 0.000

Notes. Scoring: the notional mark corrects for pure guessing (θ∗ = −0.33). Moderate
loss aversion: λ = 1.5. θ̂: efficient mark for incorrect selection. γ̂: efficient mark for
omission. γ̂ − θ̂ is a measure of the incentives to omit. Omission bias = 100

(
γ̂ − s̄(p)

)
:

100 × estimated omitters’ ability minus average omitters’ ability. Omitters (%): share
of examinees who omit. RMSE: root mean square error. For n ≥ 200, γ̂ is the highest
mark inducing all examinees to answer. Any lower value would also be efficient.
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Five options

Table 14: Scoring statistical properties, finite sample-adjusted formula scoring, moderate
loss aversion, 5 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.18 −0.23 −0.22 −0.23 −0.23 −0.23 −0.23 −0.25

γ̂ 0.57 0.26 0.18 0.13 0.09 0.06 0.04 −0.1

γ̂ − θ̂ 1.75 0.49 0.41 0.35 0.32 0.38 0.28 0.15

omission bias 16.5 10.7 6.63 3.52 1.35 −0.11 −1.30 0.00

omitters (%) 80.5 31.4 23.4 18.5 15.3 13.2 11.42 0.00

RMSE 0.365 0.205 0.151 0.110 0.080 0.058 0.038 0.000

Notes. Scoring: the notional mark corrects for pure guessing (θ∗ = −0.25). Moderate
loss aversion: λ = 1.5. θ̂: efficient mark for incorrect selection. γ̂: efficient mark for
omission. γ̂− θ̂ is a measure of the incentives to omit. Omitters (%): share of examinees
who omit. Omission bias = 100

(
γ̂ − s̄(p)

)
: 100 × ability estimator of omitters minus

average omitters’ ability. RMSE: root mean square deviation. For n > 200, γ̂ is the
highest mark inducing all examinees to answer. Any lower value would also be efficient.
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Tradeoff between number of items and options

Table 15: Efficiency and number of options for a test with a total of 100 options, baseline
model

number of options per item (m) 2 3 4 5

number of items (n) 50 33 25 20

θ̂ −0.90 −0.45 −0.30 −0.23

γ̂ 0.13 0.13 0.13 0.13

γ̂ − θ̂ 1.03 0.58 0.43 0.36

omission bias 0.31 1.54 2.60 3.52

omitters (%) 26.1 22.0 19.9 18.5

RMSE 0.096 0.098 0.103 0.110

Notes. Baseline model: finite sample-adjusted formula scoring (the notional mark corrects
for pure guessing: θ∗ = −1/(m− 1)). All tests have exactly or approximately a total of
100 options. Examinees are moderately loss averse: λ = 1.5. γ̂ − θ̂ is a measure of the
incentives to omit. Omission bias = 100

(
γ̂ − s̄(p)

)
: 100 × estimated omitters’ ability

minus average omitters’ ability. Omitters (%): share of examinees who omit. RMSE:
root mean square error.

40



Number right scoring

Table 16: Number right scoring, 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

RMSE 0.430 0.192 0.136 0.96 0.068 0.048 0.030 0.000

Notes. Scoring: penalty θ and mark for omission γ set to zero, no adjustment made for
finite sample. It is never optimal to omit under NR scoring, whatever loss aversion level.
The proportion of omitters and omission bias are both zero as a result. RMSE: root mean
square deviation.

Formula scoring

Risk neutrality

Table 17: Formula scoring, risk neutrality, 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

RMSE 0.645 0.289 0.204 0.144 0.102 0.072 0.045 0.000

Notes. Scoring: the penalty corrects for pure guessing (θ = −0.50), the mark for omission
is set to zero (γ = 0), no adjustment is made for finite sample. It is not optimal to omit
under formula scoring, when examinees are risk neutral (λ = 1). The proportion of
omitters and omission bias are both zero as a result. RMSE: root mean square deviation.
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Moderate loss aversion

Table 18: Formula scoring, moderate loss aversion, 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

omitters (%) 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

omission bias −7.14 −7.14 −7.14 −7.14 −7.14 −7.14 −7.14 −7.14

RMSE 0.584 0.263 0.187 0.134 0.097 0.072 0.051 0.031

Notes. Scoring: the penalty corrects for pure guessing (θ = −0.50), the mark for omission
is set to zero (γ = 0), no adjustment is made for finite sample. Examinees are moderately
loss averse (λ = 1.5). Omitters (%): share of examinees who omit. Omission bias
= 100

(
γ̂ − s̄(p)

)
: 100 × ability estimator of omitters minus average omitters’ ability.

RMSE: root mean square deviation.

Strong loss aversion

Table 19: Formula scoring, high loss aversion, 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

omitters (%) 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3

omission bias −16.7 −16.7 −16.7 −16.7 −16.7 −16.7 −16.7 −16.7

RMSE 0.497 0.243 0.189 0.155 0.135 0.124 0.117 0.111

Notes. Scoring: the penalty corrects for pure guessing (θ = −0.50), the mark for omission
is set to zero (γ = 0), no adjustment is made for finite sample. Examinees are highly
loss averse (λ = 2.5). Omitters (%): share of examinees who omit. Omission bias
= 100

(
γ̂ − s̄(p)

)
: 100 × ability estimator of omitters minus average omitters’ ability.

RMSE: root mean square deviation.
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Quasi-efficient scoring

Table 20: Scoring statistical properties, fixed penalty (θ = θ∗), finite sample-adjusted
marking of omissions, moderate loss aversion, 3 options per item

number of items (n) 1 5 10 20 40 80 200 ∞

γ̂ 0.59 0.31 0.22 0.16 0.12 0.09 −0.17 −0.17

γ̂ − θ 1.09 0.81 0.72 0.66 0.62 0.59 0.33 0.33

omission bias 26.5 10.3 5.56 2.09 −0.31 −1.90 0.00 0.00

omitters (%) 64.8 40.6 33.3 28.1 24.5 22.2 0.00 0.00

RMSE 0.383 0.221 0.166 0.123 0.091 0.069 0.046 0.000

Notes. Quasi-efficient scoring: the penalty corrects for pure guessing (θ = −0.50), but is
not adjusted for finite sample. γ̂: efficient mark for omission. γ̂ − θ̂: a measure of the
incentives to omit. Omission bias = 100

(
γ̂ − s̄(p)

)
: 100 × estimated omitters’ ability

minus average omitters’ ability. Omitters (%): share of examinees who omit. RMSE:
root mean squared error. For n ≥ 200, γ̂ is the highest mark inducing all examinees to
answer. Any lower value would also be efficient.
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Appendix II Figures

Omission and answer biases

Figure 1: Omission and answer biases for different loss aversion levels

Notes. p̄: ability of marginal examinees indifferent between answering and omitting, s(p̄):
true score, E(s̃; p̄): expected actual score, γ̂: efficient mark for omission, E(s̃; p̄) − s(p̄):
answer bias, γ̂ − s(p̄): omission bias. (a) Omission and answer biases are equal when
examinees are risk neutral. (b) If examinees are loss averse, the mark γ̂, which induces
marginal examinees to omit, is drifting to the left (dotted arrow). The resulting omission
bias is lower than the answer bias. (c) If examinees are "excessively" loss averse, the
mark γ̂ is moving away from true score. The omission bias may become larger than the
answer bias.
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Efficient mark for omission and test length

Figure 2: Efficient mark for omission in function of number of items

Notes. Efficient mark for omission (γ̂) in function of number of items n (horizontal
line). Baseline calibration: 3 options per item, the notional mark corrects for pure
guessing (θ∗ = −0.50); examinees are moderately loss averse (λ = 1.5), uniform ability
distribution.
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Efficient omission and test length

Figure 3: Proportion of omitters in function of number of items

Notes. Horizontal line: number of items. Baseline calibration: 3 options per item, the
notional mark corrects for pure guessing (θ∗ = −0.50); examinees are moderately loss
averse (λ = 1.5), uniform ability distribution.
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Examinees’ rank and ability

Figure 4: Examinees’ rank and ability in function of the number of options per item,
uniform ability distributions

Notes. Blue solid line: examinees ability for m = 5 options. Orange dotted line: exam-
inees ability for m = 2 options. Rank: examinees’ relative standings. Reading: half of
examinees are less able than examinee whose rank is 0.5. Her chance of correctly selecting
the right option is 75% with two options and 60% with five options.
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Measurement errors and test length

Figure 5: Root mean squared errors and number of items for 2, 3, 4 and 5 options per
item

Notes. Horizontal line: number of items. Green upper line: RMSE for m = 2 options
per item; orange line: m = 3 options; blue line: m = 4 options; lower red line: m = 5

options. Baseline calibration: the notional mark corrects for pure guessing (θ∗ = −0.50);
examinees are moderately loss averse (λ = 1.5), uniform ability distribution.
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