
HAL Id: hal-02240915
https://hal.science/hal-02240915

Submitted on 1 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intelligent autonomous agents in HLA virtual
environments

Samir Torki, Patrice Torguet, Cédric Sanza, Jean Pierre Jessel, Pierre Siron

To cite this version:
Samir Torki, Patrice Torguet, Cédric Sanza, Jean Pierre Jessel, Pierre Siron. Intelligent autonomous
agents in HLA virtual environments. European Simulation Interoperability Workshop (Euro-SIW),
Jun 2005, Toulouse, France. pp.261-270. �hal-02240915�

https://hal.science/hal-02240915
https://hal.archives-ouvertes.fr

�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/792

Torki, Samir and Torguet, Patrice and Sanza, Cédric and Jessel, Jean-Pierre and Siron, Pierre Intelligent autonomous

agents in HLA virtual environments. (2005) In: European Simulation Interoperability Workshop (Euro-SIW), 27 June

2005 - 30 June 2005 (Toulouse, France).

Intelligent autonomous agents in HLA virtual environments

Samir TORKI, Patrice TORGUET, Cédric SANZA, Jean-Pierrre JESSEL
Virtual Reality & Computer Graphics Research Group, IRIT

Université Paul Sabatier, 118 route de Narbonne
31062 Toulouse Cedex 4, France

Phone. (33) 05 61 55 74 01
Fax. (33) 05 61 55 62 58

E-mail:{torki,torguet,sanza,jessel}@irit.fr

Pierre SIRON
Information Modeling and Processing Department, ONERA-CERT

2, av. E. Belin, BP 4025
F-31055 Toulouse Cedex, France

E-mail:Pierre.Siron@cert.fr

Keywords :
High Level Architecture, Classifier systems, driving simulation, distributed simulation

ABSTRACT: Many simulations of virtual environments involve realistically behaving autonomous agents to
give users as much interaction capabilities as possible. In this kind of simulations, interoperable architec-
tures such as the High Level Architecture enable us to create complex and lively environments from simple
simulations of different kinds of entities. However, making simulations collaborate requires to give existing
agents the ability to interact with the newly integrated ones. Such a task generally consists in redefining
existing behaviours completely. Hence, making several even interoperable simulations collaborate, implies
long and demanding developments while interoperability tries to prevent them. Such drawbacks are mainly
due to the fact that most behavioural models are based on finite state machines and expert systems for which
designers have to describe exhaustively all agents’ behaviour.

Classifier systems enable designers to describe agents’ behaviours through goals ("what to do") instead of
transitions or set of rules ("how to do it"). Then, agents learn how to reach those objectives using evolution-
ary learning algorithms. Such a modeling is more suited for the development of interoperable simulations.
Indeed, adding new simulated agents only requires to add new goals to the existing ones.

This paper presents the distributed driving simulation we built using interoperable subsimulations. At first,
it presents how classifier systems make agents’ behaviour easily evolutional in the context of interoperable
simulations. Then, it shows how interoperability enables us to share the management of autonomous entities
between several computers in a distributed way.

1 Introduction

Most simulations of virtual environments are built as mod-
ular sets of subsystems designed to manage every part of

their running cycle [1][2]. They generally contain display,
audio, haptic, physics model and autonomous entities sim-
ulation subsystems.

However, these are commonly designed as complex mono-
lithic applications which fulfil specifications but are diffi-
cult to maintain. This is especially the case for autonomous
entities simulation systems which simulate the agents users
interact with.

This paper mainly focuses on the simulation of such au-
tonomous entities to create traffic in driving simulations.
Any traffic simulation has to be well designed as users’ be-
haviours heavily depend on the way this system works. As
many driving simulations are created for traffic safety pur-
pose, users require vehicles involved in traffic to act in a
realistic way.

In this context, an entity behaves realistically if users react
in front of this entity in the same way as if they were in
front of a human-controlled one. The worst thing to hap-
pen would be that users could exploit some of the model’s
weaknesses to overcome difficult situations.

Many techniques are used to create realistically behaving
agents. The most efficient one consists in making several
human-controlled agents participate to a multi-user simula-
tion (e.g. Massively Multiplayer Online Game: MotorCity
Online). Such an approach provides the most realistic be-
haviours possible, but it often requires too many users to
simulate dense traffic. This is why most driving simula-
tions involve autonomous entities.

In some cases, autonomous entities are scripted so that they
can confront users to very particular situations. However,
scripts can be used for only short simulation sequences as
they need to define step by step what the entity has to do.
Simulations in which users can drive in normal conditions
require to define in a generic way how autonomous vehicles
have to behave.

Many simulators’ and especially the Iowa Driving Simu-
lator’s (IDS) autonomous entities were controlled by finite
state machines (FSMs) [3]. In the IDS, such a modelling
led to a very complicated and almost impossible to main-
tain FSM [4]. To solve those development and maintenance
issues, Hierarchical Concurrent State Machines (HCSMs)
[5] (FSMs in which states can be FSMs) were introduced
in the IDS .

Even if FSMs have been widely used, several pedestrian
and vehicle traffic simulations are based on boolean and
fuzzy logic [6] expert systems. These are sets of if-then
rules the system triggers according to its perception and to
its internal state.

However, all these models require designers to define ex-
haustively how agents must behave. This leads to very
difficult and very demanding to define models and tends
to discourage designers from defining various behavioural
models for each kind of entities. This generally implies a
loss of realism for the simulation.

Another realism issue comes from the need of simulating
dense traffic. Indeed, most simulations subsystems are con-
trolled by a single computer [7] which can’t handle the sim-
ulation of all the vehicles involved in a city. One technique
used to solve such a problem in single-user simulations
consists in providing as much computing power as possi-
ble to simulate vehicles in a small user-centred area [4].

However, such a solution is not suited for multi-user sim-
ulations. Indeed, if users were scattered all over the city, a
single computer would have to simulate too many vehicles.

This paper mainly presents how we managed to create eas-
ier to define autonomous vehicles using classifier systems
and how we distributed the management of these vehicles
between several computers thanks to the High Level Archi-
tecture (HLA). First, it presents what classifier systems and
the HLA are. Then, it shows how we integrated them in our
simulation.

2 Classifier systems

Classifier systems [8] are adaptive systems aimed to learn
sets of if-then rules according to rewards they receive from
the environment. Most classifier systems are, like the � CSs
[9] we developed, based on Holland’s Learning Classifier
Systems (LCS). This section presents what LCSs are, how
they work and the main differences � CSs introduce.

2.1 Architecture

A classifier system functions as a perception-decision-action
loop. At first, it perceives information from the environ-
ment with its sensors. Then, a decision unit defines what
action the system should trigger according to what it sensed.
Finally, the system executes that action using its effectors,
which modifies the environment (Figure1).

Most of a classifier system’s work is accomplished by its
decision unit. It consists of a base of rules called classi-
fiers. A classifier is a bit string which represents an if-then
rule: it is composed of a condition and an action part. A
classifier’s condition part is made of

���������
bits with

�
representing the wildcard (‘don’t care’) symbol ; its action
part is a typical

�	���
bit string.

Classifier systems’ goal consists in making good classifier
sets emerge by keeping the most interesting rules alive and
replacing the worst ones by potentially better ones. Emer-
gence means that classifier systems can generate good rule-
bases from a null or randomly initialized set of classifiers.

To differentiate interesting rules from bad ones, every clas-
sifier is given a strength which defines how useful it was
when the system triggered it.

Rulebase

0010
1100
0101

01#1 : 1001 25

11## : 0001 243

#10# : 1101 144

.....

match message

Sensors Effectors

Genetic
Algoritm

Environment

Perceived

data
Action

message
input action

message

ru
le

s

Message List

Figure 1: Holland’s LCS

2.2 Running cycle

First, the system perceives information from its environ-
ment with its sensors. These information are converted into
bit string (0,1 bits) messages stored in a message list.

Then the decision process starts; it is mainly divided into
three steps:

- performance (or action selection) cycle,

- credit assignment cycle,

- rule discovery cycle.

2.2.1 Performance cycle

The performance cycle consists in choosing the most ap-
propriate rules to trigger according to the messages con-
tained in the message list.

First, all the rules matching at least one message (i.e. ev-
ery non

�
bit of its condition part corresponds to the value

of the same bit in the message) are selected to participate
to a bid. The bid made by every bidding classifier is pro-
portional to its strength. The winners are selected using a
roulette-wheel selection in which the probability for a clas-
sifier to win is proportional to the bid it made.

Those winning classifiers are allowed to post their action
part as messages into the message list. These can either
be used by other classifiers during the following iteration
(inference cycle) or sent to the system’s effectors to perform
the corresponding action and modify the environment.

2.2.2 Credit assignment cycle

The credit assignment cycle consists in updating classi-
fiers’ strength according to the consequences their activa-
tion implied. Several credit assignment techniques exist,
but the most used one is the Bucket Brigade Algorithm [8]
described in this section.

Once the system chose the classifiers it had to activate, it
makes each of them pay the bid it made (this amount is re-
moved from the classifier’s strength) to those which helped
its selection by posting a message matching its condition
part.

When a classifier posts an action to an effector, the system
can receive a reward from the environment. This reward
can either be positive if that action was useful (i.e. fulfils
the agent’s objectives) or negative if it produced a bad re-
sult.

This reward is added to that classifier’s strength. Thus, bad
classifiers tend to have a low strength while good ones get
stronger. It is worth noticing that a classifier’s strength cor-
responds to a prediction of the income it should receive if
it gets triggered by the system.

The credit assignment cycle also makes rules’ strength evolve
so that never or very rarely selected classifiers become weaker
through taxation mechanisms in which:

- Every rule not matching any message pays a life tax
: unused or very rarely used rules (those rules cor-
respond to states of the environment the entity never
met and ’should’ not meet) become weaker.

- Every bidding classifier pays a tax so that very gen-
eral1 but weak classifiers become weaker as they pay
that tax but get no income.

During the credit assignment cycle, a classifier’s strength
evolves as:
��� �� ��� ������� �������� !
��

, if it does not bid,� ������� ����� ���#" �%$��& '
��
, if it does not win,� ������� ����� �)(*" �%$��& !
��,+.-

, if it wins.

where: ��� �%�/�10
life tax,�#" ��$20
bidding tax,(*" ��$�0
bidding coefficient,
�� 0436587

classifier’s strength,- 0
reward received.

The performance and credit assignment cycles make the
system activate the rules which will potentially give it the

1A classifier is more general than an other if it has more #s in its con-
dition part.

best income while the others become weaker and tend to be
less used. However, this is not enough for an adaptive sys-
tem as the rules would remain the same during the whole
simulation.

2.2.3 Rule discovery cycle

To make their classifier population evolve and new classi-
fiers emerge, classifier systems involve genetic algorithms
(GAs) [10]. Such GAs apply three genetic operators on the
classifier population:

- selection : it consists in selecting the fit classifiers
which will remain in the following classifier genera-
tion (i.e. the population after the GA is being run).
Selection is generally made using a roulette-wheel
selection in which the probability for a classifier to
be selected is proportionnal to its strength.

- crossover : parent classifiers are selected and sub-
parts of these classifiers are exchanged (Figure2). The
crossover operator is aimed to create two children
classifiers which combine good features from both
parents.

crossover

0 : 1 0 10 # 1

0 # 1 : 1 1 00

crossing point
Randomly chosen

1 # # 0 : 1 0 1

0 : 1 1 01 # #

Figure 2: Crossover operator

- mutation : it consists in flipping the value of a ran-
domly chosen bit on a randomly selected classifier
(Figure3). Mutation is aimed to make new poten-
tially good features emerge.

1#0 1 0 : 1 0

:10 1 0 1 1 0

position
mutation

mutation

Figure 3: Mutation operator

GAs’ goal is to make potentially better classifiers from the
existing ones.In many classifier systems (LCSs, ZCSs [11],� CSs. . .), classifiers’ strength is both used as a reward pre-
diction in the action selection cycle and as a fitness function

used by the genetic algorithm. During its execution, the GA
makes fit rules reproduce and crossover while bad ones are
muted to make potentially better classifiers emerge.

A fourth genetic operator, the covering operator, was intro-
duced in the context of classifier systems. It is triggered
when an environmental message does not match any clas-
sifier in the rulebase : a new classifier matching that mes-
sage (the condition part is the message in which some posi-
tions are replaced by #s and the action part is generated ran-
domly) replaces a weak classifier in the rulebase (Figure4).

new classifier inserted to rulebase

1 1 0 0 : 1 0 1

1 # 0 # : 1 0 1

incoming message not matching any rule in the rulebase

covering

randomly inserted #s

Figure 4: Covering operator

2.3 � CSs

Our simulation involves vehicles controlled by the � CSs
we developed. � CSs are very similar to Holland’s LCSs
as they globally work in the same way. However, they dif-
fer from LCSs as they are designed for real time simula-
tions and provide multiobjective capabilities [9]. Indeed,� CSs don’t have any message list in order to avoid variable
response times due to inference cycles: at the end of the
performance cycle, the winning classifier directly sends its
action part to effectors.� CSs’ most important difference with other systems comes
from their multiobjective capabilities. Indeed, classifier
systems were most often used for quite simple problems
such as making an object follow a target. In such problems,
defining the agent’s fitness is fairly simple as it consists in
minimizing an easy to determine function such as the dis-
tance between those two objects.

For more complex and real-life problems, defining an agent’s
objectives using a single fitness function becomes inextri-
cable. Indeed, this function would be either too precise,
leading to the emergence of very few different solutions, or
not precise enough, requiring more time to make good solu-
tions emerge. To make it easier for designers, � CSs allow
them to define an agent’s goals through several functions
representing different sub-objectives. As in most cases, ob-
jectives don’t have the same priority (e.g. avoiding colli-
sions is more important than driving fast), � CSs also pro-
vide a mechanism of fitness prioritization.

Hence, creating � CS based autonomous agents consists in
defining their sensors, their effectors and their objectives

using as many fitness functions as needed.

3 The High Level Architecture

The HLA was developed by the Defense Modeling and
Simulation Office (DMSO) of the Department of Defense
(DoD) to meet the needs of defense-related projects. It be-
came a standard (IEEE 1516) for the creation of interoper-
able and reusable distributed simulations.

Interoperability makes possible the creation of complex sim-
ulations from heterogeneous sub-simulations implemented
using different programming languages, or running on het-
erogeneous systems.

Thus, interoperability brings several advantages for:

- Team collaboration: it allows teams making different
technical choices to gather their work into one single
application.

- Maintenance: interoperable applications don’t require
to throw away and to reimplement existing code in
case of technical changes as it can be coupled to the
new one.

- Performance: most appropriate technical choices can
be made for each subpart of the application, making
it possible to reduce the number of compromises to
be done.

Reusability means that it is possible to reuse some parts of
the simulation inside another one; this prevents from hav-
ing to implement the same program twice for any applica-
tion running it. This section presents HLA’s features and
the VIPER platform we built upon it.

3.1 HLA simulation architecture

An HLA simulation is called a federation. It is generally
made of a set of sub-simulations called federates which can
be computer controlled (e.g. simulation of autonomous ve-
hicles) or human controlled simulations (e.g. simulation of
user driven vehicles). A federation can also contain passive
federates such as data collectors or display systems which
just gather information from the simulation. Those feder-
ates do not participate to the simulation as actors: they do
not send information to other federates.

To make the federation work, federates collaborate by ex-
changing information. HLA imposes federates to commu-
nicate in an object-oriented way: federates can share ob-
jects which become vehicles for information exchange. To
access these objects, federates have to pass through a dis-
tributed system: the RunTime Infrastructure (RTI).

Interface

Federate 1 Federate 2 Federate 3

RunTime Infrastructure

Interface Interface

Figure 5: HLA Federation

3.2 VIPER

As a standard, HLA is designed to fit as much as possible
with every simulation’s needs: it generally provides very
generic mechanisms which have to be refined according to
the field in which they’re used. In the scope of our research,
we migrated the VIPER2 [12] platform upon HLA.

3.2.1 Virtual environment model

VIPER is aimed for the design of every application based
on a virtual environment which can be modelled by ex-
changes (symbolized by stimuli) between entities, in a vir-
tual universe (Figure6).

Universe

StimulusEntity

Entity

Entity

Stimulus

Stimulli Space

Figure 6: VIPER Simulation

The entity paradigm allows uniform management of virtual
worlds scenery, virtual objects and avatars (entities which
behave as interfaces between users [13], applications [14][15]
or robots and the virtual universe). Entities are autonomous
and own a set of attributes and behaviours. They are con-
ceptually grouped into families (a set of entities which own
the same attributes and behaviours).

The purpose of this structure is to simplify the definition of
distribution schemes. Autonomous entities lead to a perfect
encapsulation of the behaviour and state of an entity, and
therefore facilitates distribution of entities: such an entity

2VIrtuality Programming EnviRonment

can execute its behaviour on any site communicating with
other entities through well defined stimuli.

Interactions between entities, modelled by the stimulus pa-
radigm (phenomenon or event perceptible by an entity),
cross media, called stimuli spaces, which allow communi-
cations between many entities simultaneously. Each stim-
uli space is in fact a projection of the environment along a
specific type of stimulus (3D shape space, sound space. . .).
An entity receives perceptible stimuli (visible shapes, near
sounds. . .) through sensors and acts on its environment
through effectors (producing new stimuli). Sensors and ef-
fectors also manage interactions with the real world (e.g. a
dataglove and a tracker sensor tracking user movements).

Each entity owns a set of behaviour components which
modify its internal state (the set of its attributes) and com-
mand actions to its effectors. Behaviour components are
triggered by sensors (there is a time sensor which allows
timed behaviours) or by other components.

3.2.2 Architecture

VIPER’s architecture is composed of 3 layers:

- the virtual environment specification for the defini-
tion of entities’ behaviour and the components re-
quired for inter-entity communication (sensors and
effectors).

- the virtual environment distribution specification to
define the virtual environment and to specify how en-
tities are distributed.

- the distributed platform for data distribution: VIPER
can be plugged on existing data distribution systems
such as PVM (Parallel Virtual Machine) or HLA.

VIPER provides two programming levels:

- High level programming: the virtual environment spec-
ification layer hides the distributed aspect of the ap-
plication. The developer only has to define the en-
tities, their sensors, effectors, stimuli and behaviour
and VIPER manages the distributed aspect of the sim-
ulation.

- Low level programming: the virtual environment dis-
tribution specification layer enables the programmer
to define the way data are distributed within the sim-
ulation so that he can optimize it in terms of network
load.

Such an architecture also lets the designer choose the most
appropriate data distribution system without reimplement-
ing VIPER’s upper layers. In its early version, VIPER was

developed using PVM, we made it evolve to HLA as it is
more suitable for distributed simulations. Indeed, HLA al-
lowed us to define a VIPER entity as a federate (it is also
possible to have several entities in one single federate) and
stimuli as HLA objects or interactions. VIPER is currently
based on CERTI, the ONERA’s RTI.

3.3 CERTI

CERTI is an OpenSource RTI developed at ONERA. It pro-
vides almost all HLA specified set of services used by sim-
ulators to interoperate (such as object management, time
management, optimization services, etc.). Using these ser-
vices helps simulation reuse and interoperability. CERTI’s
global architecture is presented in Figure7 : it is made of
two processes (RTIA and RTIG) and a library (libRTI).
The RTIA (RTI Ambassador), which runs on each federate
computer, allows concurrent sending/receiving of network
messages while the federate application is running. The
RTIG (RTIGateway) is a server which relays messages be-
tween RTIA (however several RTIG may cooperate in order
to distribute the load of messages and to avoid a bottleneck
in a system). The RTIG is also able to filter messages in or-
der not to send unwanted messages to any federate and to
manage global application security through firewall cross-
ing and network messages encrypting.

to other RTIGs

Federate 1

libRTI

RTIA 1

Federate 2

libRTI

RTIA 2

Federate 3

libRTI

RTIA 3

RTIG

HLA Interface

Figure 7: CERTI

4 Classifier systems in an HLA based simu-
lation

The prototype of the driving simulation we are developing
is based on a VRML city (Figure8) .

The first part of our work consisted in defining agents’
sensors, effectors and behavioural models according to the
structure of the street network.

Figure 8: Autonomous vehicles in the city

4.1 Autonomous agents’ definition

The simulation involves � CS based autonomous vehicles
which have 4 sensors and 4 effectors. � CSs enabled us to
define their objectives through 3 quite simple fitness func-
tions (Figure9).

sensors
car ahead very near (VN)

car ahead near (N)
car ahead quite far (QF)

car ahead approaching (AP)
on the rightmost lane (R)

effectors
go ahead (GA)
accelerate (AC)

brake (BR)
change lane (SH)

goals
avoid collisions with other vehicles

drive as fast as possible
remain on the rightmost lane

Figure 9: Agents’ components

Vehicles’ goals correspond to three fitness functions:9:3<;>=#?�@�@ � 0 A �
, if no collision�B�C���

, if collides.9:3<;>=#?�@�@�DE0 @GF,?�?�H ��I 3<=J
�F:?/?�H
.9:3<;>=#?�@�@/KL0 A �NM

, if shifting to leftmost lane�
, else.

This simple model made several behaviours emerge from
a randomly initialized rulebase as shown in Figure10 and
Figure11. Classifiers’ strength is very important to ana-
lyze those behaviours : strong classifiers are more likely

N QF AP VN R action strength
1 # 0 # 0 # GA 99.999985
2 0 0 # 0 # AC 97.334869

0 1 0 # SH 45.854927
3 # 0 # 0 # AC 99.999985
4 0 0 # 0 # AC 99.990540

0 1 0 # SH 81.616341
0 # 0 # AC 99.999184
0 0 1 0 1 SH 99.999985

5 # 0 # 0 # AC 99.999985
0 0 # 0 # AC 99.999985
0 1 0 1 SH 80.798553

6 0 0 # 0 # AC 99.654404
0 # 1 # # BR 45.834044

7 # 0 # 0 # AC 99.930191
8 # 0 1 0 # AC 99.891861

1 # # SH 30.834044
0 0 # 0 # AC 93.321449
0 # 0 # SH 79.918678

9 # # 1 # # SH 25.097435
0 # AC 99.654404
0 0 # 0 # AC 99.587669

Figure 10: Significant classifiers (strength > 30)

vehicles condition action
1,7 O vehicle ahead go ahead

2,4,8,9 O vehicle ahead accelerate
approaching shift lane

3 O vehicle ahead accelerate
5 O vehicle ahead accelerate

approaching P on rightmost lane shift lane
6 O vehicle ahead accelerateO vehicle near P approaching brake

Figure 11: Textual description of obtained behaviours

to send their action part to the effectors than weaker one.
Thus, for vehicle 2, if a vehicle is approaching, the second
classifier will be triggered (approaching bit at

�
) while in

other conditions the first one will be more likely chosen
(QSRUT KVKVW�X�Y Q[Z W M T X M W Q D R).
It is worth noticing that contrary to commonly used static
models (finite state machines, expert systems. . .) for which
designers and developers have to define manually all possi-
ble behaviours, classifier systems only require to define the
objectives once, to get a set of behaviours.

Classifier system based agents can also adapt dynamically
their behaviour to the situations they face during the sim-
ulation. Thus, if a vehicle hits another one, the classifier
liable for that collision receives a very negative payment
and tends not to be re-activated.

Classifier systems also make our simulation easily evolv-
able as adding new kinds of agents only requires to add
some elements to the existing ones: contrary to static be-
havioural models, there is no need to throw previous work
away. Indeed, such a task just consists in adding to existing
agents:

- sensors to detect the newly integrated ones (e.g. de-
tecting pedestrian and pedestrian crossings),

- effectors to interact with them (e.g. horn),

- goal they have to reach face to face with them (e.g.
not to hit pedestrians).

The second part of our work consists in creating a multi-
user simulation and in distributing the management of those
autonomous agents between several computers using VIPER.

4.2 Distributed features

The way VIPER is designed makes it particularly suited for
the simulation of autonomous and human-driven agents co-
existing in a virtual environment. Our simulation involves
autonomous vehicles driven by classifier systems and user-
controlled vehicles. Those vehicles can be modelled as
VIPER entities corresponding to HLA federates.

This simulation was developed using VIPER’s top level
layer (virtual environment specification) to create our en-
tities. This required to define for each type of entities their
sensors and effectors emitting and receiving stimuli con-
taining vehicles’ speed and position. These information are
then used by the behavioural model to define what the en-
tity has to do. Autonomous entities’ behaviour is based on� CSs while driven vehicles’ behaviour consists in convert-
ing users’ key strokes into actions.

It is worth noticing that those entities have no sensors. This
is due to the fact that information concerning the simulation
are brought to users through a display subsystem which
corresponds to a passive federate. It gathers information
concerning vehicles’ positions and orientations and mod-
ifies the scenegraph (i.e. a graph in which nodes are 3D
transforms and leaves are geometry) to put every vehicle at
the right position.

With such a modelling, the reusability HLA provides en-
abled us to:

- create autonomous entities managed in a distributed
way by a set of computers (e.g. clusters) by launch-
ing several instances of autonomous vehicle entities
on different computers.

- create a multi-user simulation by launching several

Display system

Orientation
Speed

key strokes
User

street
offset
speed

Sensors Effectors

of the
environment

Sensors Effectors

perception

Autonomous vehicle

Classifier System

RunTime Infrastructure

Effectors Sensors

set

Scenegraph

update

User controlled vehicle

Position

Figure 12: General architecture

instances of human-controlled vehicle federates on
different computers.

5 Conclusion

Combining a VIPER based distributed architecture with
evolutionary learning systems such as classifier systems en-
abled us to create an easily extensible distributed simula-
tion.

Indeed, contrary to simulations involving hard coded be-
havioural models, � CSs only require extra sensors, effec-
tors and objective functions, which is generally easier than
redesigning a new rule base or a new finite state machine.
Moreover, using classifier systems allow designers to de-
fine “what the agent has to do” and not “how it has to
do it”. Such a modelling also gives the possibility to make
different behaviours emerge from a single definition, which
leads to more realistic simulations.

The VIPER platform, made the creation of a distributed
multi-user simulation possible from quite easy to define
components. Indeed, it manages all the distributed part of

the work and only requires the definition of entities’ sen-
sors, effectors, stimuli and behaviours.

Finally, the use of an interoperable architecture such as the
HLA should make our simulation capable of being con-
nected to other HLA simulations based on different techni-
cal choices.

We are also currently working on a city abstract model in
which we will be able to integrate new features (pedestrian
crossings, road signs, traffic lights. . .) agents will be able
to perceive and interact with.

We will also work on persistent simulations and massively
multi-entities simulations. We also plan to add database
connectivity and to use HLA Data Distribution Manage-
ment filtering techniques in VIPER’s virtual environment
distribution specification layer.

References

[1] Woon-Sung Lee. Driving simulation for vehicle driv-
ing simulation for vehicle control system develop-
ment control system development. Technical report,
Vehicle Control Lab. School of Mechnical & Auto-
motive Engineering Kookmin University, Mar. 1998.

[2] National Highway Traffic Safety Administration. Na-
tional Advanced Driving Simulator, Jun. 2002.

[3] Freeman J. The Iowa Driving Simulator: An Im-
plementation and Application Overview. SAE World
Congress, Paper #950174, 1995.

[4] Cremer J. The Software Architecture of Scenario
Control in the Iowa Driving Simulator. Proceedings
of the Fourth Conference on Computer Generated
Forces and Behavioral Representation, pages 373–
381, May 1994.

[5] Cremer J.,Kearney J., and Papelis. Y. HCSM: A
Framework for Behavior and Scenario Control in Vir-
tual Environments. ACM Transactions of Modeling
and Computer Simulation, pages 242–267, Jul. 1995.

[6] Al-Shihabi T. Toward More Realistic Behavior Mod-
els for Autonomous Vehicles in Driving Simulators.
Transportation Research Record No. 1843, pages 41–
49, 2003.

[7] Johansson M. A Survey of Driving Simulator and
their Suitability for Test Volvo Cars. Technical report,
Department of Machine and Vehicle System, 2002.

[8] Holland J. Adaptation. In R. Rosen and F. M. Snell,
editors, Progress in Theoretical Biology. New York:
Plenum, 1976.

[9] Sanza C. Evolution d’entités virtuelles coopératives
par systèmes de classifieurs. PhD thesis, Université
Paul Sabatier, Jun. 2001.

[10] Holland J. Adaptation in Natural and Artificial Sys-
tems. The University of Michigan Press, 1975.

[11] Wilson S. ZCS: A zeroth level classifier sys-
tem. Evolutionary Computation, 2(1):1–18, 1994.
http://prediction-dynamics.com/.

[12] Torguet P. VIPER: Un modèle de calcul réparti pour
la gestion d’environnements virtuels. PhD thesis, Uni-
versité Paul Sabatier, Feb. 1998.

[13] Mouli R., Duthen Y., Caubet R. In VitrAm (In Vitro
Animats, a behavioural simulation model). 2nd IEEE
International Workshop RO-MAN’93, Nov. 1993.

[14] Snowdon D.N.,West A.J. The AVIARY VR-System.
A Prototype Implementation. 6

587
ERCIM workshop,

Jun. 1994.

[15] Carlsson C. and Hagsand O. DIVE - a Platform
for Multi-User Virtual Environments. Computer &
Graphics, 17(6), Nov. 1993.

6 Author Biographies

SAMIR TORKI is graduate from a french computer engi-
neering school. He is now a PhD student in the Computer
Graphics and Virtual Reality team at IRIT laboratory. His
research interests include virtual environments, distributed
systems and behavioural simulation.

PATRICE TORGUET is an Associate Professor in the
Paul Sabatier University, in Toulouse, France. His research
interests include virtual environments, distributed systems
and interactive simulations. He worked in several European
Union funded research projects including CAVALCADE (a
Cooperative Virtual Prototyping tool) and IMAGE (Inter-
operability of Aeronautical Simulation Applications).

CÉDRIC SANZA is an Associate Professor in the Paul
Sabatier University, in Toulouse, France. His research fo-
cuses on autonomous entities including genetic algorithms,
classifier systems, anticipation and crowd simulations.

JEAN-PIERRE JESSEL is professor, senior researcher
and co-manager of the Computer Graphics and Virtual Re-
ality team at IRIT laboratory. His current research interests
include virtual reality (applications to virtual prototyping
and collaborative working), distributed collaborative simu-
lations, 3D interaction and character animation.

PIERRE SIRON was graduate from a french engineer
school of computer science in 1980, and received his doc-
torate in 1984. Then he is a Research Engineer at ONERA

and he works in parallel and distributed systems and com-
puter security. He is a member of the Design and Validation
of Computer Systems research unit.

