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SUMMARY 
The model legume Medicago truncatula possesses a single outward Shaker K+ channel, while 

Arabidopsis thaliana possesses two channels of this type, named SKOR and GORK, the 

former having been shown to play a major role in K+ secretion into the xylem sap in the root 

vasculature and the latter to mediate the efflux of K+ across the guard cell membrane upon 

stomatal closure. Here we show that the expression pattern of the single M. truncatula outward 

Shaker channel, which has been named MtGORK, includes the root vasculature, guard cells 

and root hairs. As shown by patch-clamp experiments on root hair protoplasts, besides the 

Shaker-type slowly-activating outwardly-rectifying K+ conductance encoded by MtGORK, a 

second K+-permeable conductance, displaying fast activation and weak rectification, can be 

expressed by M. truncatula. A KO mutation resulting in absence of MtGORK activity is shown 

to weakly reduce K+ translocation to shoots, and only in plants engaged in rhizobial symbiosis, 

but to strongly affect the control of stomatal aperture and transpitational water loss. In legumes, 

the early electrical signaling pathway triggered by Nod Factor perception is known to comprise 

a short transient depolarization of the root hair plasma membrane. In absence of MtGORK 

functional expression, while the rate of the membrane repolarization is shown to be decreased 

by about 3 times, this defect is without any consequence on infection thread development and 

nodule production, indicating that the plant capacity to engage rhizobial symbiosis does not 

require integrity of the early electrical signaling events.  
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INTRODUCTION 
 
Potassium (K+) can compose up to 10% of the total plant dry weight. This major inorganic 

constituent of the living cell is the most abundant cation in the cytosol, where it is involved in 

various functions such as electrical neutralization of negatively charged molecules and control 

of cell membrane polarization. As an unbound highly mobile abundant osmolyte, K+ is also 

involved in regulation of the cell osmotic potential and related functions such as cell growth or 

osmotically driven cell and organ movements. It also plays a role in the activation of enzymes, 

protein synthesis, cell metabolism, and photosynthesis (Clarkson and Hanson, 1980, Nieves-

Cordones et al., 2016). Thus, plant growth requires that large amounts of K+ ions are taken up 

by roots from the soil solution and distributed throughout the plant. Several tens of membrane 

transport systems, which belong to at least 3 families of channels, named Shaker, TPK/KCO 

and TPC, and 3 families of transporters, named HAK, HKT and CPA, contribute to K+ transport 

(uptake, distribution and compartmentalization) in plants (Mäser et al., 2001; Véry et al., 2014). 

Among them, the Shaker channel family is the best characterized. 

Shaker channels give rise to the main K+ conductance of the plasma membrane in most 

plant cell types (Véry and Sentenac, 2003; Hedrich, 2012). Like their counterparts in animal 

cells, plant Shaker channels have a tetrameric structure, associating 4 Shaker polypeptides, 

called alpha-subunits (Daram et al., 1997). A Shaker alpha-subunit consists of a hydrophobic 

core displaying six transmembrane segments, named S1 to S6, and a pore loop, named P, 

present between S5 and S6 and carrying the hallmark motif GYGD that plays a central role in 

the channel selectivity for K+. The assembly of the four S5-P-S6 modules in the center of the 

tetrameric protein structures the K+ permeation pathway. Plant Shaker channels, like animal 

Shakers, are regulated by voltage. The S4 segment harbors positively charged residues (H, R 

and K) and constitutes the channel voltage sensor. The cytosolic C-terminal part, which begins 

just after the end of S6, displays a C-linker domain, a cyclic-nucleotide binding domain 

(CNBD), an ankyrin domain (absent in some alpha-subunits), and a KHA domain rich in 

hydrophobic and acidic residues (Daram et al., 1997; Nieves-Cordones et al., 2014; see 

supplementary Figure S1B). 

 The plant Shaker channel family is strongly conserved, each plant genome harboring 

about 10 Shaker genes that can systematically be sorted into 5 groups, based on phylogenetic 

and functional analyses (Véry et al., 2014; see supplementary Figure S1A). Group 1 and 2 

members (5 members in Arabidopsis) are characterized as inwardly rectifying channels, 

mediating K+ uptake across the cell membrane. Group 3 channels (a single member of this 

type in Arabidopsis) display a weak rectification and can thus contribute to both K+ uptake and 

secretion across the cell membrane. Group 4 comprises also a single member in Arabidopsis. 

It is considered a regulatory subunit since it seems unable to form functional channels by itself 
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but can interact with alpha-subunits from groups 1, 2, and 3 to form heteromeric inward 

channels with modulated functional features. The last group, group 5, gathers outwardly 

rectifying channels dedicated to K+ secretion from the cell. It comprises 2 members in 

Arabidopsis, AtSKOR and AtGORK. AtSKOR is strongly expressed in the root vasculature 

where it plays a major role in K+ secretion into the xylem sap and thereby in K+ translocation 

from roots to shoot (Gaymard et al., 1998). AtGORK expression has been detected in various 

tissues and cell types, including root hairs and guard cells. In guard cells, AtGORK has been 

shown to encode the outward conductance that mediate the efflux of K+ leading to reduced 

guard cell turgor upon stomatal closure (Ache et al., 2000; Hosy et al., 2003). In root periphery 

cells, AtGORK has been shown to mediate an efflux of K+ upon the depolarization of the cell 

membrane that resulted from a strong increase in the external concentration of Na+ (Shabala 

and Cuin, 2007). 

 So far, besides the work on AtSKOR and AtGORK, very few studies have been aimed 

at characterizing the functional properties of plant Shaker channels from group 5, and no 

reverse genetics analysis has highlighted the roles of these functionally-characterized 

channels (Langer et al., 2002; Sano et al., 2007; Huang et al., 2018). Here we investigate the 

functional properties and roles of MtGORK, the unique member of the Shaker group 5 in the 

model legume Medicago truncatula. 

 
RESULTS 
 
Molecular cloning and primary structure of MtGORK 
Phylogenetics analyses indicate that M. truncatula Shaker channel group 5 comprises a single 

member (Damiani et al., 2016a; Wang et al., 2019), Medtr5g077770, hereafter named 

MtGORK (Supplemental Figure 1A). The corresponding cDNA (2508 pb) was amplified by 

PCR, allowing sequence analysis of the deduced polypeptide (Supplemental Figures S1B and 

S1C) and determination of the gene structure (Supplemental Figure S1D). MtGORK 

possesses the Shaker channel typical hydrophobic core, with the 6 transmembrane segments 

S1-S6 and the pore loop harboring the GYGD hallmark motif between S5 and S6 

(Supplemental Figure S1B and S1C). A C-linker domain, a cyclic nucleotide binding domain, 

an ankyrin domain and a KHA domain can be identified in the C-terminal region downstream 

the hydrophobic core, like in the Arabidopsis AtSKOR and AtGORK outward channels. The 

percentages of identity and similarity between MtGORK and AtSKOR or AtGORK are close to 

70% and 85%, respectively. The two residues of the P loop and 2 residues of the S6 

transmembrane segment that have been identified in AtSKOR as contributing to the 

dependency of the channel voltage-sensitive gating on the external concentration of K+ 
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(Johansson et al., 2006), conserved in AtGORK, are also present in MtGORK (Supplemental 

Figure S1C).  

 

Functional characterization in Xenopus oocytes 
Depolarization of the membrane elicited an outward current in oocytes injected with MtGORK 

cRNA and not in control oocytes injected with water (Figure 1A). The exogenous macroscopic 

current displayed slow sigmoidal activation kinetics and reached a steady-state value within 

ca. 2 s (Figure 1A). Steady-state I-V curves displayed a strong outward rectification (Figure 

1B). Comparison of the I-V curves obtained in presence of 10, 30 or 100 mM K+ in the external 

solution revealed that increasing this concentration resulted in a positive shift of the activation 

potential threshold, i.e., the threshold beyond which, when the potential was shifted to more 

positive values, outward currents became detectable (Figure 1B). The experimental curves 

describing the dependency of the channel relative open probability, Po/Pomax, on voltage 

(obtained from MtGORK deactivation currents recorded at + 50 mV after pre-pulses varying 

from -100 mV to +80 mV) in presence of 10, 30 or 100 mM external K+ were fitted with the 

classical two-state Boltzmann law (Ache et al., 2000). The results indicated that the channel 

half activation potential (Ea50: membrane potential at which the channel relative open 

probability is 0.5) was strongly dependent on external K+ concentration, being shifted by 

+50 mV when this concentration was increased from 10 to 100 mM (Figure 1C). Such a 

regulation by external K+ ensures that the outward rectification of MtGORK is total regardless 

of the concentration of K+ prevailing outside, and thus that this channel is strictly dedicated to 

K+ release. Besides the sensitivity to voltage and external K+, MtGORK was also found to be 

sensitive to the external pH, the outward current being decreased by about 50% when the pH 

was decreased from 7.5 to 5.6 (Figure 1D). Thus, the pH sensitivity of MtGORK appears 

stronger than that reported in AtGORK (Ache et al., 2000). 

 A last series of experiments was aimed at characterizing the ionic selectivity of 

MtGORK. As expected, the current reversal potential, Erev, determined from classical analysis 

of tail current recordings (Ache et al., 2000), was found to be dependent on the external 

concentration of K+ (Figure 1E). Erev shifted by about +50 mV for a 10-fold increase in external 

K+ concentration, indicating that MtGORK displays a strong selectivity for K+ (a channel 

exclusively permeable to K+ would have given rise to a shift of ca. +58 mV). Shifts in Erev were 

also recorded upon replacement of K+ in the external medium by another alkali cation, either 

Li+, Na+, Rb+ or Cs+, at the same concentration (100 mM) (Figure 1F). In such experiments, 

the magnitude of the Erev shift reflects the relative permeability of the substituting cation and 

allows to determine this permeability, reported to that to K+, using the so-called Goldman 

equation (Hille, 2001). MtGORK displayed the following permeability sequence (Eisenman's 

series IV; Eisenman, 1961), K+>Rb+>Cs+>Na+»Li+ (Figure 1F), which is identical to that 
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reported for AtSKOR (Gaymard et al., 1998). Like in AtSKOR, the relative permeability to Rb+ 

is rather high (ca. 0.6), while that to Na+ is weak (<0.1).  

 

A KO mutation in MtGORK results in absence of Shaker type outward K+ conductance 
in guard cells 
A M. truncatula line (cv Jemalong A17) named NF9352, displaying an insertion of the Tnt-1 

retrotransposon in the first exon of MtGORK (Supplemental Figure S1D) was obtained from 

the mutant collection of the Noble Foundation and self-pollinated to produce the F2 generation. 

The plant that was amplified possessed this mutation, hereafter named mtgork, at the 

hemizygous state. Genotyping experiments (PCR) were carried out to identify both mutant 

plants homozygous for the mtgork mutation and control WT plants possessing a wild type (WT) 

genotype at this locus. RT-PCR experiments could not amplify bona fide MtGORK transcripts 

in mutant plants homozygous for the mtgork mutation (Figure 2A), providing evidence that 

mtgork is a knock-out (KO) mutation. The selected mutant and WT lines were further amplified 

for phenotyping experiments. Visual observations of the plants homozygous mutant or WT for 

the mtgork mutation did not allow to detect any specific phenotype. Furthermore, 

measurements of root and shoot biomass production in plants grown in different conditions (in 

vitro, in greenhouse or growth chamber on compost or sand-vermiculite mixture) at different 

growth stages and inoculated with a rhizobial strain (S. meliloti 1021 strain) or not inoculated 

did not reveal any specific defect in plant development (Supplemental Figure S2). 

Patch-clamp experiments carried out on guard cell protoplasts revealed that 

homozygous plants for the mtgork mutation did not display the typical Shaker-like outward K+ 

currents that were recorded in WT plants (Figure 2B). Small instantaneously-activating 

outward K+ currents were detected in the mutant protoplasts (Figure 2B & C). On the other 

hand, the inward K+ currents were very similar in mutant and WT protoplasts. Based on their 

activation kinetics and current-voltage curve, they are likely to be mediated by inwardly 

rectifying Shaker channels like in Arabidopsis guard cells (Lebaudy et al., 2008). 

 

The mtgork KO mutation results in impaired control of transpirational water loss  
A sharp reduction in the rate of leaf transpirational water loss rapidly (<20 min) occurred in WT 

plants after leaf excision, whereas no significant change in this rate could be observed in the 

mutant plants over 60 min. Thus, as a predicted consequence of the absence of Shaker-like 

outward conductance in guard cells, a defect in the capacity of stomatal closure was displayed 

by the mutant plants (Figure 3). The dotted lines plotted in Figure 3 correspond to data obtained 

in a similar experiment in Arabidopsis, with mutant plants that did not express the AtGORK 

gene shown to encode the guard cell outward Shaker conductance (Hosy et al., 2003).  
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MtGORK is expressed in root stellar tissues and root hairs 
MtGORK expression was first investigated in silico using public databases [“eFP Browser 

Medicago”, (http://bar.utoronto.ca/), and “Medicago Gene Atlas”, (http://mtgea.noble.org/v3/)]. 

The data indicated that MtGORK is expressed in leaves, stem, roots and nodules. Then, 

analysis of M. truncatula roots transformed with a MtGORK promoter-GUS reporter gene 

construct indicated that the expression pattern of MtGORK includes root hairs, root vascular 

tissues and nodule vasculature (Figure 4). Evidence for the expression of MtGORK in root 

hairs has also been provided by RNA-Seq analyses (Damiani et al., 2016a). 

 In Arabidopsis, the outward Shaker AtGORK is expressed in root hairs and AtSKOR in 

the root stele. We have investigated the consequences of the mtgork mutation in these root 

tissues/cell types through the analysis of (i) the translocation of K+ towards the shoots, (ii) the 

electrical properties of the root hair cell membrane, and (iii) the early electrical signal induced 

by Nod factor (NF) perception in root hairs and the plant capacity to engage rhizobial 

symbiosis. 

 

K+ translocation towards the shoots 
Experiments carried out to assess the contribution of MtGORK to K+ translocation to shoots 

revealed that the mtgork mutation poorly affected the shoot K+ content. A reduction in this 

content could be observed in inoculated plants, but it was slight (ca. 13%), and no statistically 

significant difference was observed in non-inoculated plants (Figure 5). In agreement with 

these results, the absence of MtGORK activity was found to be without any significant effect 

on the concentration of K+ in exuded xylem sap and on the volume of exuded sap (due to root 

pressure) upon shoot excision, whatever the plant status, inoculated or non-inoculated 

(Figure 6). 
 

Electrical properties of the root hair plasma membrane 
Patch-clamp recordings in root hair protoplasts from WT plants revealed that two distinct types 

of outward K+ conductances (Figure 7A; upper panels), differing at least in their activation 

kinetics and in the shape and size of the deactivation current, as previously reported (Wang et 

al., 2019), could dominate the membrane permeability to K+. Here, in experiments made in a 

native context, we use the term "conductance" to refer to a type of permeation pathway that 

can be mediated by a single molecular identity or by a set of channels of several identities but 

displaying similar properties.  

In some protoplasts, the dominant conductance displayed a slow sigmoidal activation 

of currents and slow current deactivation kinetics upon return to the holding voltage (Figure 

7A, left panel), reminiscent of the features of MtGORK when expressed in Xenopus oocytes 

(Figure 1C) or when characterized in situ at the guard cell membrane in WT plants (Figure 2B, 
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left panel), and typical of outward Shaker channels (Gaymard et al., 1998; Ache et al., 2000; 

Langer et al., 2002; Sano et al., 2007; Huang et al., 2018).  Such a conductance has also been 

recorded in root hairs from Arabidopsis (Ivashikina et al., 2001) and Medicago sativa (Bouteau 

et al., 1999). On the other hand, this type of conductance was not observed in mutant plants 

homozygous for the mtgork mutation (Figure 7A, lower left panel). 

The second conductance that could be the dominant one in WT protoplasts (Figure 7A, 

upper right panel) was also found in mtgork mutant root hair protoplasts (Figure 7A, lower right 

panel). It is hereafter named fast-activating outward cationic conductance as in Wang et al. 

(2019) since it displays a more rapid activation than that of MtGORK. The recorded current 

traces reveal an instantaneous component and a time-dependent component, the relative part 

of the latter increasing with depolarization (Figure 7A). The deactivation currents observed 

upon return to the holding voltage were small when compared with those of MtGORK. The fact 

that the time-dependent component of this second conductance was also displayed by the 

current traces obtained in mutant protoplasts that did not express MtGORK, indicates that this 

conductance does not result from the addition of a MtGORK component to an instantaneously-

activating conductance. 

In a few WT protoplasts (5 out of 28), the recorded traces indicated that the above 

described conductances were simultaneously active at the root hair cell membrane: e.g., a 

large instantaneously activating component could be distinguished together with large and 

slowly deactivating tail currents. In most cases however, the outward conductance of the 

membrane to K+ could be considered as essentially resulting from the activity of a single 

conductance type, either the fast-activating conductance or the MtGORK one, these two 

situations having rather similar frequencies: the former conductance was the dominating one 

in 13 protoplasts, while the MtGORK conductance dominated in 10 protoplasts. Sorting the 

recorded protoplasts into these two categories and deriving the corresponding current-voltage 

curves revealed that the protoplasts dominated by the MtGORK conductance displayed a 

strong outward rectification, reminiscent of that obtained in oocytes expressing MtGORK, in 

contrast to the protoplasts dominated by the fast-activating conductance (Figure 7B). Finally, 

the current-voltage curve derived for this set of 28 WT protoplasts, treated as a whole, was 

similar to the one obtained for 15 protoplasts from mutant plants homozygous for the mtgork 

mutation in terms of current magnitude (Figure 7C). Altogether, these results suggest that the 

absence of MtGORK conductance in root hairs of the mutant plant was compensated by an 

increase in the expression or activity of the fast-activating outward conductance. 

 

MtGORK contributes to repolarization of the root hair cell membrane following Nod 
Factor induced depolarization 
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Initiation of symbiotic interactions with N2-fixing rhizobia in legumes is triggered at the root hair 

cell membrane in response to nodulation factors (NF) secreted by rhizobia, and involves 

complex signaling events (Felle et al., 1998; Oldroyd and Downie, 2008). The earliest events 

that have been reported, together with ROS production (Puppo et al., 2013; Damiani et al., 

2016b), are changes in ion fluxes, H+, Ca2+, anion (Cl-) and K+, through the root hair plasma 

membrane resulting in a transient depolarization of this membrane (Felle et al., 1998). 

Continuous recordings of the local concentrations of Ca2+, H+, Cl- and K+ at the root surface 

using extra-cellular ion selective micro-electrodes and of the changes in membrane potential 

using an intracellular micro-electrode have shown that NF perception rapidly results (within ca. 

1 min) in an increase in net Ca2+ influx, followed by a net efflux of anions and possibly an 

inhibition H+-excretion. Altogether, these events result in a strong membrane depolarization, 

which activates voltage-sensitive K+ channels, allowing an efflux of K+ that repolarizes the 

membrane, a process to which an activation (or a re-activation) of H+ excretion by proton 

pumps could contribute (Felle et al., 1998). The hypothesis that MtGORK contributes to the 

efflux of K+ involved in the repolarization of the membrane during this action potential-like 

signaling process was tested by comparing the kinetics of membrane repolarization, recorded 

by microelectrode impalement, in WT and mutant plants as described in Figure 8. Thereby, 

the rate of repolarization (mV.min-1) was found to be about two times slower in mutant plants 

homozygous for the mtgork disruption when compared with the control WT plants (Figure 8C). 

 

MtGORK activity is not necessary for infection thread development and nodule 
formation 
The number of infection threads developed in plants grown in vitro on Farhäeus medium and 

observed at either 3 or 5 days after root inoculation (dpi) with S. meliloti was not significantly 

different between mutant plants homozygous for the mtgork disruption and control WT plants 

(Figure 9A). In agreement with this result, when growth continuously occurred in vitro on 

Farhäeus medium, the number of nodules determined at either 7, 14 or 21 dpi was similar in 

the mutant and WT plants (Figure 9B). 
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DISCUSSION 
 

A single outwardly rectifying Shaker channel in M. truncatula 
The Shaker channel family comprises a single outwardly rectifying member in M. truncatula 

(Suplemental Figure S1A). It is interesting to note that in silico analysis of the genome 

sequence of Lotus japonicus ( https://lotus.au.dk/) reveals a single outwardly rectifying 

member in the Shaker family of this legume model too. In Arabidopsis, the Shaker gene family 

comprises 2 genes coding for outwardly rectifying channels, AtGORK and AtSKOR, and 7 

genes for inwardly (or weakly-inwardly) rectifying channels (Supplemental Figure S1A). The 

phylogenetic structure of the Shaker family is strongly conserved in plants: about 10 genes 

and always 5 subgroups, the genes coding for inwardly-rectifying channels (groups 1 to 4) 

being more numerous than those coding for outwardly-rectifying channels (group 5) (Véry et 

al., 2014). 

Analyses of the functional properties of plant inwardly rectifying channels in 

heterologous systems have revealed distinctive features and regulations, in terms of voltage 

sensitivity, affinity for external K+ or sensitivity to pH (Véry and Sentenac, 2003; Véry et al., 

2014). Formation of heteromeric channels associating subunits encoded by different inward 

Shaker genes can further increase this functional diversity (Reintanz et al., 2002; Duby et al., 

2009; Jeanguenin et al., 2011). The corresponding information presently available on 

outwardly rectifying channels is much more reduced. Besides MtGORK and the Arabidopsis 

AtGORK (Ache et al., 2000; Hosy et al., 2003) and AtSKOR (Gaymard et al., 1998; Johansson 

et al., 2006), only 3 other outward K+ channels have been characterized at the functional levels 

in heterologous systems, NTORK from tobacco (Sano et al., 2007), PTORK from poplar 

(Langer et al., 2002) and CmSKOR from melon (Huang et al., 2018). These outward Shaker 

channels share a common functional feature: their activation threshold depends on the 

external concentration of K+. This regulation by external K+, also observed in outward K+ 

conductances recorded in planta (Schroeder, 1989; Blatt, 1991; Blatt and Gradman, 1997; 

Roelfsema and Prins, 1997; Wang et al., 2019), ensures that the channels open only when the 

transmembrane K+ electrochemical gradient is outwardly directed, regardless of the external 

concentration of K+, and thus that these channels are dedicated to the function of K+ secretion 

into the apoplasm/external medium. Dominated by this tight regulation, the functional diversity 

of outward Shaker channels in plants seems to be rather reduced, when compared to that of 

inward Shaker channels. This might explain that the number of outward Shaker genes is low 

in every plant genome. 
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Both MtGORK and a non-Shaker K+-permeable outward conductance can be expressed 
in root hairs 
Differences in the current activation kinetics and in the shape and size of deactivation currents 

displayed by protoplasts from wild-type plants supported the hypothesis that two types of K+-

permeable outward conductance could be active at their plasma membrane. These two types 

of conductance do not correspond to two different cell types, e.g. trichoblasts versus 

atrichoblasts or cortical cells, since they have also been observed in spheroplasts obtained 

from the tip of young elongating root hairs using a laser-mediated procedure allowing root hair 

selection (Wang et al., 2019). Finally, the fact that M. truncatula root hairs can express two 

distinct types of K+-permeable outward conductance is further evidenced by the finding that 

one of these conductances can be also observed in protoplasts from root hairs of mutant plants 

that do not express MtGORK. 

In summary, one of these two conductances is dependent on MtGORK functional 

expression and displays the same functional features as MtGORK when heterologously 

expressed in oocytes. It thus results from MtGORK activity. The second one, named fast-

activating outward cationic conductance as in Wang et al. (2019), cannot be hypothesized to 

result from the activity of another Shaker channel. Indeed, within the M. truncatula Shaker 

family, MtGORK is the only outward channel gene. All the other genes belong to groups 1 to 

4 (Supplemental Figure S1) and are thus likely to code for inwardly- or a weakly inwardly-

rectifying channels that display activation upon membrane hyperpolarization. A simple 

hypothesis, based on the present knowledge, is that this fast-activating outward conductance 

corresponds to either a Cyclic-Nucleotide-Gated Channel (CNGC), a Glutamate Receptor 

(GLR) or an Annexin. The electrophysiological properties of the members from these families 

are still poorly characterized (Hedrich, 2012). 

This K+-permeable fast-activating outward conductance is reminiscent of conductances 

reported in other cell types and plant species, for instance the NORC conductance 

characterized in barley root xylem parenchyma (Wegner and Raschke, 1994; Wegner and De 

Boer, 1997) and the weakly voltage-dependent non-selective cation conductance described in 

wheat roots (Davenport and Tester, 2000). However, this type of conductance was not 

reported in previous electrophysiological analyses carried out in root hairs from Arabidopsis 

(Ache et al., 2000, Ivashikina et al., 2001) and alfalfa (Bouteau et al., 1999; Kurkdjian et al., 

2000). This might indicate that the levels of expression or activity of this conductance in root 

hairs is strongly dependent on the plant material, growth conditions and plant species, or is 

specific of M. truncatula when compared with Arabidopsis and alfalfa. 

In most wild-type root hair protoplasts (ca. 80% of the protoplasts), the membrane 

outward conductance to K+ was strongly dominated by either the MtGORK or the fast-

activating conductance, with rather similar frequencies, and current features revealing that the 
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two conductances were simultaneously active could be detected in only ca. 20% of the 

protoplasts. Hence, it is likely that heterogeneities in the electrical properties of the root hair 

plasma membrane exist, at least transiently, amongst young root hairs. Such heterogeneities 

might be related to those of root hair tip responses to Nod Factors (NF), since NF treatment 

do not result in an alteration of tip growth in the same way in every young root hair (Esseling 

et al., 2004). 

 

Comparison of the roles of MtGORK and AtGORK in control of stomatal aperture 
In guard cells, the membrane outward K+-permeable conductance was dominated by MtGORK 

(Figure 2). It is interesting to note that no fast-activating outward conductance similar to that 

expressed by root hairs was detected in guard cells (Figure 2B), and that the absence of 

MtGORK activity in the mutant plants did not appear to be compensated by a conductance of 

this type (Figure 2B and 2C). 

In Arabidopsis guard cells, AtGORK dominates the membrane outward conductance 

to K+ and mediates the depolarization-induced potassium release involved in stomatal closure 

(Ache et al., 2001). Mutant plants harboring a KO mutation in AtGORK displayed slower 

closure kinetics, when compared with wild-type plants, resulting in impaired control of 

transpirational water loss (Hosy et al., 2003). The data shown by Figure 3 reveal that the role 

of AtGORK in Arabidopsis guard cell upon stomatal closure is played by MtGORK in 

M. truncatula. Furthermore, they suggest that the control of leaf transpirational water loss and 

the contribution of the Shaker outward conductance to this function are stronger in 

M.  truncatula than in Arabidopsis (dotted lines in Figure 3).  

 
Comparison of the roles of MtGORK and AtSKOR in K+ translocation to shoots 
The mtgork KO mutation was found to be without any significant effect on the shoot K+ content 

in non-inoculated plants (Figure 4A), and to result in a slight reduction of this content in plants 

inoculated with the symbiotic partner S. meliloti (Figure 4B). Also, the concentration of K+ in 

the xylem sap driven by root pressure (after shoot excision) and the volume of exuded sap 

were not significantly affected by the mtgork mutation (Figure 5). Thus, absence of outward 

Shaker channel activity in M. truncatula root stele poorly affects K+ translocation towards the 

shoots, especially when compared with the corresponding results reported in Arabidopsis, 

where the absence of outward Shaker channel activity due to a KO mutation in AtSKOR results 

in a reduction in shoot K+ content and K+ concentration in the xylem sap by about 50% 

(Gaymard et al., 1998). This indicates that MtGORK poorly contributes to K+ translocation 

towards the shoots, in contrast to AtSKOR, or that its absence in the mutant plants is efficiently 

compensated by other types of K+-permeable conductances. Non-Shaker K+-permeable 
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outward conductances have been identified in xylem parenchyma cells from barley (Wegner 

and Raschke, 1994; Wegner and De Boer, 1997).  

 

 The K+ concentration of the collected xylem sap samples was about 5 times higher in 

the inoculated than non-inoculated plants (Figure 6). However, the shoot K+ contents were 

larger only by about 1.5 times in the former than in the latter plants (Figure 5). Furthermore, in 

the same experimental conditions, the shoot biomass was lower by about 2 times in the former 

than in the latter plants (Supplemented Figure S2A and S2B). This suggests that the flux of 

recirculated K+ ions from shoots to roots via the phloem sap is larger in symbiotic conditions. 

A larger flux of phloem sap towards the roots would provide sugars to functioning nodules. 

MtGORK, which is expressed in the nodule vasculature (Figure 4), may thus contribute to the 

recirculation towards the shoots of K+ ions arriving in nodules via the phloem sap. This 

hypothesis is consistent with the fact that, when inoculated, WT plants displayed (slightly) 

higher shoot K+ contents than mutant plants (Figure 5). 

  

Role of MtGORK in root hairs and early transduction of Nod Factor signal 
In Arabidopsis root hairs, AtGORK encodes the typical K+-sensitive voltage-gated outwardly-

rectifying conductance (Ache et al., 2000), without any significant contribution of AtSKOR 

(Ivashikina et al., 2001). AtGORK has been hypothesized in this cell type to be involved in 

control of cell turgor and membrane potential. In connection with this latter function, it has also 

been hypothesized to play a role in electrical signals (transient depolarization and changes in 

K+ fluxes) such as those induced by elicitor treatments (Ivashikina et al., 2001). It should 

however be noted that none of these hypotheses has received direct support from reverse 

genetics approaches so far, and thus that the role of AtGORK in Arabidopsis root hairs is still 

unclear. 

Here we show that MtGORK contributes to the repolarization of the root hair cell 

membrane following the NF induced depolarization. The repolarization still occurred in 

absence of MtGORK activity, but at a slower rate, by about two times. Thus, these results 

indicate that MtGORK plays an important role in the electrical signal triggered by NF perception 

by contributing to the membrane repolarization. However it is not the only electrogenic 

transport system involved in the repolarization since this process remains, although at a slower 

rate, in mutant root hair devoid of MtGORK conductance. The simplest hypothesis is that the 

fast-activating outward conductance identified in root hairs besides MtGORK (Figure 7) plays 

a role in the repolarization and can compensate for the absence of MtGORK activity in mutant 

plants.  

 We checked whether the slower repolarization of the root hair cell membrane in the 

mutant plants affected subsequent steps of plant engagement in the symbiotic interaction with 
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S. meliloti. Comparison of the number of infection threads in WT and mutant plants grown in 

vitro on agar plates in presence of S. meliloti did not reveal any significant consequence of the 

mtgork mutation. Nodule production was also similar in the two types of plants when grown in 

vitro. Thus, these results suggest that the kinetics of membrane repolarization is not a crucial 

component of the signaling pathway leading to the symbiotic interaction of M. truncatula with 

S. meliloti. 

 

Conclusion 
The most striking difference between MtGORK, representative of all the plant outwardly-

rectifying Shaker channels characterized so far, and the fast-activating K+-permeable outward 

conductance, appears to be the rectification capacity. The fast-activating conductance is 

weakly rectifying and thus can allow K+ influx when the electrochemical gradient of this cation 

across the plasma membrane is inwardly directed, while the strong regulation of MtGORK by 

both the voltage and the external concentration of K+ ensures that the permeation pathway 

remains closed when the K+ electrochemical gradient is inwardly directed, so that these 

channels are strictly dedicated to K+ secretion. Based on the present knowledge, all plant 

species whose genome has been sequenced possess at least one Shaker channel of this type 

(Véry et al., 2014). While some species possess 4 genes encoding such channels, like 

grapevine or poplar (Véry et al., 2014), a single one is sufficient in other species. It is interesting 

to note that, in species displaying a single outward Shaker channel like M. truncatula, this 

channel can display a rather broad expression pattern, suggesting that it might be involved in 

the various functions involving its different orthologs in species that harbor several channels 

of this type. Within the framework of this hypothesis, the fact that the absence of MtGORK 

channel activity poorly affects K+ translocation towards the shoots, when compared with the 

effects of the corresponding mutation in Arabidopsis, would result from compensation in some 

tissues of the absence of MtGORK by other types of conductances in the mutant plants. It 

should be noted that, in root hairs in contrast to guard cells, the fast-activating K+-permeable 

conductance appears to be able to compensate the absence of MtGORK conductance in 

mutant plants. Despite such possibilities of redundancy and compensation, the fact that all 

plant species possess at least one outward Shaker channel gene indicates that K+ channels 

displaying a strict outward rectification provide important services in some environmental 

conditions. 

 

 

MATERIAL AND METHODS 
 
Plant material and plant growth 
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M. truncatula (ecotype Jemalong A17) seeds were scarified with sulfuric acid (99%) for 10 min, 

rinsed and sterilized in 6% sodium hypochlorite solution for 3 min. After 3 h imbibition in sterile 

water, seed coats were removed and seeds were transferred onto 1% agar plates in Petri 

dishes, which were turned upside down (agar up) and remained in the dark at 4°C for at least 

48 hours in order to break dormancy and obtain synchronization of germination. The plates 

were then transferred at 21 C for 16 to 24 h for germination. The radicles were then about 2 cm 

long.  

For in vitro culture, germinated seedlings were transferred onto a sterile sheet (12 × 

8.5 cm) of chromatography paper (Rogo-Sampaic, France) laid on solid Fahraeus agar 

medium (modified from Vincent, 1970) in a Petri dish (12 × 12 cm, for 10 seedlings). The 

medium contained 10 g L 1 of purified agar (Euromedex, https://web.euromedex.com/) and 0.5 

mM MgSO4, 0.7 mM KH2PO4, 0.8 mM Na2HPO4, 1 mM CaCl2, 20 µM Fe- citrate and 0.1 mg.L-1 

of MnSO4, CuSO4, ZnSO4, H3BO3 and Na2MoO4, pH 7.5 (adjusted with KOH). The lower part 

of the plate was wrapped in aluminum foil to avoid detrimental effects of light on roots. The 

plate was placed in a quasi-vertical position in a growth chamber (70% relative humidity, 70 

μE.m-2.s-1 light intensity) with a photoperiod of 16 h light (25 °C) and 8 h dark (21 °C) for 5 

days. 

Germinated seedlings grown on the agar plates for 2 further days were transferred on 

sand-vermiculite mixture (3:1, v:v; ca. 1 L per plant in 10 L containers) or sand-compost (3:1, 

v:v; ca. 1.5 L per plant in individual pots) and grown in a growth chamber (70% relative 

humidity, 16 h light, 300 µE.m-2.s-1 light intensity, 25°C, and 8 h night, 21°C) or in greenhouse, 

respectively. They were watered twice a week, alternatively with water or Fahraeus solution). 

Composite plants were generated according to the protocol of Boisson-Dernier et al. 

(2001) using the electrocompetent  Agrobacterium rhizogenes strain ARqua1 harboring the 

transcriptional GUS construct (2 kb gork promoter sequence cloned in the pGWB3 vector from 

Gateway system) (Nakagawa et al., 2007). 

 

Mutant and control wild-type plants  

M. truncatula mutant line NF9352 was identified (BLASTn of the GORK genomic sequence in 

the Noble website) in the Noble collection (http://medicago-mutant.noble.org/mutant/) as 

harboring a Tnt-1 retrotransposon insertion in the MtGORK gene (Supplemental Figure S1D). 

We named the mutation resulting from this insertion mtgork. A F1 plant hemizygous for the 

mtgork mutation was amplified. PCR genotyping experiments on the F2 progeny identified 

plants either homozygous for the mtgork mutation or displaying a wild type genotype at this 

locus and thereafter named control WT plants. Both types of plants were amplified for F3 

progeny. 
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Rhizobial strain and plant inoculation 
The rhizobial strains used for M. truncatula inoculation were Sinorhizobium meliloti Rm1021, 

Rm1021 DsRed and Rm2011 LacZ. Bacteria were grown in  5 g.L-1 Bacto tryptone, 3 g.L-1 

yeast extract, 6 mM CaCl2, pH 7.2 (TY/Ca medium), supplemented with the appropriate 

antibiotic: 50 µg.mL-1 streptomycin for Rm1021 and Rm1021 DsRed and 10 µg.mL-1 

tetracycline, centrifuged, resuspended and  washed in Fahraeus medium. Aliquots of the final 

bacterial suspension (OD600 ~ 10-2) were directly laid over apices of the germinated seedlings. 

Sand-vermiculite and sand-compost mixtures were also inoculated (ca. 10 mL of the rhizobial 

suspension for 1 L of soil). 

 
Plant K+ contents and K+ translocation to shoots via the xylem sap 
Plants were grown on sand-vermiculite mixture for 8 weeks in growth chamber. Shoots and 

roots were collected, dried and weighted (DW). Ions were extracted with 0.1 N HCl and 

assayed (flame spectrophotometry). The shoots of plants grown in parallel, in the same 

conditions and for the same time, were excised below the first leaf, at about 1 cm above the 

soil. For each plant, about 30 min after shoot excision, the root extremity was introduced into 

a plastic tube (Eppendorf type) through a hole pierced at the tube bottom and sealed with 

silicon paste to collect exuded sap for 24 h. The volume and K+ and Ca2+ concentrations of the 

exuded sap were measured. 

 
Two-electrode voltage clamp characterization of MtGORK in Xenopus oocytes 
The coding sequence of MtGORK was amplified by PCR, cloned into the pGEM-Xho vector 

(derived from pGEMDG; D. Becker, Würzburg) downstream from the T7 promoter and 

between the 5′- and 3′-untranslated regions of the Xenopus β-globin gene. Capped and 

polyadenylated copy RNA (cRNA) were synthesized in vitro (mMESSAGE mMACHINE T7 kit, 

Ambion). Oocytes, isolated and handled as described previously (Véry et al., 1995), were 

injected with ca. 30 ng of MtGORK cRNA (ca. 1 ng.nL–1) or with 30 nl of diethyl-pyrocarbonate-

(DEPC) treated water for control ("water injected") oocytes. They were then kept at 18 °C in 

ND96 solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 2.5 mM sodium pyruvate, 

and 5 mM HEPES-NaOH, pH 7,4) supplemented with 0.5 mg L-1 of gentamycin until voltage-

clamp recordings. Whole-oocyte currents were recorded using a two-electrode voltage- clamp 

technique 1–2 d after cRNA injection. All electrodes were filled with 3 M KCl. The external 

solution bathing the oocyte was continuously percolated during the voltage-clamp experiment. 

All bath solutions contained a background of 1 mM CaCl2 and 2 mM MgCl2, buffered with either 

10 mM Hepes-NaOH or 10 mM Mes-NaOH, pH 7.5 or 5.6, respectively. This background 

solution was supplemented with either 100, 30, 10 or 3 mM KCl, the osmolarity of the solution 

being maintained constant by addition of N-Methyl-D-glucamine (NMDG), or with 100 mM 
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CsCl, RbCl, NaCl or LiCl.  To extract MtGORK-mediated currents from total oocyte currents, 

mean currents recorded in water-injected control oocytes from the same batch in the same 

ionic conditions were subtracted from those recorded in MtGORK-expressing oocytes.  

 

Leaf transpirational water loss 
Plants of WT and mtgork lines were grown in greenhouse in compost for 6 weeks. Then, leaves 

were excised and exposed to desiccation by placing them on trays on the lab bench at room 

temperature. Leaves were weighed (FW: fresh weight) at different time points. Transpirational 

water loss was determined from the difference between the weight at each time point and the 

initial weight. 

 

Protoplast isolation and patch-clamp analyses 
Root hair protoplasts were obtained by enzymatic digestion as previously described (Wang et 

al., 2019) and stored in ice until patch-clamp measurements. For guard cell protoplast 

preparation, epidermal strips were peeled off from the abaxial surface of 6 to 7 leaves using 

forceps, and cut into small pieces. The enzymatic treatment was performed for 1h and 40 min 

at 28℃ in a solution containing 1% (w/v) cellulase RS, 0.1% (w/v) pectolyase Y23, 1% (w/v) 

BSA, 1 mM CaCl2, 2 mM ascorbic acid, 1 mM Mes, and 450 mM D-mannitol, its pH being 

adjusted to 5.7 with KOH. Then, the released protoplasts were collected by filtering through a 

40 µm nylon mesh and washed with the conservation medium twice and stored in ice until 

patch-clamp measurements. The conservation medium contained 1 mM CaCl2, 2 mM ascorbic 

acid, 1 mM Mes, and 500 mM D-mannitol, its pH being adjusted to 5.7 with KOH.  

Patch-clamp experiments were performed in the whole-cell configuration. Patch-clamp 

pipettes were pulled using a DMZ-Universal Puller (Zeitz-Instruments GmbH, Germany) from 

borosilicate capillaries (GC150F-7.5; Phymep, France) and fire polished (by the DMZ-

Universal Puller). Microelectrode resistance was about 10 and 14 MOhms for patch clamping 

root hair and, respectively, guard cell protoplasts. A reference Ag/AgCl half-cell completed the 

circuit. The patch clamp amplifier was an Axopatch 200B (Axon Instruments Inc., USA). Whole-

cell currents were measured at least 5 minutes after seal formation. Data were sampled at 1 

kHz. The Clampex module of the pClamp9 software (Axon Instruments Inc., USA) was used 

for data acquisition. Analysis was performed using the Clampfit module of pClamp10 and 

SigmaPlot 11 (Systat Software Inc., USA). Liquid junction potentials were corrected. 

 

Membrane potential measurements 
M. truncatula seedlings were grown on agar medium (10 g L 1 of purified agar in a solution, 

named bath background solution, bbs, containing 0.1 mM KCl, 0.1 mM CaCl2, 0.1 mM NaCl 

and 2 mM MES-Bis-Tris-Propane, pH 6.5) for 2 days. Roots were excised and fixed in a 
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plexiglass chamber filled with bbs. The chamber was percolated with bbs for 15 min (recovery 

treatment) before root impalement. Impalement micro-electrodes, with a tip diameter of 

approximately 0.5 µm, were pulled from borosilicate glass capillaries (GC200F-10, Harvard 

Apparatus, http://www.harvardapparatus.com) and back-filled with 3 M KCl. Microelectrodes 

were connected via an Ag/AgCl pellet to an HS-2 · 0.1L probe of an Axoprobe 1A electrometer 

(Axon Instruments). The reference comprised a combined glass pH electrode (filled with 3 M 

KCl) placed in the chamber downstream of the root. The micro-electrode was placed at the 

root surface, at about 0.5 cm from the tip, in front of young developing root hairs, using a 

manually operated micro-manipulator (Narishige, http://narishige-group.com). Subsequently, 

the vertical position of the root chamber was adjusted using a micro-elevator (IT6D CA1, 

Microcontrole, http://www.newport.com), allowing precise penetration of the micro-electrode 

into an epidermal cell at 10-40 µm below the root surface. During impalement, the bath solution 

was continuously refreshed. The steady-state membrane potential was successively 

measured in 5 external solutions: bbs, bbs + 10-6 M Nod factor, bbs, bb + 30 mM KCl and bbs 

again. The whole protocol was achieved within less than 30 min. The recording was discarded 

when the membrane potential values got in the 3 bbs successively perfused during the protocol 

were not consistent together. 

 

Promoter fusion and histochemical localization of GUS Activity 
A 2-kb DNA fragment upstream of the starting ATG of MtGORK gene (Medtr5g077770), was 

amplified by PCR using gene-specific primers (pSKOR2kb-F1: 

CACTCCTTAGCAAATAGCAAAAATTA and pSKOR2kb-R1: 

GAAATTAATTAATTAACCTATCCTTAGAAG). Composite M. truncatula plants were obtained 

by transformation with Agrobacterium rhizogenes ArquaI strain as previously described 

(Andrio et al., 2013). Healthy composite plants were transferred onto new plates containing 

modified Fahraeus medium without nitrogen and kanamycin. Plants were inoculated with S. 

meliloti 3 d after transfer.  

Transgenic roots were stained with GUS assay buffer as previously described (Andrio 

et al., 2013). Roots from at least 20 plants from three biological experiments were examined. 

Roots and nodules were fixed in 1% glutaraldehyde and 2% formaldehyde in 0.05 M phosphate 

buffer (pH 7), washed, dehydrated, and embedded in Technovit 7100 according to the 

manufacturer’s instructions. Fifty-micrometer-thick vibroslices were obtained with a HM560V 

Vibratome (Leica RM 2165) and visualized with an Olympus BH-2 microscope using dark-field 

optics. 
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Figure S1. MtGORK in the Shaker channel family of Medicago truncatula. 

 

Figure S2. Mutant plants homozygous for the mtgork mutation display similar shoot and root 

biomass as wild type plants. 
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FIGURE LEGENDS 
 

Figure 1. Functional characterization of MtGORK in Xenopus oocytes 
(A) Voltage clamp protocol (top left) and typical currents recorded in control oocytes injected 

with H2O (bottom left) or injected with MtGORK cRNA (right) in 100 mM K+ solution. Voltage-

clamp pulses varied from -100 to +80 mV, in increments of 20 mV. Every episode of imposed 

voltage lasted 3 seconds. The holding potential was -50 mV.  

(B) MtGORK current-voltage relationships at different external K+ concentrations: 10, 30 or 100 

mM. Mean ± SE, n ≥ 8.  

(C) Effect of the membrane voltage and the external K+ concentration on MtGORK open 

probability. The relative open probability (Po/Pomax) was obtained from the analysis of 

deactivation currents upon return to the holding voltage after the activation pulse (mean ± SE, 

n ≥ 6). The solid line represents Boltzmann fits to the mean Po/Pomax values. The mean 

values (± standard error, n ≥ 6) of the half-activation potential (Ea50) of the MtGORK channel 

obtained from these fits in the different concentrations of K+ are presented in the inset.  

(D) Activation of MtGORK currents by external alkalinization. The external solution contained 

100 mM K+. The external pH was 5.6 or 7.5. Means ± SE, n = 4. 

(E) Variation of MtGORK reversal potential of currents (Erev) with the external concentration 

of K+ (mean ± SE, n ≥ 8). Erev was determined in each solution using a tail-current protocol: 

After activation of MtGORK channels at + 60 mV, voltage pulses were performed at lower 

voltages flanking Erev, and Erev was obtained from the analysis of the deactivation currents. 

The dashed line indicates K+ equilibrium potential. 

(F) Permeability of MtSKOR to different monovalent cations. (Left) MtGORK deactivation 

currents were recorded using a tail-current protocol (as above) in bath solutions containing 

100 mmole.l-1 of either K+, Rb+, Cs+ Na+ or Li+. Mean deactivation currents ± SE, n≥ 6. (Right) 

Permeability ratios of the different cations with respect to that of K+, calculated (from the 

variations of Erev) using the Goldman-Hodgkin-Katz equation. Mean ± SE, n≥ 6. 

 

 

Figure 2. The mtgork mutation results in absence of MtGORK functional expression in 
guard cells. 
(A) PCR analyses reveal that mutant plants homozygous for the mtgork mutation do not 

express MtSKOR transcripts. Plants homozygous for the mtgork mutation (mutant) or 

displaying a wild type genotype for this mutation (WT) were grown in vitro on Fahraeus medium 

for 10 days before RNA extraction from whole plants. PCR experiments did not detect 

MtGORK transcripts in the mutant plants. The gene MtSLAH2/3-b (Medtr6g045200) (Damiani 

et al., 2016a) was taken as control (lower panel). 
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(B and C) Comparison of K+ currents in guard cell protoplast from WT and mutant plants. 

Currents were recorded using the patch-clamp technique in the whole-cell configuration. The 

ionic composition of the bath solution was 10 mM K-glutamate, 10 mM CaCl2 and 10 mM Mes-

Tris, pH 5.8. Patch-clamp pipette solution: 100 mM K-glutamate, 5 mM EGTA, 1 mM CaCl2 

(free Ca2+ = 20 nM), 2 mM MgCl2, 2 mM Mg-ATP, 10 mM Hepes-Tris, pH 7.5. The osmolarity 

of bath and pipette solutions was adjusted to 480 and 500 mosmol/Kg with D-mannitol. 

“Outward” whole-cell currents were recorded applying successive pulses of clamped voltage 

from -71 to 49 mV (after liquid junction potential (LJP) correction) in 15 mV increment from a 

holding potential at -71 mV; inward currents were recorded applying voltage pulses from -71 

to -161 mV in -15 mV increment from a holding potential at -71 mV. (B): Representative current 

traces recorded in WT and mutant protoplasts. (C): Steady state current-voltage (I-V) plot. 

Means ±SE (WT:  n = 5; mutant: n = 9). 

 

 

Figure 3. The mtgork mutation results in impaired stomatal closure. 
Plants homozygous for the mtgork mutation or displaying a wild type genotype for this mutation 

were grown on compost in greenhouse for 6 weeks. Leaves were excised during the light 

period and water loss was determined by monitoring the decrease in fresh weight of the 

excised leaves. Means ± SE, n = 3.  

 

 

Figure 4. Expression pattern of the MtGORK gene in roots. 
(A) Representation of the promoter-GUS reporter gene transformed in M. truncatula roots 

using A. rhizogenes.  

(B)  Histochemical analysis of MtGork expression in Medicago truncatula roots GUS activity in 

M. truncatula composite plants expressing pMtGork::GUS fusion. MtGork is expressed in root 

epidermis (a), in root hairs (b), in root stellar tissues (c) and in root nodules (d). 

 
Figure 5. Effect of the absence of MtGORK activity on root and shoot K+ contents in 
non-inoculated and inoculated plants. 
Plants homozygous for the mtgork mutation (mutant) or displaying a wild type genotype for 

this mutation (WT) were transferred onto sand-vermiculite mixture 3 days after germination. 

Shoots and roots were collected for K+ and Ca2+ assays after 8 weeks of growth. Means ± SE; 

n = 12. 

(A) Non inoculated plants. 

(B) Inoculated plants. Inoculation was performed with S. meliloti strain 1021 at the end of the 

second week of growth. 
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Figure 6. Absence of MtGORK activity does not impact the xylem flux of K+ from roots 
to shoot.  
Plants homozygous for the mtgork mutation (mutant) or displaying a wild type genotype for 

this mutation (WT) were grown as described in the legend to Figure 5. After 8 weeks of growth, 

shoots were excised at about 1 cm above the soil.  About 30 min after shoot excision, exsuded 

sap was collected for 24 h. The volume and K+ and Ca2+ concentrations of the exuded sap 

were measured. Means ± SE; n = 12. 

(A) Non inoculated plants. 

(B) Inoculated plants. Inoculation was performed with S. meliloti strain 1021 at the end of the 

second week of growth. 
 

 

Figure 7. Outward K+
 currents in root hair protoplasts from WT or mutant plants. 

Root hair (RH) protoplasts were enzymatically obtained from plants homozygous for the 

mtgork mutation (mutant) or displaying a wild type genotype for this mutation (WT). The bath 

solution contained 30 mM K-gluconate, 1 mM CaCl2, 10 mM Mes-Tris, pH 5.6. Patch-clamp 

pipette solution: 150 mM mM K-gluconate, 10 mM EGTA, x mM CaCl2 (à voir par Anne), 2 mM 

MgCl2, 2 mM Mg-ATP, 10 mM Hepe-Tris, pH 7.4. The osmolarity of the bath and pipette 

solutions was adjusted to 290 and 300 mosmol/Kg respectively, with D-sorbitol. Voltage clamp 

proyocol: pulses from -75 to 60 mV (after correction of LJP), 15 mV increment, and holding 

potential at -75 mV. 
(A) Representative current traces recorded in WT and mutant protoplasts. in WT protoplasts 

(top panels), two types of macroscopic conductances could be identified: the top left recording 

is typical of outward Shaker channels (slow and sigmoidal activation), and the top right 

example can be ascribed to the fast-activating outward cationic conductance previously 

described (Wang et al., 2019). In mutant protoplasts, the outward Shaker conductance was 

not observed, while the fast-activating cationic outward conductance was present. 

(B) Steady state current-voltage (I-V) relationship of the outward Shaker type conductance and 

of the fast-activating outward cationic conductance derived from patch-clamp recordings in 28 

WT protoplasts. The membrane outward conductance to K
+
 was dominated by the outward 

Shaker type conductance in 10 protoplasts, and by the fast-activating cationic conductance in 

13 protoplasts. In 5 protoplasts, a contribution of both conductances to the outward current 

could be distinguished. I-V curves  were derived for the 10 protoplasts dominated by the 
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Shaker-type conductance and the 13 protoplasts dominated by the fast-activating 

conductance. Means ± SE.  
(C) Steady state current-voltage relationship of the membrane outward conductance in WT 

and mutant protoplasts. Means ± SE. WT: n = 28 (same protoplasts as in panel B). Mutant: n 

= 15.  
 

Figure 8. Role of MtGORK in repolarization of the root hair cell membrane after the initial 
depolarization induced by Nod Factor perception. 
(A) Recording of the membrane potential variations induced by NF factor treatment in a plant 

displaying a wild type genotype  (WT) for the mtgork mutation. The external solution bathing 

the root (bath background solution: bbs) when the micropipette was impaled in an epidermal 

cell of the root hair zone contained 0.1 mM KCl, 0.1 mM CaCl2, 0.1 mM NaCL and 2 mM MES-

Bis-Tris-Propane, pH 6.5.  When a stable signal was observed, the bbs was replaced by Nod 

Factor (NF) solution, which contained 10-6 M Nod Factor in bbs. The treatment resulted in a 

rapid depolarization of the cell membrane followed by a repolarization to the initial value while 

NFs were still present in the percolated solution. Then, the NF solution was replaced by bbs, 

allowing to check that the membrane potential remained close to the initial value recorded 

before the NF treatment. The bbs was thereafter replaced by 30 mM KCl (in bbs) to check the 

depolarizing effect of a high K+ concentration. The 30 mM KCl solution was thereafter replaced 

by bbs to check whether the impaled cell could restore its membrane potential to the initial 

value. When this test was positive, the recording was used for analysis of the repolarization 

phase during the NF treatment.  

(B) Analysis of the repolarization phase. The apparently linear part of the repolarization phase 

(lasting about 1 min, from ca. 0.1 min after the beginning of this phase) was extracted and 

fitted with a linear regression to derive the mean slope in mV.min-1) of the recording, taken as 

an estimate of the repolarization rate. Black and grey curves: example of recordings obtained 

in a plant homozygous for the mtgork mutation (mutant) or displaying a wild type genotype for 

this mutation (WT), respectively. 

(C) Repolarization rates in WT and mutant plants. Means ± SD, n = 5. The asterisk indicates 

that the difference is statistically significant (Student test, P<0.05). 

 

Figure 9. In vitro capacity of the plant to produce infection threads in presence of 
rhizobia and to develop nodules is not impaired by absence of MtGORK activity.  
Germinated seedlings homozygous for the mtgork mutation (mutant) or displaying a wild type 

genotype for this mutation (WT) were transferred onto Fahraeus agar medium in Petri dishes 

and inoculated with S. meliloti two days later. 
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(A) Number of infection threads observed at 3 and 5 days post-infection (dpi). The inoculated 

S. meliloti strain was RM2011 lacZ, and the collected roots were stained to reveal LacZ activity 

for easier detection of infection threads. Means ± SE, n = 10. Statistical analysis (Tukey test 

at the 5% level) indicates that there was no significant difference between the two types of 

plants. 

(B) Number of nodules at 7, 14 and 21 dpi. The inoculated S. meliloti strain was 1021 DsRED, 

and the collected roots were observed using DsRED fluorescence microscopy, allowing easier 

detection of nodules.  Means ± SE, n = 24. No statistically significant difference between the 

two types of plants (Tukey test at the 5% level). 
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SUPPLEMENTAL FIGURE LEGENDS 
 

Supplemental Figure S1. MtGORK of the Shaker channel family of Medicago truncatula. 
(A) Phylogenetic relationships between Shaker polypeptides from Arabidopsis thaliana and 

Medicago truncatula. The plant Shaker family comprises 5 groups (see main text). Shaker 

sequences from Arabidopsis were obtained from the TAIR website 

(http://www.arabidopsis.org/). A homology search was carried out against the M. truncatula 

protein sequence bank (MT4.0v2) using the BLAST (Basic Local Alignment Search Tool) 

program, the BLOSUM62 matrix (BLOcks SUbstitution Matrix) and a threshold E (or E-value) 

equal to 10-3. The unrooted phylogenetic tree was generated with PhyML software 

(http://www.atgc-montpellier.fr/phyml/binaries.php) using the maximum-likelihood method and 

1000 bootstrap replicates in Seaview application (http://doua.prabi.fr/software/seaview). 

Arabidopsis Shaker polypeptide sequences were first aligned with Muscle 

(http://www.drive5.com/muscle/), then treated with Gblocks in Seaview program for alignment 

curation. The phylogenetic tree was drawn with Dendroscope (http://ab.inf.uni-

tuebingen.de/software/dendroscope/). Bootstrap values (as percentages) are indicated at the 

corresponding nodes. The scale bar corresponds to a distance of 10 changes per 100 amino 

acid positions.  

(B) Structure of plant Shaker channels. The channel hydrophobic core comprises 6 

transmembrane segments, named S1 to S6. S4 (the so-called voltage sensor) contains 

positively charged residues and confers sensitivity to the electric field in the membrane (and 

thus to the transmembrane voltage). P: pore domain. Shaker functional channels are 

tertrameric proteins, the 4 P domains being assembled in the center of the tetrameric structure 

where they structure the K+ permeation pathway (pore). Four large domains can be identified 

in the cytosolic region downstream S6: a C-linker domain, a cyclic nucleotide binding domain, 

an ankyrin domain (not present in every plant Shaker channel but present in MtSKOR, AtSKOR 

and AtGORK), and a KHA domain. Role of these domains in plant Shaker channels: see Daram 

et al., 1997; Nieves-Cordones et al., 2014).  

(C) Sequence alignment of MtGORK and the Arabidopsis AtSKOR Shaker in the P domain 

and S6. Asterisks denote residues shown to be involved in the channel sensitivity to the 

external concentration of K+ in AtSKOR (Johansson et al., 2006).  

(D) Schematic diagram of the MtGORK gene structure indicating the site of insertion of the 

disrupting TNT1 retrotransposon in the Jemalong A17 M. truncatula line named NF9352. Same 

abbreviations as in panel B. Boxes: exons. 
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Supplemental Figure S2. Mutant plants homozygous for the mtgork mutation display 
similar shoot and root biomass as wild type plants. 
Plants homozygous for the mtgork mutation (mutant) or displaying a wild type genotype for 

this mutation (WT) were compared with respect to biomass production in different conditions. 

 (A and B)  Non-inoculated (A) or inoculated (B) plants grown for 8 weeks on vermiculite-sand 

mixture. Plants were transferred onto sand-vermiculite mixture 3 days after germination. When 

inoculated (B), inoculation (with S. meliloti strain 1021) was achieved after 7 days of growth. 

Shoot and root were collected for biomass measurements (dry weight: DW) after 8 weeks of 

growth in growth chamber. Means ± SE; n = 12. 

(C) Inoculated plants grown in vitro for 3 weeks. Germinated seedlings were transferred onto 

Fahraeus agar medium in Petri dishes and inoculated with S. meliloti strain 1021 DsRED. Plant 

dry weight was measured 21 days post-inoculation  (means ± SE; n = 24). 

(D) Inoculated plants grown for 2, 3 or 4 weeks on compost. Germinated seedlings were 

transferred onto compost on growth chamber and inoculated one week later with S. meliloti 

strain 1021. Plants were collected for dry weight measurements at 7, 14 and 21 dpi. 
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Figure 4.  

B 

Figure III.14 : Localisation de l’expression de MtSKOR via la fusion transcriptionnelle
avec le gène rapporteur GUS.

Photographies représentatives de nodules de M. truncatula après coloration GUS permettant
une localisationde l’expression deMtSKOR. Les observations sont réalisées sur des nodules
de M. trucatula transformées par R. rhizogenes puis inoculés avec S. meliloti SM1021. La
construction utilisée est présentée dans la Figure III.3. Les nodules ont été récoltés 14 jours
apres inoculation.
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Figure 8. 
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