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ABSTRACT

The angular momentum deficit (AMD)-stability criterion allows to discriminate between a priori stable planetary systems and systems
for which the stability is not granted and needs further investigations. AMD-stability is based on the conservation of the AMD in the
averaged system at all orders of averaging. While the AMD criterion is rigorous, the conservation of the AMD is only granted in
absence of mean-motion resonances (MMR). Here we extend the AMD-stability criterion to take into account mean-motion reso-
nances, and more specifically the overlap of first-order MMR. If the MMR islands overlap, the system will experience generalized
chaos leading to instability. The Hamiltonian of two massive planets on coplanar quasi-circular orbits can be reduced to an integrable
one degree of freedom problem for period ratios close to a first-order MMR. We use the reduced Hamiltonian to derive a new overlap
criterion for first-order MMR. This stability criterion unifies the previous criteria proposed in the literature and admits the criteria
obtained for initially circular and eccentric orbits as limit cases. We then improve the definition of AMD-stability to take into account
the short term chaos generated by MMR overlap. We analyze the outcome of this improved definition of AMD-stability on selected
multi-planet systems from the Extrasolar Planets Encyclopædia.

Key words. celestial mechanics – planets and satellites: general – planets and satellites: dynamical evolution and stability –
planets and satellites: atmospheres

1. Introduction

The angular momentum deficit (AMD)-stability criterion
(Laskar 2000; Laskar & Petit 2017) allows to discriminate be-
tween a-priori stable planetary systems and systems needing an
in-depth dynamical analysis to ensure their stability. The AMD-
stability is based on the conservation of the angular momentum
deficit (AMD, Laskar 1997) in the secular system at all orders
of averaging (Laskar 2000; Laskar & Petit 2017). Indeed, the
conservation of the AMD fixes an upper bound to the eccen-
tricities. Since the semi-major axes are constant in the secular
approximation, a low enough AMD forbids collisions between
planets. The AMD-stability criterion has been used to classify
planetary systems based on the stability of their secular dynam-
ics (Laskar & Petit 2017).

However, while the analytical criterion developed in
(Laskar & Petit 2017) does not depend on series expansions for
small masses or spacing between the orbits, the secular hypoth-
esis does not hold for systems experiencing mean motion reso-
nances (MMR). Although a system with planets in MMR can be
dynamically stable, chaotic behavior may result from the over-
lap of adjacent MMR, leading to a possible increase of the AMD
and eventually to close encounters, collisions or ejections. For
systems with small orbital separations, averaging over the mean
anomalies is thus impossible due to the contribution of the first-
order MMR terms. For example, two planets in circular orbits
very close to each other are AMD-stable, however the dynamics
of this system cannot be approximated by the secular dynamics.
We thus need to modify the notion of AMD-stability in order to
take into account those configurations.

In studies of planetary systems architecture, a minimal
distance based on the Hill radius (Marchal & Bozis 1982)
is often used as a criterion of stability (Gladman 1993;
Chambers et al. 1996; Smith & Lissauer 2009; Pu & Wu 2015).
However, Deck et al. (2013) suggested that stability criteria
based on the MMR overlap are more accurate in characterizing
the instability of the three-body planetary problem.

Based on the considerations of Chirikov (1979) for the over-
lap of resonant islands, Wisdom (1980) proposed a criterion of
stability for the first-order MMR overlap in the context of the re-
stricted circular three-body problem. This stability criterion de-
fines a minimal distance between the orbits such that the first-
order MMR overlap with one another. For orbits closer than this
minimal distance, the MMR overlapping induces chaotic behav-
ior eventually leading to the instability of the system.

Wisdom showed that the width of the chaotic region
in the circular restricted problem is proportional to the ra-
tio of the planet mass to the star mass to the power 2/7.
Duncan et al. (1989) confirmed numerically that orbits closer
than the Wisdom’s MMR overlap condition were indeed unsta-
ble. More recently, another stability criterion was proposed by
Mustill & Wyatt (2012) to take into account the planet’s eccen-
tricity. Deck et al. (2013) improved the two previous criteria by
developing the resonant Hamiltonian for two massive, coplanar,
low-eccentricity planets and Ramos et al. (2015) proposed a cri-
terion of stability taking into account the second-order MMR in
the restricted three-body problem.

While Deck’s criteria are in good agreement with numer-
ical simulations (Deck et al. 2013) and can be applied to the
three-body planetary problem, the case of circular orbits is still
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treated separately from the case of eccentric orbits. Indeed, the
minimal distance imposed by the eccentric MMR overlap sta-
bility criterion vanishes with eccentricities and therefore can-
not be applied to systems with small eccentricities. In this case,
Mustill & Wyatt (2012) and Deck et al. (2013) use the criterion
developed for circular orbits. A unified stability criterion for
first-order MMR overlap had yet to be proposed.

In this paper, we propose in Sect. 2 a new derivation of the
MMR overlap criterion based on the development of the three-
body Hamiltonian by Delisle et al. (2012). We show in Sect. 3
how to obtain a unified criterion of stability working for both
initially circular and eccentric orbits. In Sect. 4, we then use the
defined stability criterion to limit the region where the dynamics
can be considered to be secular and adapt the notion of AMD-
stability thanks to the new limit of the secular dynamics. Finally
we study in Sect. 5 how the modification of the AMD-stability
definition affects the classification proposed in Laskar & Petit
(2017).

2. The resonant Hamiltonian

The problem of two planets close to a first-order MMR on nearly
circular and coplanar orbits can be reduced to a one-degree-
of-freedom system through a sequence of canonical transfor-
mations (Wisdom 1986; Henrard et al. 1986; Delisle et al. 2012,
2014). We follow here the reduction of the Hamiltonian used in
Delisle et al. (2012, 2014).

2.1. Averaged Hamiltonian in the vicinity
of a resonance

Let us consider two planets of masses m1 and m2 orbiting a star
of mass m0 in the plane. We denote the positions of the plan-
ets, ui, and the associated canonical momenta in the heliocentric
frame, ũi. The Hamiltonian of the system is (Laskar & Robutel
1995)

Ĥ =

2∑
i=1

1
2
‖ũi‖

2

mi
− G

m0mi

ui


+

1
2
‖ũ1 + ũ2‖

2

m0
− G

m1m2

∆12
(1)

where ∆12 = ‖u1 − u2‖, and G is the constant of gravitation.
Ĥ can be decomposed into a Keplerian part K̂ describing the
motion of the planets if they had no masses and a perturbation
part εĤ1 due to the influence of massive planets,

K̂ =

2∑
i=1

1
2
‖ũi‖

2

mi
−
Gm0mi

ui
(2)

εĤ1 =
1
2
‖ũ1 + ũ2‖

2

m0
−
Gm1m2

∆12
· (3)

The small parameter ε is defined as the ratio of the planet masses
over the star mass

ε =
m1 + m2

m0
· (4)

Let us denote the angular momentum,

Ĝ =

2∑
i=1

ui ∧ ũi (5)

which is simply the sum of the two planets Keplerian angular
momentum. Ĝ is a first integral of the system.

Following Laskar (1991), we express the Hamiltonian in
terms of the Poincaré coordinates

Ĥ = K̂ + εĤ1(Λ̂i, x̂i, ¯̂xi)

= −

2∑
i=1

µ2m3
i

2Λ̂2
i

+ ε
∑

l,l̄∈N2

k∈Z2

Cl,l̄,k(Λ̂)
2∏

i=1

x̂li
i

¯̂xl̄i
i eikiλi , (6)

where µ = Gm0 and for i = 1, 2,

Λ̂i = mi
√
µai

Ĝi = Λ̂i

√
1 − e2

i

Ĉi = Λ̂i − Ĝi

x̂i =

√
Ĉie−i$i

λi = Mi +$i.

Here, Mi corresponds to the mean anomaly, $i to the lon-
gitude of the pericenter, ai to the semi-major axis and ei to
the eccentricity of the Keplerian orbit of the planet i. Ĝi is
the Keplerian angular momentum of planet i. We use the set
of symplectic coordinates of the problem (Λ̂i, λi, Ĉi,−$i), or
the canonically associated variables (Λ̂i, λi, x̂i,−i ¯̂xi). The coef-
ficients Cl,l̄,k depend on Λ̂ and the masses of the bodies. They are
linear combinations of Laplace coefficients (Laskar & Robutel
1995). As a consequence of angular momentum conservation,
the d’Alembert rule gives a relation on the indices of the non-
zero Cl,l̄,k coefficients

2∑
i=1

ki − li + l̄i = 0. (7)

We study here a system with periods close to the first-order
MMR p : p + 1 with p ∈ N∗. For periods close to this con-
figuration, we have −pn1 + (p + 1)n2 ' 0, where ni = µ2m3

i /Λ̂
3
i

is the Keplerian mean motion of the planet i.

2.1.1. Averaging over non-resonant mean-motions

Due to the p : p + 1 resonance, we cannot average on both
mean anomalies independently. Therefore, there is no conser-
vation of Λ̂i as in the secular problem. However, the partial aver-
aging over one of the mean anomaly gives another first integral.
Following (Delisle et al. 2012), we consider the equivalent set of
coordinates (Λ̂i,Mi, Ĝi, $i), and make the following change of
angles(
σ

M2

)
=

(
−p p + 1
0 1

) (
M1
M2

)
. (8)

The actions associated to these angles are(
Γ̂1

Γ̂

)
=

 − 1
p 0

p+1
p 1

 ( Λ̂1

Λ̂2

)
=

 −1
p Λ̂1

p+1
p Λ̂1 + Λ̂2

 . (9)

We can now average the Hamiltonian over M2 using a change
of variables close to the identity given by the Lie series method.
Up to terms of orders ε2, we can kill all the terms with indices
not of the form Cl,l̄,− jp, j(p+1). In order to keep the notations light,
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we do not change the name of the variables after the averaging.
We also designate the remaining coefficients Cl,l̄,− jp, j(p+1) by the
lighter expression Cl,l̄, j. Since M2 does not appear explicitly in
the remaining terms,

Γ̂ =
p + 1

p
Λ̂1 + Λ̂2 (10)

is a first integral of the averaged Hamiltonian. The parameter pΓ̂
is often designed as the spacing parameter (Michtchenko et al.
2008) and has been used extensively in the study of the first-
order MMR dynamics.

Expressed with the variables (Λ̂, λ, x̂, ¯̂x), the Hamiltonian can
be written

Ĥav = −

2∑
i=1

µ2m3
i

2Λ̂2
i

+ ε
∑

l,l̄∈N2

j∈Z

Cl,l̄, j(Λ̂)x̂l1
1

¯̂xl̄1
1 x̂l2

2
¯̂xl̄2

2 ei j((p+1)λ2−pλ1), (11)

where we dropped the terms of order ε2.

2.1.2. Poincare-like complex coordinates

Delisle et al. (2012) used a change of the angular coordinates in
order to remove the exponential in the second term of Eq. (11)
and use Ĝ and Γ̂ as actions. The new set of angles (θΓ, θG, σ1, σ2)
is defined as
θΓ

θG
σ1
σ2

 =


p −p 0 0
−p p + 1 0 0
−p p + 1 1 0
−p p + 1 0 1

 ·


λ1
λ2
−$1
−$2

 . (12)

The conjugated actions are
Γ̂

Ĝ
Ĉ1
Ĉ2

 =


p+1

p 1 0 0
1 1 −1 −1
0 0 1 0
0 0 0 1

 ·


Λ̂1

Λ̂2
Ĉ1
Ĉ2

 . (13)

We define X̂i =
√

Ĉieiσi , the complex coordinates associated to
(Ĉi, σi). Since we have X̂i = x̂ieiθG , the terms of the perturbation
in Eq. (11) can be written

2∏
i=1

x̂li
i

¯̂xl̄i
i ei jθG =

2∏
i=1

X̂
li
i
¯̂Xl̄i

i ei(−li+l̄i+ j)θG

=

2∏
i=1

X̂
li
i
¯̂Xl̄i

i ; (14)

the last equality resulting from the d’Alembert rule (7). Γ̂ and Ĝ
are conserved and the averaged Hamiltonian no longer depends
on the angles θΓ and θG

Ĥav = −

2∑
i=1

µ2m3
i

2Λ̂2
i

+ ε
∑

l,l̄∈N2

j∈Z

Cl,l̄, j(Λ̂)
2∏

i=1

X̂
li
i
¯̂Xl̄i

i . (15)

Λ̂1 and Λ̂2 can be expressed as functions of the new variables
and we have

Λ̂1 = −p(Ĉ + Ĝ − Γ̂) (16)

Λ̂2 = (p + 1)(Ĉ + Ĝ) − pΓ̂, (17)

where Ĉ = Ĉ1 + Ĉ2 is the total AMD of the system. Up to the
value of the first integrals Γ̂ and Ĝ, the system now has two ef-
fective degrees of freedom.

2.2. Computation of the perturbation coefficients

We now truncate the perturbation, keeping only the leading-
order terms. Since we consider the first-order MMR, the
Hamiltonian contains some linear terms in Xi. Therefore the sec-
ular terms are neglected since they are at least quadratic. More-
over, the restriction to the planar problem is justified since the
inclination terms are at least of order two.

We follow the method described in Laskar (1991) and
Laskar & Robutel (1995) to determine the expression of the
perturbation Ĥ1. The details of the computation are given in
Appendix A. Since we compute an expression at first order in
eccentricities and ε, the semi major axis and in particular their
ratio,

α =
a1

a2
, (18)

are evaluated at the resonance. At the first order, the perturbation
term Ĥ1 has for expression

εĤ1 = R̂1(X̂1 + ¯̂X1) + R̂2(X̂2 + ¯̂X2), (19)

where

R̂1 = −ε
γ

1 + γ

µ2m3
2

Λ̂2
2

1
2

√
2

Λ̂1
r1(α) (20)

and

R̂2 = −ε
γ

1 + γ

µ2m3
2

Λ̂2
2

1
2

√
2

Λ̂2
r2(α) (21)

with γ = m1/m2,

r1(α) = −
α

4

(
3b(p)

3/2(α) − 2αb(p+1)
3/2 (α) − b(p+2)

3/2 (α)
)
, (22)

and

r2(α) =
α

4

(
3b(p−1)

3/2 (α) − 2αb(p)
3/2(α) − b(p+1)

3/2 (α)
)

+
1
2

b(p)
1/2(α). (23)

In the two previous expressions, b(k)
s (α) are the Laplace coeffi-

cients that can be expressed as

b(k)
s (α) =

1
π

∫ π

−π

cos(kφ)(
1 − 2α cos φ + α2)s dφ (24)

for k > 0. For k = 0, a 1/2 factor has to be added in the second-
hand member of (24).

For p = 1, it should be noted that a contribution from the ki-
netic part should be added (Appendix A and Delisle et al. 2012)

H1,i =
µ2m2

1m2
2

2m0Λ̂1Λ̂2

√
2

Λ̂2
(X̂2 + ¯̂X2). (25)

Using the expression of α at the resonance p : p + 1,

α0 =

(
p

p + 1

)2/3

, (26)
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we can give the asymptotic development of the coefficients r1
and r2 for p→ +∞ (see Appendix A.1). The equivalent is

−r1 ∼ r2 ∼
K1(2/3) + 2K0(2/3)

π
(p + 1); (27)

where Kν(x) is the modified Bessel function of the second kind.
We note r the numerical factor of the equivalent (27), we have

r =
K1(2/3) + 2K0(2/3)

π
= 0.80199. (28)

For the resonant coefficients r1 and r2, Deck et al. (2013)
used the expressions fp+1,27(α) and fp+1,31(α) given in
Murray & Dermott (1999, pp. 539−556). The expressions (22)
and (23) are similar to fp+1,27(α) and fp+1,31(α) up to algebraic
transformations using the relations between Laplace coefficients
(Laskar & Robutel 1995). In their computations, Deck et al. used
a numerical fit of the coefficients for p = 2 to 150 and obtained

− fp+1,27 ∼ fp+1,31 ∼ 0.802p. (29)

We obtain the same numerical factor r through the analytical
development of the functions r1 and r2.

2.3. Renormalization

So far, the Hamiltonian has two degrees of freedom (X̂1, ¯̂X1, X̂2, ¯̂X2)
and depends on two parameters Ĝ and Γ̂. As shown in
Delisle et al. (2012), the constant Γ̂ can be used to scale the ac-
tions, the Hamiltonian and the time without modifying the dy-
namics. We define

Λi = Λ̂i/Γ̂,

G = Ĝ/Γ̂,

Ci = Ĉi/Γ̂,

Xi = X̂i/
√

Γ̂,

H = Γ̂2Ĥ ,

t = t̂/Γ̂3.

With this change of variables, the new Hamiltonian no longer
depends on Γ̂.

The shape of the phase space is now only dependent on the
first integral G. However, G does not vanish for the configu-
ration around which the Hamiltonian is developed: the case of
two resonant planets on circular orbits. To be able to develop
the Keplerian part in power of the system’s parameter, we define
∆G = G0 −G, the difference in angular momentum between the
circular resonant system and the actual configuration. We have

G0 = Λ1,0 + Λ2,0, (30)

where Λ1,0 and Λ2,0 are the value of Λ1 and Λ2 at resonance. By
definition, we have

Λ1,0

Λ2,0
= γ

(
p

p + 1

)1/3

= γ
√
α0. (31)

Moreover, we can express Λ1,0 as a function of the ratios α0
and γ,

Λ1,0 =
Λ̂1,0

Γ̂0
=

1(
p+1

p

)
+

Λ2,0

Λ1,0

=

(
p

p + 1

)
γ

γ + α0
· (32)

Similarly, Λ2,0 can be expressed as

Λ2,0 =
α0

α0 + γ
· (33)

Since G0 is constant, ∆G is also a first integral of H . From
now on, we consider ∆G as a parameter of the two-degrees-of-
freedom (X1, X2) HamiltonianH . The Keplerian part depends on
the coordinates Xi through the dependence of Λi in C.

Λ1 and Λ2 can be expressed as functions of the Hamiltonian
coordinates and their value at the resonance,

Λ1 = Λ1,0 − p(C − ∆G)
Λ2 = Λ2,0 + (p + 1)(C − ∆G). (34)

2.4. Integrable Hamiltonian

The system can be made integrable by a rotation of the co-
ordinates Xi (Sessin & Ferraz-Mello 1984; Henrard et al. 1986;
Delisle et al. 2014). We introduce R and φ such that

R1 = R cos(φ) and R2 = R sin(φ). (35)

We have R2 = R2
1 + R2

2 and tan(φ) = R2/R1. If we note Rφ the
rotation of angle φ we define y such that X = Rφy. We still have
C =

∑
yiȳi so the only change in the Hamiltonian is the pertur-

bation term

H = K(C,∆G) + R(y1 + ȳ1)

= K(C,∆G) + 2R
√

I1 cos(θ1), (36)

where (I, θ) are the action-angle coordinates associated to
y. With these coordinates, I2 is a first integral. R has for
expression

R2 =

 εγ

1 + γ

µ2m3
2

Λ2
2,0

2 (
r1(α0)2

2Λ1,0
+

r2(α0)2

2Λ2,0

)
· (37)

We now develop the Keplerian part around the circular resonant
configuration in series of (C − ∆G) thanks to the relations (34).
We develop the Keplerian part to the second order in (C − ∆G)
since the first order vanishes (see Appendix B). The computation
of the second-order coefficient gives

1
2
K2 = −

3
2
µ2m3

2
(γ + α0)5

γα4
0

(p + 1)2. (38)

We drop the constant part of the Hamiltonian and obtain the fol-
lowing expression

H =
K2

2
(I1 + I2 − ∆G)2 + 2R

√
I1 cos(θ1). (39)

We again change the time scale by dividing the Hamiltonian by
−K2 and multiplying the time by this factor. We define

χ = −

√
2R
K2

(40)

and after simplification,

χ =
1
3

ε(γα0)3/2

(1 + γ)(α0 + γ)2

r2(α0)
(p + 1)2 f (p) (41)

=
r
3

εγ3/2

(1 + γ)3

1
p + 1

+ O((p + 1)−2), (42)
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where r was defined in (28) and f (p) = 1 + O(p−1) is a function
of p and γ

f (p) =

√
1 −

α0

α0 + γ

1 − p + 1
p

(
r1

r2

)2· (43)

At this point the Hamiltonian can be written

H = −
1
2

(I1 + I2 − ∆G)2 + χ
√

2I1 cos(θ1) (44)

and has almost its final form. We divide the actions and the time
by χ2/3 and the Hamiltonian by χ4/3 and we obtain

HA = −
1
2

(I − I0)2 −
√

2I cos(θ1), (45)

where

I = χ−2/3I1 and I0 = χ−2/3(∆G − I2). (46)

2.5. Andoyer Hamiltonian

We now perform a polar to Cartesian change of coordinates with

X = −
√

2I cos(θ1),

Y =
√

2I sin(θ1). (47)

We change the sign of X in order to have the same orientation as
(Deck et al. 2013). Doing so, the Hamiltonian becomes

HA = −
1
2

(
1
2

(X2 + Y2) − I0

)2

− X. (48)

We recognize the second fundamental model of resonance
(Henrard & Lemaitre 1983). This Hamiltonian is also called an
Andoyer Hamiltonian (Ferraz-Mello 2007). We show in Fig. 1
the level curves of the HamiltonianHA for I0 = 3.

The fixed points of the Hamiltonian satisfy the equations

Ẋ = Y
(

1
2

(X2 + Y2) − I0

)
= 0 (49)

Ẏ = −X
(

1
2

(X2 + Y2) − I0

)
− 1 = 0, (50)

which have for solutions Y = 0 and the real roots of the cubic
equation in X

X3 − 2I0X + 2 = 0. (51)

Equation (51) has three solutions (Deck et al. 2013) if its deter-
minant ∆ = 32(I3

0 − 27/8) > 0, i.e. I0 > 3/2. In this case, we
note these roots X1 < X2 < X3. X1 and X2 are elliptic fixed points
while X3 is a hyperbolic one.

3. Overlap criterion

As seen in the previous section, the motion of two planets near
a first-order MMR can be reduced to an integrable system for
small eccentricities and planet masses. However, if two indepen-
dent combinations of frequencies are close to zero at the same
time, the previous reduction is not valid anymore. Indeed, we
must then keep, in the averaging, the terms corresponding to both
resonances. While for a single resonant term the system is inte-
grable, overlapping resonant islands will lead to chaotic motion
(Chirikov 1979).

X3

I0 = 3

X1
X2

Fig. 1. Hamiltonian HA (48) represented with the saddle point and the
separatrices in red.

Wisdom (1980) first applied the resonance overlap criterion
to the first-order MMR and found, in the case of the restricted
three-body problem with a circular planet, that the overlap oc-
curs for

1 − α < 1.3ε2/7. (52)

Through numerical simulations, (Duncan et al. 1989) confirmed
Wisdom’s expression up to the numerical coefficient {(1 −
α < 1.5 ε2/7)}. A similar criterion was then developed by
Mustill & Wyatt (2012) for an eccentric planet, they found that
for an eccentricity above 0.2 ε3/7, the overlap region satisfies the
criterion 1 − α < 1.8(ε e)1/5. Deck et al. (2013) adapted those
two criteria to the case of two massive planets, finding little dif-
ference up to the numerical coefficients. However, they treat two
different situations; the case of orbits initially circular and the
case of two eccentric orbits. As in Mustill & Wyatt (2012), the
eccentric criterion proposed can be used for eccentricities verify-
ing e1 +e2 & 1.33 ε3/7. We show here that the two Deck’s criteria
can be obtained as the limit cases of a general expression.

3.1. Width of the libration area

Using the same approach as Wisdom (1980), Deck et al. (2013),
we have to express the width of the resonant island as a func-
tion of the orbital parameters and compare it with the distance
between the two adjacent centers of MMR.

In the (X,Y) plane, the center of the resonance is located at
the point of coordinates (X1, 0). The width of the libration area
is defined as the distance between the two separatrices on the
Y = 0 axis. It is indeed the direction where the resonant island is
the widest.

We note X∗1, X
∗
2 the abscissas of the intersections between the

separatrices and the Y = 0 axis. Relations between X∗1, X
∗
2, and

X3 can be derived (see Appendix C.1) and we obtain the ex-
pressions of X∗1 and X∗2 as functions of X3 (Ferraz-Mello 2007;
Deck et al. 2013). We have

X∗1 = −X3 −
2
√

X3
, (53)

X∗2 = −X3 +
2
√

X3
· (54)
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Table 1. Summary of the diverse notations of AMD used in this paper.

Notation Description Equation
C Total AMD of the system
Cmin Minimal AMD to enter a resonance island (61)
cmin Normalized minimal AMD (64)
C Relative AMD (90)
C(0)

c Critical AMD deduced from the collision condition Laskar & Petit (2017)
C(1)

c Critical AMD deduced from the MMR overlap (96)
Cc Complete critical AMD (100)

The width of the libration zone δX depends solely on the value
of X3,

δX =
4
√

X3
· (55)

In order to study the overlap of resonance islands, we need the
width of the resonance in terms of α. Let us invert the previous
change of variables in order to express the variation of α in terms
of the variation of X. In this subsection, for any function Q(X),
we note

δQ = |Q(X∗1) − Q(X∗2)|. (56)

The computation of δI (47) is straightforward from the compu-
tation of δX

δI =

∣∣∣∣∣∣∣X
∗
1

2

2
−

X∗2
2

2

∣∣∣∣∣∣∣
=

1
2

∣∣∣X∗2 + X∗1
∣∣∣ ∣∣∣X∗2 − X∗1

∣∣∣
= X3δX

δI = 4
√

X3. (57)

We then directly deduce δI1 = χ2/3δI from Eq. (46). Since I2
and ∆G are first integrals, the variation of Λi only depends on
δI1. And finally, since we have

α =

(
γ−1 Λ1

Λ2

)2

, (58)

α can be developed to the first order in (C − ∆G) thanks to
Eq. (34). This development gives

α = α0

(
1 −

2(α0 + γ)2

γα0
(p + 1)(I1 − χ

2/3I0)
)
. (59)

The width of the resonance in terms of α is then directly related
to X3 through

δα = α0
8r2/3

32/3 ε
2/3(p + 1)1/3

√
X3 + o

(
ε2/3(p + 1)1/3

)
. (60)

The computation of the width of resonance is thus reduced to
the computation of the root X3 as a function of the parameters.
It should also be remarked that at the first order, the width of
resonance does not depend on the mass ratio γ.

3.2. Minimal AMD of a resonance

We are now interested in the overlap of adjacent resonant is-
lands. Planets trapped in the chaotic zone created by the overlap
will experience variations of their actions eventually leading to
collisions.

For a configuration close to a given resonance p : p + 1,
the AMD can evolve toward higher values if the original value
places the system in a configuration above the inner separatrix,
eventually leading the planets to collision or chaotic motion in
case of MMR overlap. On the other hand, if the initial AMD of
the planets forces them to remain in the inner circulation region
of the overlapped MMR islands, the system will remain stable
in regards to this criterion. Since C = I1 + I2, and I2 is a first
integral, we define the minimal AMD of a resonance1 Cmin(p) as
the minimal value of I1 to enter the resonant island given ∆G−I2.
Two cases must be discussed:

– the point I1 = 0 is already in the libration zone and then
Cmin = 0;

– the point I1 = 0 is in the inner circulation zone and then we
have

Cmin = I1(X∗2) =
χ2/3

2

(
X3 −

2
√

X3

)2

· (61)

In the second case, we have an implicit expression of X3 depend-
ing on Cmin

χ−1/3
√

2Cmin = X3 −
2
√

X3
, (62)

where χwas defined in Eq. (40). In other words, there is a one-to-
one correspondence between Cmin Eq. (61) and the Hamiltonian
parameter I0 for Cmin > 0. The shape of the resonance island is
completely described by Cmin.

We can also use the definition of Cmin to give an expression
depending on the system parameters

Cmin = I1 = u1ū1

=

∣∣∣∣∣∣∣R1

R

√
Λ1,0

2
X1 +

R2

R

√
Λ2,0

2
X2

∣∣∣∣∣∣∣
2

=

(R1

R

)2 Λ1,0

2

∣∣∣∣∣∣∣∣X1 −

∣∣∣∣∣R2

R1

∣∣∣∣∣
√

Λ2,0

Λ1,0
X2

∣∣∣∣∣∣∣∣
2

'
α0γ

2(α0 + γ)2 (c2
1 + c2

2 − 2c1c2 cos ∆$), (63)

1 We summarize the notations of the various AMD expressions used in
this paper in Table 1.
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Fig. 2. Relation Eq. (62) between X3 and Cmin Eq. (61) and two dif-
ferent approximations. In red, the approximation used by Deck et al.
(2013) for eccentric orbits and in purple the constant evaluation used
for circular orbits.

where ci =
√

2

√
1 −

√
1 − e2

i = |Xi|. We note

cmin = c2
1 + c2

2 − 2c1c2 cos ∆$, (64)

the reduced minimal AMD. We can use the expression (63) to
compute the quantity χ−1/3 √2Cmin appearing in Eq. (62)

χ−1/3
√

2Cmin '
31/3

r1/3

(p + 1)1/3

ε1/3

√
cmin + o(p1/3). (65)

The function Cmin(X3) (Eq. (61)) is plotted in Fig. 2 with the two
approximations used by Deck et al. (2013) to obtain the width of
the resonance. For Cmin � χ2/3 or Cmin close to zero, the relation
can be simplified and we obtain

X3 ∼ χ
−1/3

√
2Cmin (66)

X3 = 22/3 +
2
3
χ−1/3

√
2Cmin + O(χ−2/3Cmin). (67)

We can use the developments (66) and (67) in order to compute
the width of the resonance in these two cases (see Appendix C).
It should be noted as well that for Cmin = 0, we have X3 = 22/3.

3.3. Implicit overlap criterion

The overlap of MMR can be determined by finding the first in-
teger p such that the sum of the half-width of the resonances
p : p + 1 and p + 1 : p + 2 is larger than the distance between
the respective centers of these two resonances (Wisdom 1980;
Deck et al. 2013)

∆α

α0,p
.

1
2

(
δαp

α0,p
+
δαp+1

α0,p+1

)
, (68)

where ∆α is the distance between the two centers and δαk corre-
sponds to the width of the resonance k : k + 1.

Up to terms of order ε2/3, the center of the resonance island
p : p + 1 is located at the center of the resonance of the un-
perturbed Keplerian problem, α0,p = (p/(p + 1))2/3. We develop
α0,p for p � 1

α0,p =

(
p

p + 1

)2/3

= 1 −
2

3(p + 1)
−

1
9(p + 1)2 + O((p + 1)−3). (69)

Therefore, we have at second order in p

∆α

α0,p
=

2
3

1
(p + 1)2 · (70)

We can use the implicit expression (62) of X3 as a function of
√

cmin (Eq. (64)) in order to derive an overlap criterion indepen-
dent of approximations on the value of Cmin. Equating the gen-
eral width of resonance (60) with the distance between to adja-
cent centers (70) and isolating X3 gives

X3 =
34/3

144r4/3 ε
−4/3(p + 1)−14/3. (71)

We can inject this expression of X3 into (62), and using
Eq. (65),

√
cmin =

1
48rε(p + 1)5 − 8rε(p + 1)2. (72)

Using the first order expression of (p + 1) as a function of α,

1
p + 1

=
3
2

(1 − α) (73)

we obtain an implicit expression of the overlap criterion

√
cmin =

34(1 − α)5

29rε
−

32rε
9(1 − α)2 · (74)

3.4. Overlap criterion for circular orbits

The implicit expression (74) can be used to find the criteria pro-
posed by Deck et al. (2013) for circular and eccentric orbits. Let
us first obtain the circular criterion by imposing cmin = 0 in
Eq. (74)

36(1 − α)7 = 214r2ε2. (75)

We can express 1 − α as a function of ε and we obtain

1 − αoverlap =
4r2/7

36/7 ε
2/7 = 1.46ε2/7. (76)

The exponent 2/7 was first proposed by Wisdom (1980) and the
numerical factor 1.46 is similar to the one found by Deck et al.
(2013).

3.5. Overlap criterion for high-eccentricity orbits

For large eccentricity, Deck et al. (2013) proposes a criterion
based on the development (66) of Eq. (62). This criterion is ob-
tained from Eq. (74) by ignoring the second term of the right-
hand side which leads to

29rε
√

cmin = 34(1 − α)5. (77)
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Fig. 3. Representation of the MMR overlap criteria. The dotted lines correspond to the criteria proposed by Deck et al. (2013), and the collision
curve is the approximation of the collision curve for α→ 1. We represented in transparent green (p odd) and blue (p even) the first p : p + 1 MMR
islands to show the agreement between the proposed overlap criterion and the actual intersections. In this figure, ε = 10−6.

Isolating 1 − α gives

1 − α =
29/5

34/5 r1/5ε1/5c1/10
min = 1.38ε1/5c1/10

min . (78)

This result is also similar to Deck’s one. For small cmin, the cri-
terion (78) is less restrictive than the criterion (76) obtained for
circular orbits. The comparison of these two overlap criteria pro-
vides a minimal value of cmin for the validity of the eccentric
criterion
√

cmin = 1.33ε3/7. (79)

3.6. Overlap criterion for low-eccentricity orbits

For smaller eccentricities, we can develop Eq. (74) for small
√

cmin and α close to αcir = 1 − 1.46ε2/7, the critical semi major
axis ratio for the circular overlap criterion (76). We have

3229rε(1 − α)2 √cmin = 36(1 − α)7 − 214r2ε2. (80)

We develop the right-hand side at the first order in (αcir − α) and
evaluate the left-hand side for α = αcir and after some simplifi-
cations obtain

αcir − α =
29rε

7 × 34

√
cmin

(1 − αcir)4 · (81)

We inject the expression of αcir into this equation and ob-
tain the following development of the overlap criterion for low
eccentricity:

αcir − α =
2
√

cmin

7 × 34/7r1/7ε1/7 = 0.157
√

cmin

ε1/7 · (82)

This development remains valid for small enough
√

cmin if
αcir − α � 1 − αcir, which can be rewritten

0.157ε−1/7 √cmin � 1.46ε2/7, (83)

which leads to
√

cmin � 9.30ε3/7. (84)

It is worth noting that the low-eccentricity approximation allows
to cover the range of eccentricities where the criterion (78) is not
applicable, since both boundaries depend on the same power of
ε.

We plot in Fig. 3 the overlap criteria (74) for ε = 10−6, the
two approximations (76) and (78) from Deck et al. (2013), as
well as the collision condition used in Laskar & Petit (2017) ap-
proximated for α→ 1,

1 − α ' e1 + e2 '
√

cmin. (85)

We also plot the first MMR islands in order to show the agree-
ment between the proposed criterion and the actual intersections.
We see that for high eccentricities, and large 1 − α, the system
can verify the MMR overlap stability criterion while allowing
for collision between the planets. For small α, the MMR overlap
criterion alone cannot account for the stability of the system.

4. Critical AMD and MMR

4.1. Critical AMD in a context of resonance overlap

In Laskar & Petit (2017), we present the AMD-stability crite-
rion based on the conservation of AMD. We assume the system
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dynamics to be secular chaotic. As a consequence the averaged
semi-major axis and the total averaged AMD are conserved.
Moreover, in this approximation the dynamics is limited to ran-
dom AMD exchanges between planets with conservation of the
total AMD. Based on these assumptions, collisions between
planets are possible only if the AMD of the system can be dis-
tributed such that the eccentricities of the planets allow for colli-
sions. Particularly, for each pair of adjacent planets, there exists
a critical AMD, noted Cc(α, γ), such that for smaller AMD, col-
lisions are forbidden.

The critical AMD was determined thanks to the limit colli-
sion condition

α(1 + e1) = 1 − e2. (86)

However, in practice, the system may become unstable long be-
fore orbit intersections; in particular the secular assumption does
not hold if the system experiences chaos induced by MMR over-
lap. We can, though, consider that if the islands do not overlap,
the AMD is, on average, conserved on timescales of order ε−2/3

(i.e., of the order of the libration timescales). Therefore, the con-
servation, on average, of the AMD is ensured as long as the sys-
tem adheres to the above criteria for any distribution of the AMD
between planets. Based on the model of Laskar & Petit (2017),
we compute a critical AMD associated to the criterion (74).

We consider a pair as AMD-stable if no distribution of AMD
between the two planets allows the overlap of MMR. A first re-
mark is that no pair can be considered as AMD-stable if α > αcir,
because in this case, even the circular orbits lead to MMR over-
lap. Let us write the criterion (74) as a function of α and ε;
√

cmin = g(α, ε), (87)

where

g(α, ε) =
34(1 − α)5

29rε
−

32rε
9(1 − α)2 α < αcir,

= 0 α > αcir. (88)
√

cmin depends on ∆$ and has a maximum for ∆$ = π. Since the
variation of ∆$ does not affect the AMD of the system, we fix
∆$ = π since it is the least-favorable configuration. Therefore
we have
√

cmin = c1 + c2. (89)

We define the relative AMD of a pair of planets C and express it
as a function of the variables ci

C =
C
Λ2

=
1
2

(
γ
√
αc2

1 + c2
2

)
. (90)

The critical AMD C(1)
c associated to the overlap criterion (74)

can be defined as the smallest value of relative AMD such that
the conditions

E (c1, c2) = c1 + c2 = g(α, ε) (91)

C (c1, c2) =
1
2

(
γ
√
αc2

1 + c2
2

)
= C(1)

c (92)

are verified by any couple (c1, c2). We represent this configura-
tion in Fig. 4. As in Laskar & Petit (2017), the critical AMD is
obtained through Lagrange multipliers

∇C ∝ ∇E . (93)

Fig. 4. MMR overlap criterion represented in the (c1, c2) plane.

The tangency condition gives a relation between c1 and c2,

γ
√
αc1 = c2. (94)

Replacing c2 in relation (91) gives the critical expression of c1
and we immediately obtain the expression of c2

cc,1 =
g(α, ε)

1 + γ
√
α

cc,2 =
γ
√
αg(α, ε)

1 + γ
√
α
· (95)

The value of C(1)
c is obtained by injecting the critical values cc,1

and cc,2 into the expression of C

C(1)
c (α, γ, ε) =

g(α, ε)2

2
γ
√
α

1 + γ
√
α
· (96)

4.2. Comparison with the collision criterion

It is then natural to compare the critical AMD C(1)
c to the crit-

ical AMD Cc (denoted hereafter by C(0)
c ) derived from the col-

lision condition (86). If α > αcir, the circular overlap criterion
implies that C(1)

c = 0 and therefore C(1)
c should be preferred to

the previous criterion C(0)
c . However, C(1)

c was obtained thanks to
the assumption that α was close to 1. Particularly, it makes no
sense to talk about first-order MMR overlap for α < 0.63 which
corresponds to the center of the MMR 2:1. Therefore, the colli-
sion criterion should be used for small α. We need then to find
αR such that for α < αR, we should use the critical AMD C(0)

c .
Since we are close to 1, we use a development of C(0)

c presented
in Laskar & Petit (2017), and similarly, only keep the leading
terms in 1 − α in C(1)

c . The two expressions are

C(0)
c =

γ

1 + γ

(1 − α)2

2
, C(1)

c =
γ

1 + γ

g(α, ε)2

2
· (97)

We observe that for α close to 1, the two expression have the
same dependence on γ, therefore, αR depends solely on ε. Sim-
plifying C(0)

c = C(1)
c gives αR as a solution of the polynomial

equation in (1 − α);

36(1 − α)7 − 3229rε(1 − α)3 − 214(rε)2 = 0. (98)
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Fig. 5. Regions of application of the different criteria presented in this
work. The purple region represents C(0)

c is the smallest, in the green
zone, C(1)

c is the smallest and the circular overlap criterion is verified in
the red zone. We see that the curve αR computed through a development
of C(0)

c and C(1)
c presents a good agreement with the real limit between

the green and the purple area. Here γ = 1.

While an exact analytical solution cannot be provided, a devel-
opment in powers of ε gives the following expression

1 − αR =
4
3

(2rε)1/4 +
1
4

√
2rε + O(ε3/4)

= 1.50ε1/4 + 0.316
√
ε + O(ε3/4). (99)

It should be remarked that the first term can be directly obtained
using Deck’s high-eccentricity approximation.

In Fig. 5 we plot αR and αcir and indicate which criterion is
used in the areas delimited by the curves. We specifically repre-
sented the region α > αcir because we cannot treat this region
in a similar manner to the remaining region since comparing the
relative AMD C to C(1)

c does not provide any information. We
see that the curve αR is not exactly at the limit where C(0)

c = C(1)
c

for higher ε due to the development of the critical AMDs for
α → 1. We study the influence of γ on the difference between
αR and the actual limit in Appendix D

For stability analysis, we need to choose the smallest of the
two critical AMD. For α < αR, the collisional criterion is better
and the MMR overlap criterion is used for α > αR. We thus
define a piece-wise global critical AMD represented in Fig. 6

Cc(α, γ, ε) = C(0)
c (α, γ) α < αR(ε, γ),

= C(1)
c (α, γ, ε) α > αR(ε, γ). (100)

5. Effects of the MMR overlap
on the AMD-classification of planetary systems

In Laskar & Petit (2017), we proposed a classification of the
planetary systems based on their AMD-stability. A system is
considered as AMD-stable if every adjacent pair of planets is
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Fig. 6. Representation of the two critical AMD presented in this paper.
C(0)

c in black is the collisional criterion from Laskar & Petit (2017), C(1)
c

in red is the critical AMD derived from the MMR overlap criterion. In
this plot, ε = 10−4 and γ = 1.

AMD-stable. A pair is considered as AMD-stable if its AMD-
stability coefficient

β =
C

Λ′C(0)
c

< 1, (101)

where C is the total AMD of the system, Λ′ is the circular mo-
mentum of the outer planet and C(0)

c is the critical AMD derived
from the collision condition. A similar AMD-coefficient can be
defined using the global critical AMD defined in (100) instead of
the collisional critical AMD C(0)

c . Let us note β(MMR), the AMD-
stability coefficient associated to the critical AMD (100).

We can first observe that β(MMR) is not defined for α > αcir.
Indeed, the conservation of the AMD cannot be guaranteed for
orbits experiencing short-term chaos.

We use the modified definition of AMD-stability in or-
der to test its effects on the AMD-classification proposed in
Laskar & Petit (2017).

5.1. Sample and methodology

We first briefly recall the methodology used in Laskar & Petit
(2017); to which we refer the reader for full details. We compute
the AMD-stability coefficients for the systems taken from the
Extrasolar Planets Encyclopaedia2 with known periods, planet
masses, eccentricities, and stellar mass. For each pair of adjacent
planets, ε was computed using the expression

ε =
m1 + m2

m0
, (102)

where m1 and m2 are the two planet masses and m0, the star mass.
The semi-major axis ratio was derived from the period ratio and
Kepler third law in order to reduce the uncertainty.

2 http://exoplanet.eu/
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The systems are assumed coplanar, however in order to take
into account the contribution of the real inclinations to the AMD,
we define Cp, the coplanar AMD of the system, defined as
the AMD of the same system if it was coplanar. We can com-
pute coplanar AMD-stability coefficients β(MMR)

p using Cp in-
stead of C, and we define the total AMD-stability coefficients
as β = 2β(MMR)

p . Doing so, we assume the equipartition of the
AMD between the different degree of freedom of the system.

We assume the uncertainties of the database quantities to
be Gaussian. For the eccentricities, we use the same method
as in the previous paper. The quantity e cos$ is assumed to be
Gaussian with the mean, the value of the database and standard
deviation, the database uncertainty. The quantity e sin$ is as-
sumed to have a Gaussian distribution with zero mean and the
same standard deviation. The distribution of eccentricity is then
derived from these two distributions.

We then propagate the uncertainties through the computa-
tions thanks to Monte Carlo simulations of the original distribu-
tions. For each of the systems, we drew 10 000 values of masses,
periods and eccentricities from the computed distributions. We
then compute β(MMR) for each of these configurations and com-
pute the 1-σ confidence interval.

In Laskar & Petit (2017), we studied 131 systems but we did
not find the stellar mass for 4 of these systems. They were, as a
consequence, excluded from this study. Moreover, the computa-
tion of ε for the pairs of planets of the 127 remaining systems of
the sample led in some cases to high planet-to-star mass ratios.
We decide to exclude the systems such that αcir was smaller than
the center of the resonance 2:1. We thus discard systems such
that a pair of planets has

ε > εlim = 8.20 × 10−3. (103)

As a result, we only consider in this study 111 systems that meet
the above requirements.

A pair is considered stable if the 1-σ confidence interval
(84% of the simulated systems) of the AMD-stability coefficient
β(MMR) is below 1. A system is stable if all adjacent pairs are
stable.

5.2. Results

Figure 7 shows the planet pairs of the considered systems in
a plane α–ε. The color associated to each point is the AMD-
stability coefficient of the pair. The values chosen for the plot
correspond for all quantities to the median. We remark that very
few systems are concerned by the change of the critical AMD,
indeed, only eight systems3 have a pair of planets such that
C(1)

c < C(0)
c . The 111 considered systems contain 162 planet pairs

plotted in Fig. 7. This means that less than 5% of the pairs are in
a configuration leading to MMR overlap.

We plot in Fig. 8, the architecture of these eight systems and
give in Table E.1 the values of the AMD-stability coefficients.
For each of these systems, the pair verifying the MMR overlap
criterion was already considered AMD-unstable by the criterion
based on the collision.

In order to show this, we plot in Fig. 9 the AMD-stability
coefficients computed with both critical AMD. We see that the
pairs affected by the change of criterion were already considered
AMD-unstable in the purely secular dynamics. However, while
those pairs have a collisional AMD-coefficient β between 1 and

3 It should be noted that for one of the systems, the MMR overlap
criterion was preferred in 16% of the Monte Carlo simulations.
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10−1

100

101

102

β
=

(C
/
Λ

′ )
/C

c

Fig. 7. Pairs of adjacent planets represented in the α − ε plane. The color
corresponds to the AMD-stability coefficient. We plotted the two lim-
its αR corresponding to the limit between the collision and the MMR-
overlap-based criterion and αcir corresponding to the MMR overlap for
circular orbits.

101 102 103 104

Period (days)

HD 204313

HD 73526

HD 45364

HD 47366

HD 128311

HD 33844

HD 200964

HD 5319

10−2 10−1 100 101 102

AMD coefficient β = C /Cc

Fig. 8. Architecture of the systems where the MMR overlap crite-
rion changes the AMD-stability. The color corresponds to the value
of the AMD-stability coefficient associated with the inner pair. For
the innermost planet, it corresponds to the star AMD-stability criterion
(Laskar & Petit 2017). The diameter of the circle is proportional to the
log of the mass of the planet.

10, the global AMD-stability coefficient is increased by roughly
an order of magnitude for the four pairs with α between αR and
αcir. The AMD-coefficient is not defined for the three pairs ver-
ifying the circular MMR overlap criterion. The pair HD 47366
b/c does not see a significant change of its AMD-stability coef-
ficient due to the small number of cases where C(0)

c > C(1)
c .

We identify three systems, HD 200964, HD 204313 and
HD 5319, that satisfy the circular overlapping criterion. As al-
ready explained in Laskar & Petit (2017), AMD-unstable plan-
etary systems may not be dynamically unstable. However, it
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Fig. 9. AMD-stability coefficient of the pairs affected by the change of
criterion. β(col) corresponds to the coefficient computed with the colli-
sional critical AMD, and β(MMR) refers to the one computed with the
MMR overlap critical AMD. The triangles represent the pairs where
β(MMR) goes to infinity.

should be noted that the period ratios of the AMD-unstable
planet pairs are very close to particular MMR.

Indeed, we have

T HD 200964
c

T HD 200964
b

= 1.344 ' 4/3, (104)

T HD 204313
d

T HD 204313
c

= 1.399 ' 7/5, (105)

T HD 5319
c

T HD 5319
b

= 1.313 ' 4/3. (106)

The AMD-instability of those systems strongly suggests that
they are indeed into a resonance which stabilizes their dynamics.

6. Conclusions

As shown in Laskar & Petit (2017), the notion of AMD-stability
is a powerful tool to characterize the stability of planetary sys-
tems. In this framework, the dynamics of a system is reduced to
the AMD transfers allowed by the secular evolution.

However, we need to ensure that the system dynamics can
be averaged over its mean motions. While a system can re-
main stable and the AMD or semi-major axis can be averaged
over timescales longer than the libration period in presence of
MMR, the system stability and particularly the conservation of
the AMD is no longer guaranteed if the system experiences
MMR overlap. In this paper, we use the MMR overlap criterion
as a condition to delimit the zone of the phase space where the
dynamics can be considered as secular.

We refine the criteria proposed by Wisdom (1980),
Mustill & Wyatt (2012), Deck et al. (2013) and demonstrate that
it is possible to obtain a global expression (74), valid for all
cases. The previous circular Eq. (76) and eccentric Eq. (78) cri-
teria an then be derived from Eq. (74) as particular approxima-
tions. Moreover, we show that expression (74) can be used to
directly take into account the first-order MMR in the notion of
AMD-stability.

With this work on first-order MMR, we improve the AMD-
stability definition by addressing the problem of the minimal dis-
tance between close orbits. For semi-major axis ratios α above a
given threshold αcir Eq. (76), that is, αcir < α < 1, the system is
considered unstable whichever value the AMD may take given
that even two circular orbits satisfy the MMR overlap criterion.
At wider separations, circular orbits are stable but as eccentrici-
ties increase two outcomes may happen: either the system enters
a region of MMR overlap or the collision condition is reached.
The system is said to be AMD-unstable as soon as any of these
conditions is reached. Above a second threshold, αR < α < αcir
(Eq. (99)) the AMD-stability is governed by MMR overlap while
for wider separations (α < αR) we retrieve the critical AMD de-
fined in Laskar & Petit (2017) which only depends on the colli-
sion condition.

In order to improve the AMD-stability definition for the col-
lision region, we could even take into account the non-secular
dynamics induced by higher-order MMR and close-encounter
consequences on the AMD. To study this requires more elabo-
rated analytical considerations than those presented here that are
restricted to the first-order MMR; this will be the goal of future
work.

We show in Sect. 5 that very few systems satisfy the circular
MMR overlap criterion. Moreover, the presence of systems sat-
isfying this criterion strongly suggests that they are protected by
a particular MMR. In this case, the AMD-instability is a simple
tool suggesting unobvious dynamical properties.
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Appendix A: Expression of the first-order resonant
Hamiltonian

We use the method proposed in Laskar (1991) and
Laskar & Robutel (1995) to determine the expression of
the planetary perturbation Ĥ1. Ĥ1 can be decomposed into a
part from the gravitational potential between planets Û1 and a
kinetic part T̂1 as

εĤ1 = Û1 + T̂1, (A.1)

with

Û1 = −G
m1m2

∆12
= −

m1

m0

µ2m3
2

Λ2
2

a2

∆12
(A.2)

T̂1 =
ũ1 · ũ2

m0
+

1
2m0

(‖ũ1‖
2 + ‖ũ2‖

2). (A.3)

The difficulty comes from the development of a2/∆12 and its ex-
pression in terms of Poincaré variables. We note S , the angle
between u1 and u2. We have

∆2
12 = u2

1 + u2
2 − 2u1u2 cos S . (A.4)

Let us denote ρ = u1/u2, a2/∆12 can be rewritten

a2

∆12
=

a2

u2

(
1 + ρ2 − 2ρ cos S

)−1/2

=
a2

u2
(A + V)−1/2 , (A.5)

where we denote

A = 1 + α2 − 2α cos(λ1 − λ2), (A.6)

V = α2V2 + 2αV1, (A.7)

V1 = cos(λ1 − λ2) −
ρ

α
cos S , (A.8)

V2 =

(
ρ

α

)2
− 1. (A.9)

V is at least of order one in eccentricity. We can therefore de-
velop Eq. (A.5) for small V . We only keep the terms of first order
in eccentricity,

a2

∆12
=

a2

u2
A−1/2 −

1
2

a2

u2
VA−3/2 + O(V2). (A.10)

The well-known development of the circular coplanar motion A
gives (e.g., Poincaré 1905)

A−s =
1
2

∑
k∈Z

b(k)
s (α)eik(λ1−λ2), (A.11)

where b(k)
s (α) are the Laplace coefficients (24).

Because of the averaging over the non-resonant fast angles,
the non-vanishing terms have a dependence on λi of the form
j ((p + 1)λ2 − pλ1). Since we only keep the terms of first order
in eccentricity, the d’Alembert’s rule (7) imposes j = ±1. Let
us compute the first-order development of a2/u2 and V in terms
of Poincaré variables and combine these expressions with A−1/2

and A−3/2 in order to select the non-vanishing terms.
Let us denote zi = eiλi and z = z1z̄2 = ei(λ1−λ2). The re-

searched terms are of the form

ei((p+1)λ2−pλ1) = z2z−p = z1z−(p+1) (A.12)

e−i((p+1)λ2−pλ1) = z̄2zp = z̄1zp+1. (A.13)

Let us denote

Xi = x̂i

√
2
Λ̂i

=

√
2Ĉi

Λ̂i
e−i$i = eie−i$i + O(e2

i ), (A.14)

the first term in the development (A.10) gives

a2

u2
A−1/2 =

1
2

(
1 +

1
2

X2z2 +
1
2

X̄2z̄2

)∑
k∈Z

b(k)
1/2(α)zk +O(e2

2). (A.15)

The contributing term has for expression

1
4

b(p)
1/2(α)(X2 + X̄2), (A.16)

where Xi = X̂i

√
2/Λ̂i = Xiei((p+1)λ2−pλ1).

For the computation of the second term of (A.10), the only
contribution comes from V since a2/u2 ∼ 1. We define

U = X1z1 − X2z2

=

√
2Ĉ1

Λ̂1
ei(λ1−$1) −

√
2Ĉ2

Λ̂2
ei(λ2−$2). (A.17)

V can be expressed as a function of z, z̄,U and Ū. Indeed we
have

ρ

α
= 1 −

1
2

(U + Ū) + O(e2) (A.18)

and

cos S =
1
2

(
z + z̄ + U(z − z̄) + Ū(z̄ − z)

)
+ O(e2), (A.19)

where O(e2) corresponds to terms of total degree in eccentricities
of at least 2. We deduce from these two last expressions that

V1 =
1
4

(
U(3z̄ − z) + Ū(3z − z̄)

)
+ O(e2), (A.20)

V2 = −(U + Ū) + O(e2). (A.21)

We can therefore write4

V =
1
2

(UZ + ŪZ̄) + O(e2), (A.22)

where Z = α(3z̄ − 2α − z). With this expression of V , it is easy
to gather the corresponding terms and the second term in the
development (A.10) gives the contributing term

−
α

8

(
3b(p)

3/2(α) − 2αb(p+1)
3/2 (α) − b(p+2)

3/2 (α)
) (
X1 + X̄1

)
+
α

8

(
3b(p−1)

3/2 (α) − 2αb(p)
3/2(α) − b(p+1)

3/2 (α)
) (
X2 + X̄2

)
. (A.23)

After gathering the terms (A.16), (A.23), we can give the expres-
sion of the resonant Hamiltonian

Ĥ = K̂ + R̂1(X̂1 + ¯̂X1) + R̂2(X̂2 + ¯̂X2), (A.24)

4 In Laskar & Robutel (1995) the first-order expression of V is writ-
ten W1 = (UZ + ŪZ̄) instead of W1 = (UZ + ŪZ̄)/2. This misprint in
Eq. (47) of Laskar & Robutel (1995) is transmitted as well in Eq. (51).
It has no consequences in the results of the paper.
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where

R̂1 = −ε
γ

1 + γ

µ2m3
2

Λ̂2
2

1
2

√
2

Λ̂1
r1(α), (A.25)

R̂2 = −ε
γ

1 + γ

µ2m3
2

Λ̂2
2

1
2

√
2

Λ̂2
r2(α) (A.26)

(A.27)

with γ = m1/m2, and

r1(α) = −
α

4

(
3b(p)

3/2(α) − 2αb(p+1)
3/2 (α) − b(p+2)

3/2 (α)
)
, (A.28)

r2(α) =
α

4

(
3b(p−1)

3/2 (α) − 2αb(p)
3/2(α) − b(p+1)

3/2 (α)
)

+
1
2

b(p)
1/2(α). (A.29)

The kinetic part T̂1 has no contribution to the averaged resonant
Hamiltonian for p > 1. Indeed, as explained above, due to the
d’Alembert rule, the first-order terms must have an angular de-
pendence of the form j(−pλ1 + (p + 1)λ2). At the first order in
ε, such a term can only be present in the development of the in-
ner product ũ1 · ũ2. At the first order in eccentricities, we have
(Laskar & Robutel 1995)

ũ1 · ũ2 =
µ2m2

1m2
2

Λ̂1Λ̂2
<((eiω1 + X1)(e−iω2 + X̄2)) + O(e2), (A.30)

where ω j is the true longitude of the planet j. The only term
with the good angular dependence comes from <ei(ω1−ω2) since
the other first-order terms only depend on one mean longitude.
The development of ei(ω1−ω2) at the first order in eccentricities
gives

ei(ω1−ω2) = z + z1zX̄1 − z̄2X1 + zz̄2X2 − z1X̄2 + O(e2). (A.31)

Thus for p > 1, T̂1 has no contribution to the averaged
Hamiltonian, and for p = 1 we have

H1,i =
1

2m0

µm2
1

Λ̂1

µm2
2

Λ̂2
(X2 + X̄2). (A.32)

A.1. Asymptotic expression of the resonant coefficients

We present the method we used to obtain the analytic devel-
opment of the coefficients r1 and r2 defined in Eqs. (A.28)
and (A.29). Using the expression of b(k)

s (α), we have

r1(α) = −
α

4π

[∫ π

−π

3 cos(pφ)
(1 + α2 − 2α cos φ)3/2 dφ

+

∫ π

−π

−2α cos((p + 1)φ)
(1 + α2 − 2α cos φ)3/2 dφ

+

∫ π

−π

− cos((p + 2)φ)
(1 + α2 − 2α cos φ)3/2 dφ

]
. (A.33)

We can rewrite this expression

r1(α) = −
α

2π

[∫ π

−π

(cos(φ) − α) cos((p + 1)φ)
(1 + α2 − 2α cos φ)3/2 dφ

+

∫ π

−π

2 sin φ sin((p + 1)φ)
(1 + α2 − 2α cos φ)3/2 dφ

]
. (A.34)

We make the change of variable φ = (1 − α)u in the integrals.
Factoring (1 − α)3, the denominators in the integrals can be de-
veloped for α→ 1

(1 + α2 − 2α cos φ)3/2 =

(
1 + 2α

1 − cos((1 − α)u)
(1 − α)2

)3/2

' (1 − α)3(1 + u2)3/2. (A.35)

Using the relation α0 = (p/(p + 1))2/3, the numerators can be
developed

N1 = (cos((1 − α)u) − α) cos((p + 1)(1 − α)u)

' (1 − α) cos
(

2u
3

)
(A.36)

N2 = 2 sin((1 − α)u) sin((p + 1)(1 − α)u)

' 2(1 − α)u sin
(

2u
3

)
· (A.37)

Therefore, we deduce the equivalent of r1 for p→ +∞

r1(α) ∼ −
3(p + 1)

4π

∫ +∞

−∞

cos
(

2u
3

)
+ 2u sin

(
2u
3

)
(1 + u2)3/2 du

∼ −
K1(2/3) + 2K0(2/3)

π
(p + 1) (A.38)

∼ 0.802(p + 1), (A.39)

where Kν(x) is the modified Bessel function of the second kind.
Similarly, we have r2 ∼ −r1 since the additional term is of lower
order in p.

We can obtain the constant term of the development by using
the second order expression of α0 and developing the integrand
to the next order in (1 − α). We give here the numerical expres-
sions of the two developments

r1(α0) = −0.802(p + 1) − 0.199 + O(p−1), (A.40)

r2(α0) = 0.802(p + 1) + 0.421 + O(p−1). (A.41)

Appendix B: Development of the Keplerian part

We show here that the first order in (C−∆G) of the Keplerian part
vanishes and give the details of the computation for the second
order. The Keplerian part can be written

K̂ = −
µ2m3

1

2(Λ1,0 − p(C − ∆G))2

−
µ2m3

2

2(Λ2,0 + (p + 1)(C − ∆G))2 · (B.1)

Therefore, the first order in C − ∆G has for expression

K1 = −
µ2m3

2

Λ3
2,0

 pγ3Λ3
2,0

Λ3
1,0

− (p + 1)

 (C − ∆G) = 0, (B.2)

since we have(
Λ1,0

Λ2,0

)3

= γ3 p
p + 1

· (B.3)
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The second-order term has for coefficient

1
2
K2 = −

3
2
µ2m3

2

γ3 p2

Λ4
1,0

+
(p + 1)2

Λ4
2,0


= −

3
2
µ2m3

2(γ + α0)4

 p2

γ
(

p
p+1

)4 +
(p + 1)2

α4
0


= −

3
2
µ2m3

2(γ + α0)4(p + 1)2
α4

0

(
p+1

p

)2
+ γ

γα4
0

1
2
K2 = −

3
2
µ2m3

2
(γ + α0)5

γα4
0

(p + 1)2· (B.4)

Appendix C: Width of the resonance island

We detail in this Appendix the computation of the resonance is-
land’s width (see also Ferraz-Mello 2007, Appendix C).

C.1. Coefficients-roots relations

We first explain how the width of the resonance can be related
to the position of the saddle point on the X-axis. The resonant
island has a maximal width on the X-axis. Therefore we need to
compute the expression of the intersections of the separatrices
with the X-axis.

Let us note H3, the energy at the saddle point (X3, 0). Since
the energy of the separatrices is H3 as well, the two intersec-
tions of the separatrices with the X-axis are the solution of the
equation

HA(X, 0) = −
X4

8
+
I0X2

2
− X = H3 +

I2
0

2
= H̃3. (C.1)

This equation has three solutions X∗1, X
∗
2, and X3 which has a

multiplicity of 2. We can therefore rewrite the equation as

(X − X∗1)(X − X∗2)(X − X3)2 = X4 − 4I0X2 + 8X + 8H̃3. (C.2)

We detail here the relations between the coefficients and the roots
of the polynomial Eq. (C.2). We have

X∗1 + X∗2 + 2X3 = 0 (C.3)

X∗1X∗2 + 2X3(X∗1 + X∗2) + X2
3 = −2I0 (C.4)

X∗1X∗2X2
3 = 8H̃3 = −X4

3 + 2I0X2
3 − 8X3. (C.5)

From relation (C.3), we have directly X∗1 + X∗2 = −2X3, and since

4X∗1X∗2 = (X∗1 + X∗2)2 − (X∗1 − X∗2)2, (C.6)

we can express (X∗1 − X∗2)2 as a function of X3 thanks to the rela-
tions (C.4) and (C.5)

|X∗1 − X∗2 | =
4
√

X3
· (C.7)

We thus deduce the expressions of X∗1 and X∗2 as functions of X3

X∗1 = −X3 −
2
√

X3
, (C.8)

X∗2 = −X3 +
2
√

X3
· (C.9)

As explained in Sect. 3.1, we obtain the width of the resonance in
terms of variation of α as a function of X3 (Eq. (60)). We can use
this expression to obtain the width of the resonance for particular
cases detailed in the following subsections.

C.2. Width for initially circular orbits

In the case of initially circular orbits, the minimal AMD to enter
the resonance is 0. For Cmin = 0, Eq. (62) gives X3 = 22/3 as a
solution and we have

δα

α0
=

8 × 21/3r2/3

32/3 ε2/3(p + 1)1/3

= 4.18 ε2/3(p + 1)1/3. (C.10)

We find here the same width of resonance as Deck et al. (2013).

C.3. Width for highly eccentric orbits

If we consider a system with Cmin � χ2/3, our formalism gives
us the result first proposed by Mustill & Wyatt (2012) and im-
proved by Deck et al. (2013) for eccentric orbits. In this case, we
can inject the approximation (66) of X3 in the expression (60) of
δα and obtain

δα

α0
=

8
√

r
√

3

√
ε(p + 1)c1/4

min (C.11)

= 4.14
√
ε(p + 1)c1/4

min. (C.12)

This result is also similar to Deck’s one, using
√

cmin instead of
σ (Deck et al. 2013, Eq. (25)).

C.4. Width for low eccentric orbits

For Cmin � χ2/3, we propose here a new expression of the width
of resonance thanks to the expression (67). This expression is an
extension of the circular result presented above Eq. (C.10). Let
us develop

√
X3 for Cmin � χ2/3

√
X3 =

√
22/3 +

2
32/3r1/3

(p + 1)1/3

ε1/3

√
cmin

' 21/3
(
1 +

1
62/3r1/3

(p + 1)1/3

ε1/3

√
cmin

)
. (C.13)

Therefore for low-eccentricity systems, we have

δα

α0
'
δαc

α0

(
1 +

1
62/3r1/3

(p + 1)1/3

ε1/3

√
cmin

)
, (C.14)

where δαc is the width of the resonance for initially circular or-
bits defined in Eq. (C.10).

Appendix D: Influence of γ on the limit αR

As can be seen in Fig. 5, the solution αR of Eq. (98) is not the
exact limit where the collision and the MMR criteria are equal.
Indeed, Eq. (98) is obtained after the development of C(0)

c and
C(1)

c for α close to 1. Since at first order, both expressions have
the same dependence on γ, αR does not depend on γ. In order to
study the dependence on γ of the limit αlim where C(0)

c = C(1)
c ,

we plot in Fig. (D.1), for different values of ε, the quantity

δαR(ε, γ) =
αR(ε) − αlim(ε, γ)

1 − αR(ε)
, (D.1)

which gives the error made when approximating αlim by αR. We
see that all the curves have the same shape with an amplitude
increasing with ε. For high γ, αR is very accurate even for the
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greatest values of ε. Moreover, the error is maximum for very
small γ and always within a few percent.

The amplitude of the error scales with 1 − αR ∝ ε
1/4 as we

can see in Fig. D.2. We plot in this Fig. D.2 the quantity
δαR/ε

1/4; we see that the curves are almost similar, particularly
for the smaller values of ε.
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Fig. D.1. Difference between the limit αlim where C(0)
c and C(1)

c are equal
and its approximation αR scaled by 1 − αR versus γ for various values
of ε.
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Fig. D.2. δαR scaled by ε1/4 versus γ for various values of ε.

Appendix E: AMD-stability coefficients
of the system affected by the MMR overlap
criterion

We report in Table E.1 the AMD-stability coefficients of the sys-
tems where more than 5% of the Monte Carlo realizations were
affected by the change of critical AMD. Apart for the system
HD 47366 where 16% of the simulations used the new criterion,
the seven other systems used the critical AMD C(1)

c for almost all
the realizations. For HD 204313, only the pair (b/d) is affected.

In Table E.1,
√
〈e2〉 corresponds to the mean value of the

squared eccentricity computed as explained in Sect. (5.1).
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Table E.1. AMD-stability coefficients computed for the systems affected by the MMR overlap criterion

Planet Period (d) Mass (MN
E ) Eccentricity

√
〈e2〉 β β(MMR)

HD 128311 Mass: 0.84 MN
�

b 454.2 463.14 0.345 0.352 0.312
c 923.8 1032.46 0.230 0.244 3.200 27.931

HD 200964 Mass: 1.44 MN
�

b 613.8 587.98 0.040 0.067 0.024
c 825 284.46 0.181 0.184 3.872 +∞

HD 204313 Mass: 1.045 MN
�

c 34.905 17.58 0.155 0.184 16.664
b 2024.1 1360.31 0.095 0.095 0.110 0.110
d 2831.6 533.95 0.280 0.308 8.032 +∞

HD 33844 Mass: 1.75 MN
�

b 551.4 622.94 0.150 0.180 0.084
c 916 556.20 0.130 0.189 2.939 22.676

HD 45364 Mass: 0.82 MN
�

b 226.93 59.50 0.168 0.171 0.070
c 342.85 209.10 0.097 0.099 1.975 13.700

HD 47366 Mass: 1.81 MN
�

b 363.3 556.20 0.089 0.138 0.146
c 684.7 591.16 0.278 0.292 2.896 2.896

HD 5319 Mass: 1.56 MN
�

b 675 616.59 0.120 0.162 0.053
c 886 365.50 0.150 0.171 8.659 +∞

HD 73526 Mass: 1.08 MN
�

b 188.9 715.11 0.290 0.293 0.200
c 379.1 715.11 0.280 0.289 3.391 9.922

Notes. Masses are given in terms of nominal terrestrial massesMN
E and stellar masses in terms of nominal solar massesMN

� as recommended by
the IAU 2015 Resolution B3 (Prša et al. 2016).
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