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Highlights 12 

• The effects of two commercial fungicides were tested on earthworm reproduction 13 

• Adult individuals and “naïve” cocoons were exposed 14 

• Negative effects were found on cocoon production, hatching time, hatching success 15 

• “Naïve” cocoons were less affected than cocoons produced by exposed adults  16 
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Abstract  28 

The use of pesticides in agroecosystems can have negative effects on earthworms, which play 29 

key roles in soil functioning such as organic matter decomposition. The aim of this study was 30 

to assess the effects of two fungicides (Cuprafor micro®, composed of copper oxychloride, and 31 

Swing Gold®, composed of epoxiconazole (EPX) and dimoxystrobin (DMX)) on earthworm 32 

reproduction by exposing adults and cocoons. First, adult Aporrectodea caliginosa individuals 33 

were exposed for 28 days to 3.33, 10 and 30 times the recommended dose (RD) of Cuprafor 34 

micro® corresponding to 25.8, 77.5 and 232.5 mg kg-1 dry soil of copper, respectively, and 0.33, 35 

1 and 3 times the RD of Swing Gold® (corresponding to 5.2 x 10-2 mg DMX kg-1 + 1.94 x 10-2 36 

mg EPX kg-1, 1.55 x 10-1 mg DMX kg-1 + 5.81 x 10-2 mg EPX kg-1 and 4.62 x 10-1 mg DMX 37 

kg-1 + 1.74 x 10-1 mg EPX kg-1 respectively), in addition to a control soil with no fungicide 38 

treatment. Cocoon variables (production, weight, hatching success, hatching time) were 39 

monitored. Second, “naïve” cocoons produced by uncontaminated earthworms were exposed 40 

to soils contaminated by the same concentrations of the two fungicides, and we assessed 41 

hatching success and hatching time. In the first experiment, cocoon production was halved at 42 

the highest copper concentration (232.5 mg Cu kg-1 of dry soil) as compared to the control. 43 

Cocoons took 5 more days to hatch, and the hatching success decreased by 35% as compared 44 

to the control. In the Swing Gold® treatments, cocoon production was reduced by 63% at 3 45 

times the RD, and the hatching success significantly decreased by 16% at the RD. In the second 46 

experiment, only the hatching success of cocoons was impacted by Swing Gold® at 3 times the 47 

RD (30% less hatching). It is concluded that the cocoon stock in the soil is crucial for the 48 

renewal of populations in the field. The most sensitive endpoint was the hatching success of the 49 
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cocoons produced by exposed adults. This endpoint and the effects observed on the “naïve” 50 

cocoons could be taken into account in pesticide risk assessment. 51 

 52 

Keywords: Ecotoxicology; Ecological risk assessment; Soil invertebrates; Lumbricidae; 53 

Pesticide 54 

1. Introduction 55 

During the last decades, the increasing demand for food products has led to changes in 56 

land use and management. Along with an increase in cultivated areas, the enhancement of yields 57 

has been promoted by the use of chemical inputs such as pesticides (Tilman et al., 2002). In 58 

temperate soils, earthworms represent a large proportion of the living biomass (Gobat et al., 59 

2004). These primary consumers of organic matter are involved in soil structuring, and thus 60 

maintain soil health (Bertrand et al., 2015; Blouin et al., 2013). While earthworm densities 61 

generally range from 200 to 400 individuals m-² in permanent grasslands (Amossé et al., 2018; 62 

Beylich and Graefe, 2012; Edwards and Bohlen, 1996), they can be lower than 100 individuals 63 

m-² in conventional agricultural fields (Scullion et al., 2002). Mechanical tillage such as 64 

ploughing has a direct negative impact on earthworm populations (Chan, 2001; Mele and 65 

Carter, 1999). However, the impact of pesticides on earthworm populations under field 66 

conditions is much harder to assess and rarely documented. Using a concentration-response-67 

based field experiment, Schnug et al. (2015) showed that a mixture of three biocides (i.e., the 68 

insecticide esfenvalerate, the fungicide picoxystrobin and the bactericide triclosan) affected 69 

earthworm abundance and juvenile proportions. These authors also highlighted that pesticide 70 

concentrations corresponded to the EC50 for E. fetida reproduction (Schnug et al., 2013; Schnug 71 

et al., 2014) and had effects on earthworms in the field exceeding 50%, indicating that the 72 

effects observed in the field could be greater than those observed under laboratory conditions. 73 
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This result showed that some endpoints such as reproduction were not sufficiently and correctly 74 

covered in laboratory experiments.  75 

 76 

The reproduction test proposed in the ISO guideline with the Eisenia fetida species (ISO 77 

11268-2, 2012; OECD 222, 2016) currently allows assessing the number of juveniles produced 78 

by adults exposed to chemicals. But the procedure suffers from at least two weaknesses. First, 79 

this test procedure does not allow for specifically assessing the impacts of chemicals on cocoon 80 

production and then on their viability, which is a knowledge gap if we seek to understand the 81 

impact of pesticides on the earthworm reproduction process. Secondly, the cocoons produced 82 

before the chemical applications, which end up in contact with them, could be affected. No 83 

assessment on these “naïve” cocoons is currently performed. Nevertheless, the soil harbours a 84 

cocoon stock that is necessary for the populations to be renewed (Bouché, 1972; Boström and 85 

Lofs Holmin, 1996) in case of disturbances (e.g., drought, freezing temperatures, chemical 86 

stress) that directly affect adult and juvenile individuals. Consequently, not only is it relevant 87 

to assess the impacts of pesticides on cocoon production and hatching success by exposing adult 88 

earthworms, but it is also equally relevant to study the viability of cocoons by exposing them 89 

directly to chemicals. Finally, the tests proposed by the ISO guidelines are performed with 90 

Eisenia fetida, which is not representative of agricultural fields and is less sensitive than other 91 

soil-dwelling species to pesticides (Pelosi et al., 2013). The relevance of using species other 92 

than E. fetida in pesticide risk assessment is also increasingly supported in the scientific 93 

literature (Lowe and Butt, 2007; Spurgeon et al., 2003). Aporrectodea caliginosa is one of the 94 

increasingly advocated species in ecotoxicity tests. It is highly representative of temperate 95 

agricultural fields (Bart et al., 2018; Decaëns et al., 2011; Perez-Losada et al., 2009) and 96 

according to Pelosi et al. (2013), it is three times more sensitive to pesticides than E. fetida.    97 
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In this context, our study aimed to assess the impacts of two commercial formulations 98 

of fungicides (Cuprafor micro®, composed of copper oxychloride, and Swing Gold®, composed 99 

of epoxiconazole and dimoxystrobin) on A. caliginosa reproduction. We selected copper 100 

because it can negatively impact earthworm biomass and growth (Bart et al., 2017; Eijsackers 101 

et al., 2005; Khalil et al., 1996a) and accumulates in the soil, potentially leading to high 102 

concentrations (Brun et al., 1998). We selected Swing Gold® because its active substances are 103 

recognized as dangerous for the environment, and dimoxystrobin is considered as reprotoxic. 104 

Both fungicides are widely used in cultivated fields in Europe. Finally, the choice to use 105 

commercial formulations was given preference over pure molecules so as to be as close as 106 

possible to field conditions, and this generates relevant data for risk assessment. We assessed 107 

the impact of the two fungicides on A. caliginosa reproduction by exposing adult earthworms 108 

to contaminated soils, and also by exposing “naïve” cocoons. Thereby, we tested the assumption 109 

that the hatching success and time to hatch of cocoons produced by exposed adults could be 110 

more affected by pesticides than those of “naïve” cocoons because “naïve” cocoons were 111 

produced by unexposed adults and could better tolerate unfavorable environmental conditions 112 

(e.g., drought, freezing temperatures, chemical stress).  113 

 114 

2. Materials and methods 115 

2.1. Soil, animals, and pesticides 116 

A loamy soil (FAO soil classification) was used in all experiments. It was collected from 117 

a permanent meadow in Versailles (48°48′ N, 2°5′ E) where any synthetics and metals 118 

compounds had been applied for more than 20 years. The soil was collected from the top 0-20 119 

cm, air-dried and crushed at 2 mm. Its main physico-chemical characteristics were: pH 7.5, 120 
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organic matter 32.6 g kg−1, C/N 12.7, 29% sand, 48% silt, 23% clay, and total Cu 25.2 mg kg-1 121 

(see Bart et al., 2017 for more details). 122 

A. caliginosa individuals came from an agricultural field in Estrées-Mons, France 123 

(49°52' N 3°01'E). They were mature, with a fully developed clitellum, and their weight ranged 124 

from 600 to 1 000 mg. They were bred by incorporating horse dung to the above-mentioned 125 

soil at 15°C for 14 days; the full breeding procedure is presented in Bart et al. (2018). 126 

We studied two fungicide formulations. The first was Cuprafor micro® (Quimicas del 127 

Valles, 50% copper oxychloride), used to prevent fungal and bacterial germination in 128 

conventional and organic farming. The French Recommended Dose (RD) for this product is 10 129 

kg ha−1 on potato and in vineyards (ANSES, 2017b). The laboratory RD was calculated with 130 

the following formula: 131 

[mg	kg&'] =
[mg	ha&']

area	(dm0	)	x	depth	(dm)	x	soil	density	(kg	dm&;) 132 

with mg ha-1 = 10 000 000 mg Cu, area = 1 000 000 dm², a soil density of 1.29 kg dm-3, and 133 

considering that copper was mainly found in the top 0.5 dm of soil (Couto et al., 2015). The 134 

RD was thus calculated as 15.5 mg kg−1 of dry soil (corresponding to 7.75 mg kg-1 of copper). 135 

We used the following concentrations for all experiments: 3.33, 10 and 30 times the RD 136 

abbreviated as Cu3.33, Cu10 and Cu30, which correspond to 25.8, 77.5 and 232.5 mg kg-1 of 137 

copper, respectively. These concentrations were expected to be sub-lethal, considering that the 138 

LC50 for Eisenia fetida has been estimated to be > 486.6 mg kg-1 of copper (which corresponds 139 

to 63 times the RD) (PPDB, 2017). The second fungicide was Swing Gold® (BASF Agro SAS, 140 

dimoxystrobin 133 g L−1, epoxiconazole 50 g L−1), used to protect cereal crops in conventional 141 

farming. The French Recommended Dose (RD) for this product is 1.5 L ha−1 on wheat (ANSES, 142 

2017a). Using the same formula as for copper, the laboratory RD was calculated as 1.16 10−3 143 

mL kg−1 of dry soil, with the same soil density and considering that the active compounds of 144 
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this fungicide were mainly found in the top 1 dm of soil (Chabauty et al., 2016; McDonald et 145 

al., 2013). We used the following concentrations for all experiments: 0.33, 1 and 3 times the 146 

RD, abbreviated as SG0.33, SG1 and SG3, respectively. These concentrations were expected 147 

to be sub-lethal, considering that the 14-day LC50 was estimated to be 6.3 times the RD for A. 148 

caliginosa (Bart et al., 2017).  149 

The dry soil was spiked with aqueous solutions of fungicides, and the soil moisture was 150 

adjusted concomitantly at 70% of the water-holding capacity (WHC) (corresponding to 28% of 151 

water content) in all experiments. Only tap water was used for the control treatments. 152 

 153 

2.2. Cocoon production, hatching success and time to hatch through adult exposure 154 

 Five replicates were performed for each concentration and the control. For each 155 

replicate, 500 g of soil (dry mass) and 24 g of horse dung were mixed and placed in a 1-L plastic 156 

vessel (15 x 10 x 7 cm) with a removable perforated cover for gas exchanges. Horse dung used 157 

as a food source was frozen - defrosted twice and then milled (< 1 mm) before use (Lowe and 158 

Butt, 2005). The food amount corresponded to 6 g ind-1 month-1, which is enough to maintain 159 

A. caliginosa weight. This food amount was previously determined and close to that proposed 160 

by Lowe and Butt (2005). Four adult individuals with a visible clitellum were weighed and 161 

introduced in each vessel and stored in a climate room (15±1 °C, 24 h darkness, Bart et al., 162 

2018) for 28 days. The soil moisture (i.e., 70% of WHC) was checked weekly by monitoring 163 

the mass of the vessels throughout the experiment and adjusted with tap water if necessary. At 164 

the end of the exposure period, individuals were removed, counted, and weighed. The 165 

difference between the individual weights at the beginning and at the end of the experiment was 166 

used to calculate the percentage of adult weight change. The wet sieving method was used to 167 

retrieve produced cocoons, and results were expressed as numbers of cocoons per vessel. The 168 
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cocoons were then weighed and incubated at 20° ± 0.5 C in petri dishes in aqueous tap water 169 

solution (i.e., semi-immersed). The cocoons were monitored every two days over a 60-day 170 

period. After that period, we considered that the unhatched cocoons would never hatch. Mean 171 

hatching time and hatching success were calculated for each replicate.  172 

 173 

2.3. Cocoon hatching success and time to hatch through “naïve” cocoon exposure 174 

 More than 120 cocoons were produced over a period of 7 days in the A. caliginosa 175 

breeding culture. In order to get a homogenous cocoon cohort, we discarded the 5% of cocoons 176 

that were too big or too small. The sinks of 24-well microtiter plates were filled with 2 g of soil 177 

(dry mass). All the plates had a removable perforated cover for gas exchanges. Five replicates 178 

were set up for each fungicide and concentration tested, and for the control. Three cocoons 179 

randomly selected among the cocoon cohort were introduced in each sink. The cocoons were 180 

gently buried in the soil. The plates were incubated at 20 ± 0.5 °C, and the soil moisture (i.e., 181 

70% WHC) was checked weekly by monitoring the mass of the plates, and adjusted with tap 182 

water if necessary. The hatching cocoons were checked every 2 days, and the experiment was 183 

stopped after 60 days of incubation, considering that the remaining cocoons would never hatch 184 

beyond that delay. The mean hatching time and hatching success per replicate were calculated 185 

for each modality. 186 

 187 

2.4. Statistical analyses 188 

 All data were analysed with the statistical software program R Core Team (2015). 189 

Differences were considered significant if the p-value < 0.05. When the homogeneity of 190 

variance (Bartlett-test, Snedecor and Cochran, 1989) and the normality of residuals (Shapiro 191 

test) were respected, ANOVA and Fisher's least significant difference (LSD) post-hoc tests 192 
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were performed to analyse the differences among treatments. When normality and 193 

homoscedasticity conditions were not satisfied, the non-parametric Kruskal-Wallis test was 194 

used.  195 

 196 

3. Results 197 

3.1. Cocoon production, hatching success and time to hatch through adult exposure 198 

The effects of Cuprafor micro® on earthworm biomass, cocoon production, and cocoon 199 

weight are presented in Fig. 1. The hatching time and success of the produced cocoons are 200 

presented in Table 1, and the hatching dynamics (all replicates included) in Fig. S1. 201 

At the end of the experiment, a mortality rate of 5% was recorded in the Cu3.33 and the 202 

control treatments. No mortality occurred in the Cu10 and Cu30 treatments. No significant 203 

difference in adult weight change was recorded between the control and Cuprafor micro® 204 

treatments. However, adult weight change was significantly lower in the Cu30 treatment (-205 

7.3%) than in the Cu10 treatment (+9.6 %, Fig. 1 A). Earthworms produced 15.9 cocoons (mean 206 

number of cocoons per vessel) on average in the control treatment. Cocoon production was 207 

significantly two times lower in the Cu30 treatment (corresponding to 30 times the RD or 232.5 208 

mg kg-1 of copper) than in the control (Fig. 1 B). We did not find any significant effect of the 209 

copper fungicide on the mean weight of the produced cocoons (Fig. 1 C). 210 
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 211 

Fig. 1. (A) Weight change (% of difference between the beginning and the end of the 212 
experiment, 28 days), (B) cocoon production (number of cocoons per vessel produced by 4 213 
individuals), and (C) mean weight of the cocoons produced by earthworms exposed to control 214 
soil or soils spiked with different concentrations of Cuprafor micro® (3.33, 10 and 30 times the 215 
RD, corresponding to 25.8, 77.5 and 232.5 mg kg-1 of copper, abbreviated Cu3.3, Cu10 and 216 
Cu30, respectively). n=5 ± SD; different letters indicate significant differences among the 217 
concentrations (p<0.05). 218 

Cuprafor micro®



11 

 

The hatching dynamics of the cocoons (all replicates included) in the Cu10 and Cu30 219 

treatments differed from the dynamics of the control treatment (Fig. S1). More specifically, the 220 

mean hatching time of the cocoons produced in the Cu30 treatment was significantly longer (5 221 

more days) than in the control treatment (Table 1). Moreover, the hatching success was 222 

significantly two times lower in the Cu10 treatment than in the control (Table 1). Although the 223 

mean hatching success was 61% and 94% in the Cu30 and control treatments, respectively, the 224 

difference was not significant due to high variability in the Cu30 treatment: only one cocoon 225 

was produced in one replicate (N=5) and did not hatch (hatching success of 0%), while 2 226 

cocoons were produced in another replicate and hatched (hatching success of 100%).  227 

 228 

Table 1. Mean hatching time (days) and mean hatching success (%) of cocoons produced by A. 229 
caliginosa adults exposed to Cuprafor micro®a  230 

  Treatmentb 
 C Cu3.33 Cu10 Cu30 
Hatching time 
(days) 

23.5 ± 1.7 A 25.6 ± 1.8 AB 26.8 ± 3.5 AB 28.5 ± 2.4 B 

Hatching success 
(%) 

94.4 ± 5.3 A 88.5 ± 13.7 A 45.9 ± 18.9 B 61.0 ± 38.5 AB 

a Cocoons were produced over a 28-day period in a control soil C and in soils spiked with 231 
different Cuprafor micro® concentrations (3.33, 10 and 30 times the RD, corresponding to 25.8, 232 
77.5 and 232.5 mg kg-1 of copper abbreviated Cu3.3, Cu10 and Cu30, respectively). C = Control 233 
treatment. 234 
b Different letters indicate significant differences among concentrations (p<0.05). 235 

 236 
 237 

The effects of Swing Gold® on earthworm biomass, cocoon production, and cocoon 238 

weight are presented in Fig. 2. The hatching time and success of the produced cocoons are 239 

presented in Table 2, and the hatching dynamics (all replicates included) in Fig. S2. 240 

At the end of the experiment, no mortality was recorded in the SG0.33 treatment. 241 

Mortality rates of 5% were found in the SG1 and control treatments, and of 20% in the SG3 242 
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treatment. No significant difference in adult weight change was recorded between the control 243 

and the Swing Gold® treatments. However, adult weight was significantly lower in the SG3 244 

treatment (-13.4%) than in the SG0.33 treatment (+7.9%, Fig. 2 A). Earthworms produced 245 

significantly three times less cocoons at 3 times the recommended dose (SG3) as compared to 246 

the control soil (Fig. 2 B). As for the copper fungicide, the different Swing Gold® concentrations 247 

did not influence cocoon weight (Fig. 2 C). 248 
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 249 

Fig. 2. (A) Weight change (% of the difference between the beginning and the end of the 250 
experiment, 28 days), (B) cocoon production (number of cocoons per vessel produced by 4 251 
individuals), and (C) mean weight of the cocoons produced by earthworms exposed to control 252 
soil or soils spiked with different Swing Gold® concentrations (0.33, 1 and 3 times the RD, 253 
abbreviated SG0.33, SG1 and SG3, respectively). n=5 ± SD; different letters indicate significant 254 
differences among the concentrations (p<0.05). 255 

 256 

Swing Gold®



14 

 

The hatching dynamics of the cocoons (all replicates included) in the SG1 and SG3 257 

treatments differed from the dynamics of the control treatment (Fig. S2). More specifically, the 258 

Swing Gold® fungicide negatively affected the hatching time of cocoons: they took 5 more days 259 

to hatch in the SG3 treatment than in the other treatments (Table 2). The hatching success was 260 

16% and 36% lower for the cocoons produced by individuals exposed to the SG1 and SG3 261 

treatments, respectively, as compared to the control treatment (Table 2). 262 

 263 

Table 2. Mean hatching time (days) and mean hatching success (%) of the cocoons produced 264 
by A. caliginosa adults exposed to Swing Gold®a. 265 

  Treatmentb 
 C SG0.33 SG1 SG3 
Hatching time 
(days) 

23.5 ± 1.7 A 22.2 ± 1.4 A 22.9 ± 1.7 A 28.8 ± 3.4 B 

Hatching success 
(%) 

94.4 ± 5.3 A 91.1 ± 15.6 AB 78.9 ± 6.8 B 60.3 ± 14.4 C 

a Cocoons were produced over a 28-day period in a control soil C and in soils spiked with 266 
different Swing Gold® concentrations (0.33, 1 and 3 times the RD, abbreviated SG0.33, SG1 267 
and SG3, respectively).  268 
b Different letters indicate significant differences among the concentrations (p<0.05). 269 

 270 
 271 

3.2. Cocoon hatching success and time to hatch through “naive” cocoon exposure 272 

The effects of Cuprafor micro® on the hatching time and success of “naïve” cocoons are 273 

presented in Table 3, and the hatching dynamics (all replicates included) are presented in Fig 274 

S3 A.  275 

The hatching dynamics (all replicates included) of “naïve” cocoons produced in a non-276 

contaminated soil and then exposed to Cu3.33 treatment, Cu10 treatment, or to a control soil 277 

were similar (Fig. S3 A). The dynamics in the Cu30 treatment was slower and stopped at around 278 

80% of the hatching success, versus 100% in the control treatment. However, there was no 279 

significant effect on the hatching time and success, whatever the concentration tested (Table 3). 280 
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 281 

The effects of Swing Gold® on the hatching time and success of “naïve” cocoons are 282 

presented in Table 4, and the hatching dynamics (all replicates included) are presented in Fig 283 

S3 B.  284 

The hatching dynamics (all replicates included) of “naive” cocoons produced in a non-285 

contaminated soil and then exposed to SG0.33 or SG1 treatment were close to the dynamics of 286 

the control (Fig. S3 B). The hatching dynamics of the cocoons exposed to the SG3 treatment 287 

was slower than the dynamics of the control treatment (Fig. S3 B), and the hatching success 288 

was significantly affected, with only 67% of hatching success (Table 4). 289 

 290 

Table 3. Mean hatching time (days) and mean hatching success (%) of “naïve” A. caliginosa 291 
cocoonsa exposed to Cuprafor micro®b. 292 

  Treatmentc 
 C Cu3.33 Cu10 Cu30 
Hatching time 
(days) 

31.1 ± 1.1 A 32.4 ± 1.0 A 32.7 ± 3.6 A 33.1 ± 1.5 A 

Hatching success 
(%) 

100 ± 0.0 A 93.3 ± 14.9 A 86.7 ± 18.3 A 80 ± 18.25 A 

a Cocoons were produced over a 7-day period in the breeding culture 293 
b Cocoons were incubated at 20°C in the control soil C or in soils spiked with different Cuprafor 294 
micro® concentrations (3.33, 10 and 30 times the RD, corresponding to 25.8, 77.5 and 232.5 295 
mg kg-1 of copper, abbreviated Cu3.3, Cu10 and Cu30, respectively).  296 
c Different letters indicate significant differences among the concentrations (p<0.05). 297 

 298 

 299 

 300 

 301 

Table 4. Mean hatching time (days) and mean hatching success (%) of “naïve” A. caliginosa 302 
cocoonsa exposed to Swing Gold®b. 303 

  Treatmentc 
 C SG0.33 SG1 SG3 
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Hatching time 
(days) 

31.1 ± 1.1 A 31.3 ± 1.4 A 32.6 ± 3.0 A 34.4 ± 2.6 A 

Hatching success 
(%) 

100 ± 0.0 A 100 ± 0.0 A 86.7 ± 29.8 A 66.7 ± 0.0 B 

a Cocoons were produced over a 7-day period in the breeding culture 304 
b Cocoons were incubated at 20°C in the control soil C or in soils spiked with different Swing 305 
Gold® concentrations (0.33, 1 and 3 times the RD, abbreviated SG0.33, SG1 and SG3, 306 
respectively). 307 
c Different letters indicate significant differences among the concentrations (p<0.05). 308 

 309 

4. Discussion 310 

 The impacts of pesticides on earthworm reproduction are difficult to assess under 311 

natural conditions because several factors can influence on it at the same time (e.g., agro-312 

pedoclimatic factors). In this study, we used an ecologically relevant earthworm species, a 313 

natural soil, and commercial formulations of pesticides so as to be closer to field conditions. 314 

The results revealed negative effects of two fungicides on A. caliginosa reproduction at 315 

concentrations not far from those applied in the field. For the Swing Gold® fungicide, effects 316 

were observed starting from the RD. Concerning the active substances, Silva et al. (2019) found 317 

a median concentration of 0.02 mg kg-1 of epoxiconazole and a maximum of 0.16 mg kg-1 in 318 

agricultural soil, which is in the range of the RD (0.058 mg kg-1 of epoxiconazole, Table S1). 319 

Furthermore, according to the EFSA Scientific Report 46, 1-82 (2005), the no-observed-effect 320 

concentration (NOEC) of dimoxystrobin for E. fetida reproduction in a formulation with the 321 

same properties as Swing Gold® (i.e., 133 g L-1 of dimoxystrobin and 50 g L-1 of epoxiconazole) 322 

was estimated to be <0.0887 mg kg-1 of dimoxystrobin, which is equivalent to half the RD in 323 

our experimental conditions (i.e., 10 cm depth and 1.29 kg dm-3 soil density). Finally, as regards 324 

epoxiconazole, the NOEC for E. fetida reproduction was estimated to be 0.084 mg kg-1 (PPDB, 325 

2017). We carried out our experiments with the endogeic species A. caliginosa, which inhabits 326 

agroecosystems and will consequently come in contact with this pesticide. Our results strongly 327 
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support the conclusion that the Swing Gold® formulation is potentially harmful for earthworm 328 

reproduction in the field. Concerning the coper fungicide, the effects were observed from 10 329 

times the RD, corresponding to 77.5 mg kg-1 of Cu, which added up to the soil background Cu 330 

concentration, leading to around 102.5 mg kg-1. This value is a bit far from the average 331 

maximum Cu concentration in vineyard soils in Europe, i.e., 49.26 mg kg-1 of Cu (Ballabio et 332 

al., 2018), but could be reached in the field because copper accumulates treatment after 333 

treatment. 334 

 335 

In our experimental conditions (i.e., soil characteristics, 28 % water content, and 336 

temperature), the individuals of the control group did not lose weight, indicating that the amount 337 

of food was sufficient for individuals. The pesticide concentrations were sublethal for A. 338 

caliginosa. Even if the Swing Gold® treatment was applied at three times the recommended 339 

dose, it killed 20% of earthworms. This result is in accordance with Bart et al. (2017), who 340 

estimated an LC50 at 6.3 times the RD for A. caliginosa. Furthermore, a recent field experiment 341 

showed that this fungicide applied at 10 times the recommended dose in the field dramatically 342 

affected earthworm density, especially A. caliginosa density (Amossé et al., 2018).  343 

A. caliginosa adults produced one cocoon per individual per week in the control 344 

treatment. This is in accordance with other studies (Lofs Holmin, 1982; Spurgeon et al., 2000), 345 

which found between 0.6 to 2.6 cocoons per individual per week at 15 °C in natural soils for A. 346 

caliginosa. Cocoon production sharply dropped at the two highest concentrations of both 347 

fungicides, although partially explained by the mortality rate in the SG3 treatment. Other 348 

studies with the same species reported EC50 values for cocoon production between 68 and 186 349 

mg Cu kg-1 (Khalil et al., 1996b; Ma 1988). Similarly, Martin (1986) estimated a NOEC of 50 350 

mg Cu kg-1 for Aporrectodea tuberculata, which belongs to the A. caliginosa complex of 351 
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species (Sims and Gerard, 1999). Mirmonsef et al. (2017) found an EC50 value of 220 mg kg-1 352 

for Aporrectodea tuberculata. In our experiment, copper toxicity was a little lower than 353 

previously reported because the addition of horse manure may have decreased copper 354 

bioavailability (Ma and Rao, 1997) for earthworms and thus alleviated its ecotoxicological 355 

effects. Copper toxicity highly depends on the copper form and the soil (EU 2008).  356 

The weight of the cocoons produced by adults exposed to fungicides or chemicals as an 357 

ecotoxicological endpoint is not documented in the scientific literature. However, it can reveal 358 

key information on the reproductive strategy of A. caliginosa. Neither fungicide impacted the 359 

weight of the cocoons produced by the exposed adults, even at the highest concentrations. When 360 

a cocoon is produced, the vitellus allows for the development of the embryo (Bouché, 1972). A 361 

hypothesis could be that when A. caliginosa are exposed to fungicides, their strategy could be 362 

to produce fewer cocoons but with the required amount of vitellus to ensure the embryo 363 

development, but further experiments would be required to investigate that point. The cocoons 364 

produced by exposed adults took longer to hatch and a had a lower hatching success, even at 365 

the recommended dose of Swing Gold®. Previous studies showed that the sperm quality and 366 

quantity of earthworms, including A. caliginosa, can be affected by pesticides (Espinoza-367 

Navarro and Bustos-Obregon, 2004; Espinoza-Navarro and Bustos-Obregon, 2005; Mosleh et 368 

al., 2003; Venter and Reinecke, 1985) and might explain our results. 369 

In the second experiment, in which “naive” cocoons were exposed to the two fungicides, 370 

we found a mean incubation period of 31 days in the control treatment. This number is 371 

underestimated because cocoons were produced over the 7-day period at 15°C before the 372 

beginning of the incubation, so that some cocoons had already started incubating. The observed 373 

incubation period is in accordance with Holmstrup et al. (1991), who found a cocoon incubation 374 

period in petri dishes on a moist filter paper of 36 days at 20 °C for cocoons of A. caliginosa. 375 
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Several authors recorded a hatching success of more than 90% in a natural soil (Boström and 376 

Lofs Holmin, 1996) or in petri dishes (Holmstrup, 2001; Jensen and Holmstrup, 1997) at 15°C. 377 

This is in accordance with our results in the control treatment, where 100% of the cocoons 378 

hatched. To our knowledge, the monitoring of “naive” cocoons incubated in a contaminated 379 

soil has never been documented in the scientific literature. Nevertheless, cocoons from “naive” 380 

earthworms can be exposed to pesticides after being produced, although this is less probable 381 

than the previous situation (cocoons produced by exposed earthworms). These “naive” cocoons 382 

appeared to be less affected by the fungicides than the cocoons produced by the exposed adults, 383 

with only significant effects for the Swing Gold® fungicide at 3 times the RD. These results 384 

mean that the ecotoxicological effects are mainly related to the quality of the cocoons rather 385 

than the environment in which they are deposited. Nevertheless, the effects observed with the 386 

Swing Gold® fungicide indicate that this endpoint should be monitored in pesticide risk 387 

assessment since the cocoon stock is crucial for the renewal of populations in the field. This 388 

result was significant for the hatching success in the SG3 treatment. In addition, the cocoons 389 

produced by adults exposed to pesticides under field conditions are generally laid in the same 390 

contaminated soil. Thus, the impacts on reproduction could be greater than our observations 391 

appear to indicate. 392 

 393 

5. Conclusions 394 

 In risk assessment procedures, the reproduction test with Eisenia fetida directly assesses 395 

the impact of chemicals on the number of produced juveniles. This does not provide information 396 

about the mechanisms whereby pesticides affect earthworm reproduction. In this study, we took 397 

one step further by taking the cocoon stage (i.e., weight, hatching success and time) into account 398 

after cocoon production, and by separately exposing “naïve” cocoons to contaminated soils so 399 
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as to allow for a better understanding of the impact of pesticides on earthworm reproduction. 400 

Our results showed that earthworm reproduction could be affected through adult fertility 401 

(cocoon production and viability of the produced cocoons), but also through the cocoon stock 402 

in the soil. These results highlight that there is a need to assess the impact of pesticides on 403 

earthworm reproduction through both adult exposure and cocoons. 404 
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 572 

Table S1. Concentrations of fungicides tested as commercial forms and active compounds. 573 

Swing Gold® 

Abbreviation Times 
RD 

Commercial form 
(mL kg-1) 

Dimoxystrobin 
(mg kg-1) 

Epoxiconazole 
(mg kg-1) 

SG0.33 0.33 0.39 x 10-3 5.2 x 10-2 1.94 x 10-2 
SG1 1 1.16 x 10-3 1.55 x 10-1 5.81 x 10-2 
SG3 3 3.48 x 10-3 4.62 x 10-1 1.74 x 10-1 

Cuprafor micro® 

Abbreviation Times RD Commercial form 
(mg kg-1) 

Copper  
(mg kg-1)  

Cu3.33 3.33 52 25.8 
Cu10 10 155 77.5 
Cu30 30 465 232.5 

 574 
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Fig. S1. Hatching dynamics of cocoons produced for a 28 days period in the control soil and in 578 
soils spiked with different Cuprafor micro® concentrations (3.33, 10 and 30 times the RD 579 
corresponding to 25.8, 77.5 and 232.5 mg kg-1 of copper abbreviated Cu3.3, Cu10 and Cu30 580 
respectively). 581 

 582 

Fig. S2. Hatching dynamics of cocoons produced for a 28 days period in the control soil and in 583 
soils spiked with different Swing Gold® concentration (0.33, 1 and 3 times the RD abbreviated 584 
SG0.33, SG1 and SG3 respectively). 585 

 586 
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 587 

 588 

 589 

Fig. S3. Hatching dynamics of cocoons produced for a 7 days period in the breeding culture 590 
and incubated at 20°C in the control soil or in soils spiked with (A) different Cuprafor micro® 591 
concentrations (3.33, 10 and 30 times the RD corresponding to 25.8, 77.5 and 232.5 mg kg-1 of 592 
copper abbreviated Cu3.3, Cu10 and Cu30 respectively) or (B) different Swing Gold® 593 
concentrations (0.33, 1 and 3 times the RD abbreviated SG0.33, SG1 and SG3 respectively). 594 

 595 
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