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ABSTRACT

We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often
assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive
the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV)
is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet.
We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical
simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for
Kepler-88 b the rotation can be chaotic.

Key words. celestial mechanics – planets and satellites: general

1. Introduction

The rotation of close-in planets is usually modified by tidal in-
teractions with the central star and reaches a stationary value on
timescales typically much shorter than the tidal evolution of or-
bits (e.g. Hut 1981; Correia 2009). As long as the orbit has some
eccentricity, the rotation can stay in non-synchronous configura-
tions, but tidal dissipation also circularizes the orbit, which ul-
timately results in synchronous motion (the orbital and rotation
periods become equal).

Recently, Leconte et al. (2015) used simulations including
global climate model (GCM) of the atmosphere of Earth-mass
planets in the habitable zone of M-type stars to show that these
planets might be in a state of asynchronous rotation (see also
Correia et al. 2008). This asynchronous rotation is due to ther-
mal tides in the atmosphere. This same effect was also invoked to
explain the retrograde spin of Venus (see Correia & Laskar 2001,
2003). However, for close-in planets, the gravitational tides dom-
inate the thermal tides, so synchronous rotation is believed to be
the most likely scenario (Correia et al. 2008; Cunha et al. 2015).

In this paper we investigate another effect that can drive the
spin of close-in planets to asynchronous rotation, namely plane-
tary perturbations. Correia & Robutel (2013) showed that in the
case of co-orbital planets, planet-planet interactions induce or-
bital perturbations that can lead to asynchronous spin equilibria,
and even chaotic evolution of the spin of the planets. The planets
librate around the Lagrangian equilibrium and have oscillations
of their mean longitude that prevent the spin synchronization.

We generalize this study to other mean-motion resonances
(2:1, 3:2, etc.) for which a similar libration of the mean

? CHEOPS fellow.

longitude can be observed. We study both the resonant and the
near-resonance cases. While no co-orbital planet has yet been
observed, many planets have been found around other mean-
motion resonances. Moreover, in some cases, strong planet-
planet interactions have been observed, for instance GJ 876 us-
ing the radial velocity (RV) technique (Correia et al. 2010), or
Kepler-88 (also known as the King of TTVs) using the transit
timing variation (TTV) technique (Nesvorný et al. 2013). The
TTV technique is particularly promising for such a study since
the amplitude and period of the observed TTVs provide a di-
rect measure of the amplitude and period of the orbital libration
which affects the spin evolution.

In Sect. 2, we derive the equations of motion for the spin
of a planet that is perturbed by another planet. In Sect. 3 we
show that both the spin dynamics and the TTVs are dominated
by the perturbations of the mean longitude of the planet, and
the coefficients of their Fourier series are related to each other.
In Sect. 4, we apply our analytical modelling to some observed
planets showing significant TTVs and perform numerical simu-
lations. Finally, we discuss our results in Sect. 5.

2. Spin dynamics

We consider a system consisting of a central star with mass m0,
and two companion planets with masses m1 and m2, such that
m1,m2 � m0. We study the spin evolution of one of the plan-
ets, either the inner one or the outer one. The subscript 1 al-
ways refers to the inner planet, 2 refers to the outer one, and
no subscript refers to the planet whose spin evolution is studied.
For simplicity, we assume coplanar orbits and low eccentricities
for both planets. We assume that the spin axis of the considered
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planet is orthogonal to the orbital plane (which corresponds to
zero obliquity)1.

We introduce θ, the rotation angle of the planet with re-
spect to an inertial line, whose evolution is described by (e.g.
Murray & Dermott 1999)

θ̈ = −6C22

ζ

µ

r3 sin 2(θ − f ), (1)

where µ = G(m0 + m) (G being the gravitational constant), r is
the distance between the planet and the star (heliocentric coor-
dinates), f is the true longitude of the planet, C22 is the Stokes
gravity field coefficient that measures the asymmetry in the equa-
torial axes of the planet, and ζ is the inner structure coefficient
that measures the distribution of mass in the planet’s interior (see
Appendix C).

Expanding expression (1) in Fourier series of the mean lon-
gitude, we obtain

θ̈ = −6C22

ζ

µ

a3

∑
k∈Z

X−3,2
k (e) sin(2θ − kλ + (k − 2)$), (2)

where a, e, λ, $ are the semi-major axis, the eccentricity, the
mean longitude, and the longitude of periastron of the planet,
respectively. We note that the Hansen coefficient X−3,2

k (e) is of
order |k− 2| in eccentricity. Thus, the leading term in this expan-
sion corresponds to k = 2, and we have X−3,2

2 (e) = 1 + O(e2). If
we only keep this leading term, Eq. (2) simplifies as

θ̈ ≈ −6C22

ζ

µ

a3 sin 2(θ − λ). (3)

If the planet remains unperturbed and follows a Keplerian orbit,
the semi-major axis is constant and the mean longitude is given
by

λ = λ0 + nt, (4)

where n is the constant mean motion of the planet. Introducing

γ = θ − (λ0 + nt) , (5)

σ = n
√

12 C22/ζ, (6)

we can rewrite Eq. (3) as

γ̈ ≈ −σ
2

2
sin 2γ, (7)

which is the equation of a simple pendulum, with a stable equi-
librium point at γ = 0. This equilibrium corresponds to the exact
synchronization (θ̇ = n). The parameter σ (Eq. (6)) measures the
width of the synchronous resonance, and also corresponds to the
libration frequency at exact resonance.

We now consider planet-planet interactions that disturb the
orbits, in particular ai and λi. The action canonically conju-
gated with λi is the circular angular momentum of planet i,
Λi = βi

√
µiai, where βi = mim0/(m0 + mi). We also intro-

duce the angular momentum deficit (AMD) of the planets, Di =

Λi

(
1 −

√
1 − e2

i

)
which are the actions canonically conjugated

with $i. The Hamiltonian of the three-body problem reads

H = H0(Λi) +H1(Λi, λi,Di, $i), (8)

1 Tidal effects drive the obliquity of the planets to zero degrees (e.g.
Correia et al. 2003; Boué et al. 2016), so we expect that Kepler planets
whose spin has been driven close to the synchronous rotation also have
nearly zero obliquity.

where H0 and H1 are the Keplerian and perturbative part of the
Hamiltonian. We have

H0 = −Gm0m1

2a1
− Gm0m2

2a2
= −µ

2
1β

3
1

2Λ2
1

− µ
2
2β

3
2

2Λ2
2

, (9)

and H1 is of order one in planet masses (over star mass). The
equations of motion read

λ̇i =
∂H
∂Λi

=
µ2

i β
3
i

Λ3
i

+
∂H1

∂Λi
, (10)

Λ̇i = −∂H
∂λi

= −∂H1

∂λi
· (11)

However, it can be shown that the perturbative part has a weak
dependency on Λi (e.g. Delisle et al. 2014). At leading order in
eccentricity, we have

λ̇i ≈
µ2

i β
3
i

Λ3
i

≈ ni

(
Λi

Λi,0

)−3

≈ ni − 3ni
Λi − Λi,0

Λi,0
· (12)

We assume that the orbital motion is not chaotic and thus quasi-
periodic. We introduce the quasi-periodic decomposition of Λ

Λ = Λ0

1 +
∑

j

A j cos(ν jt + φ j)

 , (13)

where ν j can be any combination of the frequencies of the sys-
tem. For a resonant system (see Appendix B), the frequency of
libration in the resonance is the dominant term of the decompo-
sition. For a system that is close to resonance (k2:k1) but outside
of it (see Appendix A), the dominant frequency is the frequency
of circulation k2n2 − k1n1. However, for this computation we
can keep things general and use the generic decomposition of
Eq. (13). We replace it in Eq. (12) to obtain the evolution of the
mean longitude

λ̇ ≈ n − 3n
∑

j

A j cos(ν jt + φ j). (14)

We thus have

λ ≈ λ0 + nt −
∑

j

3A j
n
ν j

(
sin(ν jt + φ j) − sin φ j

)
= λ0 + nt −

∑
j

α j

(
sin(ν jt + φ j) − sin φ j

)
, (15)

where the coefficients

α j = 3A jn/ν j (16)

have the dimension of angles and correspond to the amplitudes
of each term in the decomposition. For the sake of simplicity
of the computations, we assume that these amplitudes remain
small, but in principle they could reach 180◦. With this approxi-
mation, we have at first order in α j

sin 2(θ − λ) ≈ sin 2γ + 2
∑

j

α j sin(ν jt + φ j) cos 2γ, (17)

with

γ = θ −
λ0 + nt +

∑
j

α j sin φ j

 . (18)
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Table 1. Qualitative evolution of the spin as a function of the ampli-
tude α and frequency ν of the perturbation.

σ/ν � 1 σ/ν ∼ 1 σ/ν � 1
α � 1 synchronous resonance only
α ∼ 1 3 separated res. chaos modulated pendulum

Notes. The value of σ (width of the synchronous resonance) depends
on the C22 coefficient of the planet (see Eq. (6)), which can be evaluated
using Appendices C and D.

From Eq. (13) we deduce

1
a3 ≈ 1

a3
0

1 − 6
∑

j

A j cos(ν jt + φ j)


≈ 1

a3
0

1 − 2
∑

j

α j
ν j

n
cos(ν jt + φ j)

 (19)

and finally, using the expressions of Eqs. (17), (19) in Eq. (3),
we obtain

γ̈ ≈ −σ
2

2

[
sin 2γ

+
∑

j

α j

(
1 − ν j

n

)
sin 2

(
γ +

ν jt + φ j

2

)
(20)

+
∑

j

α j

(
1 +

ν j

n

)
sin 2

(
γ − ν jt + φ j + π

2

) ]
·

The term (sin 2γ) corresponding to the synchronous resonance
still exists. However, for each frequency appearing in the quasi-
periodic decomposition of the perturbed orbital elements (see
Eqs. (13), (15)), two terms appear (at first order in α j) in Eq. (20),
corresponding to a sub-synchronous resonance (θ̇ = n − ν j/2),
and a super-synchronous resonance (θ̇ = n + ν j/2). This splitting
of the synchronous resonance was found in the case of co-orbital
planets in Correia & Robutel (2013). We note that if we do not
neglect the non-leading terms in the Fourier expansion (Eq. (2),
the classical spin-orbit resonances (θ̇ = kn/2) appear, as do new
resonances of the form θ̇ = kn/2 ± ν j/2. Moreover, if the ampli-
tudes α j are not small, the series should be developed at a higher
degree in α j, and resonances of the type θ̇ = kn/2 ± lν j/2 would
appear (see Leleu et al. 2015, for the co-orbital case).

Different dynamical regimes can be observed depending on
the values of α, ν, and σ. In particular, a chaotic evolution of the
spin is expected when the separation between two resonances is
of the order of the width of these resonances (Chirikov 1979).
Table 1 describes qualitatively the dynamics of the spin of the
planet, as a function of the amplitude (α) and frequency (ν) of
the perturbing term.

3. TTV as a probe for the spin dynamics

The TTV of a planet is a very good probe that can be used to
estimate the main frequencies appearing in the quasi-periodic
decomposition of Eqs. (13), (15), and the associated amplitudes.
As we did for the computation of the spin evolution, we con-
sider coplanar planets with low eccentricities. We take the origin
of the longitudes as the observer direction such that the transit
occurs when f = 0 ( f being the true longitude of the planet).

The true longitude can be expressed as a Fourier series of the
mean longitude

ei f =
∑
k∈Z

X0,1
k (e)ei(kλ+(1−k)$) (21)

where the Hansen coefficient X0,1
k is of order |k−1| in eccentricity.

For the sake of simplicity, we only keep the leading order term
f ≈ λ. We thus have (see Eq. (15))

f ≈ λ0 + nt −
∑

j

α j

(
sin(ν jt + φ j) − sin φ j

)
. (22)

We introduce tk, the time of the kth transit. We have f (tk) = k2π,
thus the TTVs are given by

TTVk = tk − kP ≈
∑

j

α j

n

(
sin(ν jtk + φ j) − sin φ j

)
− λ0

n
, (23)

where P = 2π/n is the orbital period. Therefore, the quasi-
periodic decomposition of the TTV signal directly provides the
amplitudes α j and frequencies ν j that we need in order to ana-
lyze the spin evolution. We are mainly interested in resonant and
near-resonant systems. In these cases, one term is leading the ex-
pansion with a period much longer than the orbital period (libra-
tion period for the resonant case, and circulation period for the
near-resonant case, see Appendices A, B). For these long peri-
ods, the amplitudes and frequency are well determined as long as
the number of transits is sufficient to cover the whole period. In
particular, there are no sampling/aliasing issues that could arise
for periods that are close to the orbital period.

For the sake of simplicity we assume that one term is leading
the TTVs, such that (see Eq. (23))

TTVk ≈ α

n
(sin(νtk + φ) − sin(φ)) − λ0

n
, (24)

and (see Eq. (20))

γ̈ ≈ −σ
2

2

[
sin 2γ + α sin 2

(
γ +

νt + φ

2

)
+ α sin 2

(
γ − νt + φ + π

2

) ]
, (25)

where we assume (ν � n). The most interesting systems for our
study (see Table 1) are those for which α is not negligible, such
that the width of the resonances at θ̇ = n ± ν/2 is not negligible
compared to the synchronous resonance. Such systems can be
locked in sub/super-synchronization or even show chaotic evo-
lution of the spin (see Correia & Robutel 2013, for the co-orbital
case). The TTVs provide a determination of the parameters α
and ν (and of the phase φ).

4. Application to planets with TTVs

In this section we apply the results obtained in Sects. 2 and 3
to real planetary systems that show large TTVs, and we per-
form numerical simulations in the conservative case (Sect. 4.1)
and dissipative case (Sect. 4.2). We have chosen two exam-
ples: KOI-227 b, which is trapped in a mean-motion resonance,
and Kepler-88 b, which is near (but not trapped in) a mean-
motion resonance. In both cases the perturber is not observed
to transit but is inferred from the TTV signal. In addition, KOI-
227 b is considered a rocky planet with a permanent equatorial
asymmetry C22 , 0 (Eq. (6)), while Kepler-88 b is a gaseous
planet for which the C22 value is likely very close to zero
(Campbell & Synnott 1985).
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Table 2. Parameters for KOI-227 b, c used in this study.

Parameter [unit] b c
m [M⊕] 11.09 43.89
R [R⊕] 2.23 –
kf 0.95 –
ζ 0.333 –

C22,r 1.4 × 10−7 –
a [AU] 0.104483724 0.167413850
e 0.0756724 0.0173317
λ [deg] 0 250.4696
$ [deg] −179.2092 119.1518

Notes. The stellar mass is 0.49 M�. The orbital parameters
are taken from Nesvorný et al. (2014). The reference epoch is
2 454 952.024800880921 BJD. For the sake of simplicity of the model,
we assume the system to be coplanar. This solution has a χ2 of 53.3.

4.1. Conservative evolution

4.1.1. KOI-227 b (rocky planet, in resonance)

KOI-227 hosts at least two planets (see Nesvorný et al. 2014),
but only one (KOI-227 b) is known to transit. This planet has a
radius of 2.23 R⊕, a period of about 18 d, and TTVs with an am-
plitude of at least 10 h have been observed (see Nesvorný et al.
2014). In terms of angular amplitude (see Eq. (15)), this corre-
sponds to α & 8◦. The main TTV period is about 4.5 yr, thus
ν/n ≈ 0.011.

Since the pertubing planet is not detected directly, the orbital
parameters of the system cannot be completely solved for, due to
degeneracies (see Nesvorný et al. 2014). Three possible families
of solutions have been proposed by Nesvorný et al. (2014), cor-
responding to an outer 2:1 or 3:2 resonance or an inner 3:2 res-
onance between the observed planet and the perturber. For these
three solutions, the planets must stay inside the resonance. The
outer 2:1 configuration is favoured by the data but the two other
configurations cannot be ruled out (see Nesvorný et al. 2014).
The best-fitting solution is the 2:1 configuration (χ2 = 37.6). The
mass of KOI-227 b is 37.5 M⊕ for this solution, and its density
would thus be 18.6 g cm−3, which seems very high. However, the
orbital parameters, and masses are not very well constrained. As
an example, we refitted the orbital parameters of the system, us-
ing the same TTV data as Nesvorný et al. (2014), but imposing
the density of KOI-227 b to be the same as that of the Earth. The
mass of KOI-227 b is thus set to 11.09 M⊕. The obtained solution
has a χ2 of 39.1, which is still better than the best-fitting solution
in other resonances (χ2 = 51.5 for the outer 3:2 resonance, and
χ2 = 82.2 for the inner 3:2 resonance, see Nesvorný et al. 2014).

For this illustration, we adopted the mass of 11.09 M⊕ for
KOI-227 b. We also imposed the system to be coplanar in order
to simplify the problem. We thus refitted the model imposing
zero inclination between the planets, which also provides a good
fit to the data (χ2 = 53.3). The obtained solution is given in
Table 2.

Using the mass (11.09 M⊕) and radius (2.23 R⊕) of the
planet, we estimate its permanent deformation (see Appendix C)

C22,r ≈ 1.4 × 10−7. (26)

This corresponds to σ/n ≈ 2.2 × 10−3 and σ/ν ≈ 0.20, which
means that the sub/super-synchronous resonances (θ̇ = n ± ν/2)
are well separated from the synchronous resonance, and that the
planet could be locked in any of these resonances.

In addition to the permanent deformation, the tidal deforma-
tion could also play an important role in the spin dynamics of the
planet. In particular, if the planet is captured in one of the spin-
orbit resonances, the C22 increases due to the tidal deformation.
We estimate the maximum deformation of the planet (see Ap-
pendices C and D) in the synchronous resonance

C22,sync. ≈ 1.9 × 10−6, (27)

and in the sub/super-synchronous resonances

C22,sub/super ≈ 6.6 × 10−7. (28)

These values correspond to σ/n ≈ 8.3 × 10−3 and σ/ν ≈ 0.77
(synchronous resonance), and σ/n ≈ 4.9 × 10−3 and σ/ν ≈ 0.45
(sub/super-synchronous resonances). As σ/ν approaches unity,
the resonances get closer and closer, which may induce a chaotic
evolution of the spin.

To study in more details the spin dynamics in these differ-
ent resonances, we perform numerical simulations of the spin in
the conservative case. We substitute in Eq. (1) the orbital solu-
tion given by a classical N-body integrator, and integrate it to
obtain the evolution of the rotation angle (θ). Figure 1 shows
a frequency analysis (using the NAFF algorithm, see Laskar
1988, 1990, 1993) of the spin of KOI-227 b in the conservative
case, and assuming C22 = 1.4 × 10−7 (permanent deformation),
6.6×10−7 (maximum deformation in the sub/super-synchronous
resonances), and 1.9 × 10−6 (maximum deformation in the syn-
chronous resonance).

For C22 = 1.4 × 10−7 (see Fig. 1 top), we observe that
the synchronous resonance is stable, as are the main super/sub-
synchronous resonances (η = n ± ν/2). The widths of these
three resonances are comparable, which indicates that the cap-
ture probability in any of these resonances should be similar. For
C22 = 6.6 × 10−7 (see Fig. 1 middle), we observe that the three
resonances are surrounded by a large chaotic area. However, a
stable region is still visible in each of the three resonances. This
means that the sub/super-synchronous resonances remain stable
even if the tidal deformation increases to its maximum value
after the resonant capture. Finally, for C22 = 1.9 × 10−6 (see
Fig. 1 bottom), we observe a very large chaotic area that encom-
passes all the resonances. We still observe three areas of stabil-
ity, which correspond to the synchronous resonance and to the
second-order sub/super-synchronous resonances η = n± ν). Sta-
ble capture in the synchronous resonance is thus still possible.

We conclude that in the case of KOI-227 b, stable captures
in the synchronous, and sub/super-synchronous resonances (η =
n ± ν/2) are all possible, and should have comparable probabil-
ities. However, for the highest C22 value some chaotic evolution
can be expected before the rotation enters a stable island.

4.1.2. Kepler-88 b (gaseous planet, close to resonance)

Kepler-88 b, also referred to as KOI-142 b, or as the King of
TTVs, is the planet exhibiting the largest TTV known today. The
TTV amplitude is α ≈ 16◦ (amplitude of 12 h, compared with
an orbital period of 10.95 d, see Nesvorný et al. 2013), and the
TTV period is about 630 d, thus we have ν/n ≈ 0.017. As is
true for KOI-227 b, the perturber is not directly observed. How-
ever, the TTV signal and the transit duration variation (TDV)
are sufficient in this case to obtain a unique orbital solution (see
Nesvorný et al. 2013). We reproduce in Table 3 the orbital pa-
rameters obtained by Nesvorný et al. (2013). We note that the
mutual inclination is very small (about 3◦), and we neglect it in
the following.
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Fig. 1. Spin dynamics of KOI-227 b in the conservative case, with C22 = 1.4 × 10−7 (top, permanent deformation), 6.6 × 10−7 (middle, maximum
deformation in the sub/super-synchronous resonances), and 1.9 × 10−6 (bottom, maximum deformation in the synchronous resonance). The left
column shows the main frequency η of θ(t) for different initial values of γ̇(0) (and with γ(0) = 0). The colour gives the derivative ∂η/∂γ̇(0). Blue
dots correspond to resonant motion, green dots to non-resonant regular motion, and red dots to chaotic motion. The vertical black line corresponds
to the synchronization (η = n). The two grey lines correspond to the main sub/super-synchronous resonances (η = n± ν/2). The dashed and dotted
grey lines correspond to higher order sub/super-synchronous resonances (η = n + kν/2, k = ±2, ±3). The right column shows the same colour
index (∂η/∂γ̇(0)), but both γ(0) and γ̇(0) are varied (2d maps). The vertical white line highlights the initial conditions taken in the left column
(γ(0) = 0).
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Fig. 2. Same as Fig. 1 but for Kepler-88 b. We neglect the permanent deformation of the planet (C22,r = 0), and show the spin dynamics for
C22 = 2.2 × 10−6 (top, maximum deformation in the sub/super-synchronous resonances), and 6.7 × 10−6 (bottom, maximum deformation in the
synchronous resonance).

Table 3. Parameters for Kepler-88 b, c used in this study.

Parameter [unit] b c
m [M⊕] 8.7 198.8
R [R⊕] 3.78 –
kf 0.45 –
ζ 0.25 –

C22,r 0 –
a [AU] 0.095093133 0.152955525
e 0.05593 0.05628
i [deg] 0.945 3.8
λ [deg] 6.405 252.9
$ [deg] 90.59 270.76
Ω [deg] 270 264.1

Notes. The stellar mass is 0.956 M�. The reference epoch
is 2 454 954.62702 BJD. The orbital parameters are taken from
Nesvorný et al. (2013). In our simulations we neglect the small mutual
inclination and assume the planets to be coplanar.

The bulk density of Kepler-88 b is about 0.87 g cm−3

(Nesvorný et al. 2013), which means that this planet is mainly

gaseous. Its permanent deformation is thus probably very small
and we neglect it (C22,r ≈ 0). However, the tidally induced de-
formation of the planet, if it is captured in a resonance, is not
negligible (see Appendices C and D)

C22,sync. ≈ 6.7 × 10−6, (29)

C22,sub/super ≈ 2.2 × 10−6. (30)

This corresponds to σ/n ≈ 0.018 and σ/ν ≈ 1.0 (maximum
deformation in the synchronous resonance), and σ/n ≈ 0.010
and σ/ν ≈ 0.59 (maximum deformation in the sub/super-
synchronous resonances).

Figure 2 shows the spin dynamics of Kepler-88 b in the con-
servative case and with both estimates of the deformation. For
C22 = 2.2× 10−6 (see Fig. 2 top), we observe that a large chaotic
area is surrounding the synchronous and super/sub-synchronous
resonances (η = n ± ν/2). A stable area is visible at the cen-
tre of the synchronous resonance, but not in the super/sub-
synchronous resonances. Therefore, permanent capture in non-
synchronous resonances is not possible. For C22 = 6.7×10−6 (see
Fig. 2, bottom), a very small island of stability is still present
in the synchronous resonance. Therefore, stable capture in the

A37, page 6 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730755&pdf_id=2


J.-B. Delisle et al.: Spin of TTV planets

synchronous resonance should be possible but might be difficult
to achieve.

4.2. Numerical simulations with tidal dissipation

Tidal interactions with the star have a double effect on the planet:
deformation and dissipation. The deformation occurs because
the mass distribution inside the planet adjusts to the tidal po-
tential. The dissipation occurs because this adjustment is not in-
stantaneous, so there is a lag between the perturbation and the
maximum deformation. As seen in Sect. 4.1, the deformation is
very important, since different values of the C22 can have very
different implications for the spin dynamics.

In this section we also take into account the dissipative part
of the tidal effect, which slowly modifies the spin rotation rate
of the planet, and might drive it into the different configurations
described in Sect. 4.1. In order to get a comprehensive picture
of the spin dynamics of the considered planets, and especially
to estimate capture probabilities in the different spin-orbit reso-
nances, we run numerical simulations that take into account both
the tidal deformation and the tidal dissipation.

Viscoelastic rheologies have been shown to reproduce the
main features of tidal effects (for a review of the main models,
see Henning et al. 2009). One of the simplest models of this kind
is to consider that the planet behaves like a Maxwell material,
which is represented by a purely viscous damper and a purely
elastic spring connected in series (e.g. Turcotte & Schubert
2002). In this case, the planet can respond as an elastic solid or as
a viscous fluid, depending on the frequency of the perturbation.
The response of the planet to the tidal excitation is modelled by
the parameter τ, which corresponds to the relaxation time of the
planet2.

We adopt here a Maxwell viscoelastic rheology using a dif-
ferential equation for the gravity field coefficients (Correia et al.
2014). This method tracks the instantaneous deformation of the
planet, and therefore allows us to correctly take into account the
gravitational perturbations from the companion body. The com-
plete equations of motion governing the orbital evolution of the
system in an astrocentric frame are (Rodríguez et al. 2016)

r̈1 = −µ1

r3
1

r1 + Gm2

 r2 − r1

|r2 − r1|3 −
r2

r3
2

 + f , (31)

r̈2 = −µ2

r3
2

r2 + Gm1

 r1 − r2

|r1 − r2|3 −
r1

r3
1

 +
Gm1

µ1
f , (32)

where ri is the position vector of the planet i (astrocentric coor-
dinates), f is the acceleration arising from the potential created
by the deformation of the inner planet (Correia et al. 2014)

f = −3µ1R2

2r5
1

J2r1 (33)

− 9µ1R2

r5
1

[
C22 cos 2(θ − f1) − S 22 sin 2(θ − f1)

]
r1

+
6µ1R2

r5
1

[
C22 sin 2(θ − f1) + S 22 cos 2(θ − f1)

]
k × r1,

2 τ = τv + τe, where τv and τe are the viscous (or fluid) and Maxwell
(or elastic) relaxation times, respectively. For simplicity, in this paper
we consider τe = 0, since this term does not contribute to the tidal
dissipation (for more details, see Correia et al. 2014).

and k is the unit vector normal to the orbital plane of the inner
planet. The torque acting to modify the inner planet rotation is

θ̈ = −6Gm0

ζr3
1

[
C22 sin 2(θ − f1) + S 22 cos 2(θ − f1)

]
. (34)

The inner planet is deformed under the action of self rotation
and tides. Therefore, the gravity field coefficients can change
with time as the shape of the planet is continuously adapting
to the equilibrium figure. According to the Maxwell viscoelastic
rheology, the deformation law for these coefficients is given by
(Correia et al. 2014)

J2 + τJ̇2 = kf
θ̇2R3

3Gm1
+ kf

m0

2m1

(
R
r1

)3

,

C22 + τĊ22 = C22,r +
kf

4
m0

m1

(
R
r1

)3

cos 2(θ − f1) , (35)

S 22 + τṠ 22 = −kf

4
m0

m1

(
R
r1

)3

sin 2(θ − f1) ,

where kf is the fluid second Love number for potential. The
relaxation times τ are totally unknown for exoplanets, but if
the tidal quality dissipation Q-factor can be estimated, then an
equivalent τ can be obtained (see Correia et al. 2014). To cover
all possible scenarios, in our numerical simulations we adopt a
wide spectrum of τ values: log10 τyr = −5 to 4, with step 1.

4.2.1. KOI-227 b (rocky planet, in resonance)

For rocky planets, such as the Earth and Mars, we have Q = 10
(Dickey et al. 1994) and Q = 80 (Lainey et al. 2007), respec-
tively. We then compute for the Earth τ = 1.6 d, and for Mars
τ = 14.7 d. However, in the case of the Earth, the present
Q-factor is dominated by the oceans, the Earth’s solid body Q
is estimated to be 280 (Ray et al. 2001), which increases the re-
laxation time by more than one order of magnitude (τ = 46 d).
Although these values provide a good estimation for the av-
erage present dissipation ratios, they appear to be inconsistent
with the observed deformation of the planets. Indeed, in the case
of the Earth, the surface post-glacial rebound due to the last
glaciation about 104 yr ago is still going on, suggesting that the
Earth’s mantle relaxation time is something like τ = 4400 yr
(Turcotte & Schubert 2002). Therefore, we conclude that the de-
formation timescale of rocky planets can range from a few days
up to thousands of years.

In our numerical simulations we use the initial conditions
from Table 2. The initial rotation period is set at 15.5 d, which
corresponds to θ̇/n ≈ 1.14. Since the libration frequency of KOI-
227 b is ν/n ≈ 0.011, the initial rotation rate is completely out-
side the resonant area, which is bounded by θ̇/n ≤ 1+ν/n ≈ 1.01
(Fig. 1). For any τ value, the rotation rate of the planet decreases
due to tidal effects until it approaches this area, where multiple
spin-orbit resonances are present.

Capture in resonance is a stochastic process. Therefore, for
each τ value we ran 1000 simulations with slightly different
initial rotation rates. The step ∆θ̇ between each initial condi-
tion was chosen such that the moment at which each simulation
crosses the resonance spreads equally over one eccentricity cy-
cle. In Fig. 3 we show some examples of evolution for different
τ values. The evolution timescale changes with τ because the
Q-factor was also modified.

For τ ≤ 10−2 yr, the spin is in the low frequency regime
(τn � 1), which is usually known as the viscous or linear (e.g.
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Fig. 3. Examples of the spin evolution of KOI-227 b and corresponding global C22 value for different τ values. We use the initial conditions from
Table 2, and the initial rotation period is set at 15.5 d. The green lines give the position of the spin-orbit resonances n, n ± ν/2, and n ± ν.

Singer 1968; Mignard 1979). As a consequence, the rotation rate
evolves into pseudo-synchronous equilibrium (e.g. Correia et al.
2014)

θ̇/n = 1 + 6e2 + O(e4). (36)

The average eccentricity of KOI-227 b’s orbit is 0.057, which
gives a value for the pseudo equilibrium of 〈θ̇/n〉 ≈ 1.019 3. This
3 The average rotation rate for an oscillating eccentricity is actually
given by a value slightly higher than that obtained with expression (36)
using the average value of the eccentricity (see Correia 2011).

value is already very close to the synchronous resonance, but
since the libration width is σ/n ≈ 0.002 (Eq. (26)), we are still
outside the resonant area. Therefore, in this regime initial pro-
grade rotations never cross any spin-orbit resonances.

For 10−1 ≤ τ ≤ 101 yr, the spin is in a transition of fre-
quency regime (τn ∼ 1). The rotation rate still evolves into a
pseudo-synchronous equilibrium, but its value is below that pro-
vided by expression (36), and lies inside the libration width of
the synchronous resonance (see Fig. 4 in Correia et al. 2014).
As a result, for these τ values the spin is always captured in the
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Fig. 4. Different final spin evolution of KOI-227 b and corresponding global C22 value for τ = 104 yr. We use the initial conditions from Table 2,
and the initial rotation period is set at 15.5 d. The green lines give the position of the spin-orbit resonances n, n ± ν/2, and n ± ν.

synchronous resonance. Capture in higher order spin-orbit reso-
nances is possible but with a very low probability (<1%); we did
not obtain any examples in our simulations.

For τ ≥ 102 yr, the spin is in the high frequency regime
(τn � 1). In this regime the tidal torque has multiple equi-
libria that coincide with the spin-orbit resonances (see Fig. 4
in Correia et al. 2014). Therefore, capture in the asynchronous
higher order resonances becomes a real possibility. In Table 4
we list the final distribution in the different resonances for each
τ value. We observe that as τ increases, the number of captures
in higher order resonances also increases. Indeed, for high τ val-
ues, the C22 is able to retain its tidal deformation (Eqs. (27) and
(28)) for longer periods of time, increasing the libration width of
the individual resonances. When the C22 reaches its maximum
tidal deformation, some individual resonances overlap, which re-
sults in chaotic motion around these resonances, including syn-
chronous resonance (Fig. 1). An interesting consequence is that
for τ = 104 yr, the sub-synchronous resonance can be reached
after some wandering in this chaotic zone. In Fig. 4 we show
four examples of capture in each resonance for this τ value.

4.2.2. Kepler-88 b (gaseous planet, close to resonance)

For gaseous planets we have Q ∼ 104 (Lainey et al. 2009, 2012),
which gives τ values of a few minutes assuming that most of the
dissipation arises in the convective envelope. However, the cores
of these planets also experience tidal effects, which in some

Table 4. Capture probabilities in spin-orbit resonances (in percent) for
KOI-227 b, using different τ values.

η − n τ (yr)
101 102 103 104

ν − − 3.8 2.3
ν/2 − 57.3 74.2 31.4
0 100.0 42.7 22.0 56.7
−ν/2 − − − 9.6

cases can be equally strong (Remus et al. 2012; Guenel et al.
2014). In addition, other tidal mechanisms, such as the excita-
tion of inertial waves, are expected to take place, which also en-
hance the tidal dissipation (e.g. Ogilvie & Lin 2004; Favier et al.
2014). Therefore, the full deformation of gaseous planets may
be of the order of a few years or even decades (for a review see
Socrates et al. 2012).

In our numerical simulations we use the initial conditions
from Table 3. The initial rotation period is set at 10 d, which cor-
responds to θ̇/n ≈ 1.1. Since the libration frequency of Kepler-
88 b is ν/n ≈ 0.017, the initial rotation rate is completely outside
the resonant area, which is bounded by θ̇/n ≤ 1 + ν/n ≈ 1.02
(Fig. 2). For any τ value, the rotation rate of the planet decreases
due to tidal effects until it approaches this area, where multiple
spin-orbit resonances are present. In Fig. 5 we show some exam-
ples of evolution for different τ values.
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Fig. 5. Examples of the spin evolution of Kepler-88 b and corresponding
global C22 value for different τ values. We use the initial conditions from
Table 3, and the initial rotation period is set at 10 d. The green lines give
the position of the spin-orbit resonances n, n ± ν/2, and n ± ν.

As in the case of KOI-227 b, for τ ≤ 10−2 yr, the spin is
in the low frequency regime (τn � 1), and the rotation rate
evolves into the pseudo-synchronous equilibrium (Eq. (36)). The
average eccentricity of Kepler-88 b orbit is 0.065, which gives
for the pseudo equilibrium 〈θ̇/n〉 ≈ 1.025. The libration width
for a maximum value of C22 is σ/n ≈ 0.008 (Eq. (27)), so in
this regime initial prograde rotations never cross any spin-orbit
resonances (Fig. 5, top). However, for 10−1 ≤ τ ≤ 100 yr, the
equilibrium value is already inside the libration width of the

synchronous resonance. Thus, for these τ values the spin can
be captured in the synchronous resonance (Fig. 5, middle).

For τ ≥ 101 yr the spin is already in the high frequency
regime, which means that capture in asynchronous resonances
could be possible. However, the equilibrium C22 ≈ 6.7 × 10−6

of Kepler-88 b is large enough so that the libration zones of
individual resonances merge (Eq. (29)). As a consequence, as
explained in Sect. 4.1.2, a large chaotic zone around the syn-
chronous resonance is expected. Indeed, in all simulations we
observe a chaotic behaviour for the spin (Fig. 5, bottom). This
result is very interesting as it shows that the rotation of gaseous
planets (with a residual C22 = 0) can also be chaotic when its
orbit is perturbed by a companion planet.

In Fig. 2 we observe that a small stable synchronous island
subsists at the middle of the chaotic zone. Therefore, we cannot
exclude that after some chaotic wobble the spin finds a path into
this stable region. Nevertheless, in our numerical experiments
we never observed a simulation where the spin is permanently
stabilized in the synchronous resonance. From time to time the
rotation appears to enter the synchronous island, but then the
C22 grows to a value slightly higher than the theoretical estima-
tion given by expression (29). When the maximum deformation
is achieved the spin suddenly returns into the chaotic zone. In-
deed, for C22 > 6.7×10−6 the small resonant island might totally
disappear and the spin might always remain chaotic.

5. Discussion

We show that close-in planets inside or close to orbital reso-
nances undergo perturbations of their spins. For small eccentric-
ities and weak orbital perturbations, the only spin equilibrium
is the synchronous spin-orbit resonance, for which the rotation
period equals the orbital revolution period. Tidal dissipation nat-
urally drives the spin of the planet into this unique equilibrium,
which is why close-in planets are usually assumed to be tidally
synchronized.

When the planet-planet perturbations are significant, we
demonstrate that new sub-synchronous and super-synchronous
spin-orbit resonances appear, even for quasi-circular orbits.
Moreover, for planets observed to transit, the TTVs provide the
location (TTV period) and size (TTV amplitude) of these new
resonances. For planets undergoing strong TTVs, the spin could
be tidally locked in these asynchronous states or could even be
chaotic.

We apply our modelling to KOI-227 b and Kepler-88 b, and
run numerical simulations of the spin of these planets. We find
that the spin of KOI-227 b has a non-negligible probability of
being locked in an asynchronous resonance, while the spin of
Kepler-88 b could be chaotic. In the case of KOI-227 b, we as-
sume the planet to be mainly rocky since the bulk density found
by Nesvorný et al. (2014) in the best fitting solution is very high
(18.6 g cm−3). However, the mass of the planet is not well con-
strained and this planet could have a non-negligible gaseous en-
velope. For Kepler-88 b (gaseous planet), in the most realistic
cases, the spin is always locked in the (pseudo-)synchronous
state. To observe a chaotic evolution we need the relaxation
timescale (τ, see Sect. 4.2) to be at least 10 yr. This value is
very typical for rocky planets, but probably overestimated for
a gaseous planet such as Kepler-88 b. Nevertheless, these two
cases illustrate very well what the spin evolution of smaller rocky
planets with strong TTVs could be. We note that the planets with
the strongest TTVs found in the literature (Nesvorný et al. 2012,
2013, 2014) are mostly giant planets, probably due to observa-
tional biases. Indeed, individual transits of small planets are very
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noisy, and these planets are usually fitted by phase-folding the
light-curve. This makes small planets undergoing strong TTVs
particularly challenging to detect.

For the sake of simplicity of the model we assume copla-
nar orbits, no obliquity, and low eccentricities for both planets.
However, this is not a limitation for the application to observed
systems, as numerical simulations including these effects can be
performed. In particular, adding some inclination/obliquity will
increase the number of degrees of freedom and probably ease the
chaotic behaviour of the spin (Wisdom et al. 1984; Correia et al.
2015).
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Appendix A: Near-resonance case

In this appendix we show how the quasi-periodic decomposi-
tion of Λi, λi (see Eqs. (13), (15)) can be obtained in the near-
resonance case. The non-resonant case is the easiest to deal with
since the classical secular approximation can be used. The per-
turbative part of the Hamiltonian (see Eq. (8)) can be expanded
in Fourier series of the mean longitudes

H1 =
∑
l∈Z2

Cl(Λi,Di, $i)ei(l1λ1+l2λ2). (A.1)

The secular evolution of the system is obtained by averaging
this Hamiltonian over the fast angles λi (i = 1, 2). This aver-
aging transformation is obtained by a change of coordinates that
is close to identity. We denote by Λ′i , λ

′
i , D′i , and $′i (i = 1, 2)

the new coordinates, by H ′ the new Hamiltonian, and by W the
generating Hamiltonian of the transformation. To first order in
the planet masses, the change of coordinates reads

λi = λ′i + {W, λ′i} = λ′i +
∂W
∂Λ′i

, (A.2)

Λi = Λ′i + {W,Λ′i} = Λ′i −
∂W
∂λ′i

, (A.3)

$i = $′i + {W, $′i} = $′i +
∂W
∂D′i

, (A.4)

Di = D′i + {W,D′i} = D′i −
∂W
∂$′i

, (A.5)

and the HamiltonianH ′ is given by

H ′0 = H0, (A.6)
H ′1 = H1 + {W,H0}, (A.7)

with

H ′1 = 〈H1〉 = C0, (A.8)

and where the braces denote the Poisson brackets. We thus have

{W,H0} = 〈H1〉 − H1 = −
∑

l∈Z2\0
Cleil.λ, (A.9)

which is called the homological equation and whose solution is

W =
∑

l∈Z2\0

Cl

il.n
eil.λ, (A.10)

where ni (i = 1, 2) are the unperturbed Keplerian mean-motions
of the planets.

The secular HamiltonianH ′ no longer depends on the mean
longitudes λ′i , which implies that the coordinates Λ′i are con-
stants of motion. The long-term variations of D′i (i.e. eccentric-
ities), $′i , and λ′i , can be solved by using the Hamiltonian H ′.
However, in this study, we are interested in the evolution of the
system at shorter timescales and will neglect this secular evo-
lution. We thus assume that D′i and $′i are constants and that
λ′i = λ′i,0 + nit. In order to obtain the real evolution of the sys-
tem, we need to revert to the original coordinate system using
Eqs. (A.2)–(A.5). In particular, we have

Λi = Λ′i −
∑

l∈Z2\0

liCl

l.n
eil.λ′ . (A.11)

Let us consider a system that is close to a k2:k1 resonance but
outside of it. The combination ν = k2n2 − k1n1 is thus small (but

not zero) which enhances the corresponding terms in the change
of coordinates (small divisor). Keeping only this enhanced term,
we have

Λi ≈ Λ′i +
2ki

ν
|Ck | cos(νt + φi), (A.12)

with k = (−k1, k2), Ck = (−1)i+1|Ck |eiφi , and C−k is its complex
conjugate (by construction). The degree of the resonance k2:k1 is
denoted q = k2 − k1. The coefficient Ck is of order q in eccentric-
ity (D’Alembert rule), and can be written (e.g. Laskar & Robutel
1995)

Ck =
Gm1m2

a2
eqck, (A.13)

where e = max(e1, e2) and ck is of the order of unity. Finally, we
have (see Eq. (16))

ν = k2n2 − k1n1, (A.14)

α = 6ki|Ck | ni

Λi,0ν2 ∼
mp

m0
eq

(ni

ν

)2
, (A.15)

where mp is the mass of the perturbing planet. We observe that
when the system is very close to the resonance separatrix, ν � n,
the amplitude of oscillations increases (see Eq. (A.15)).

Appendix B: Resonant case

In this appendix we show how the quasi-periodic decomposition
of Λi, λi (see Eq. (13)) can be obtained in the resonant case. The
resonant case arises when the small divisor of Eq. (A.11) is too
small and the averaging technique of Appendix A is no longer
valid. However, the non-resonant terms can still be averaged out
using the same procedure (see Appendix A). The resonant sec-
ular Hamiltonian H ′ is constructed such that resonant terms (of
the form p(k2λ2 − k1λ1)) are kept,

H ′1 =
∑
p∈Z

C(−pk1,pk2)eip(k2λ
′
2−k1λ

′
1). (B.1)

The solution to the homological equation (Eq. (A.9)) is in this
case

W =
∑

l∈Z2,l,(−pk1,pk2)

Cl

il.n
eil.λ, (B.2)

and the resonant Hamiltonian reads

H ′ = H ′0 +
∑
p∈Z

C(−pk1,pk2)eip(k2λ
′
2−k1λ

′
1), (B.3)

where the coefficients Cl are functions of Λ′i , D′i , $
′
i . In the fol-

lowing we neglect the secular evolution of the eccentricities and
longitudes of periastron as in the non-resonant case (see Ap-
pendix A). Moreover, the coefficients Cl have a weak depen-
dency over Λ′ (e.g. Delisle et al. 2014), and in first approxima-
tion we assume they are constant. According to Eq. (A.13), we
have

C(−pk1,pk2) =
Gm1m2

a2
e|p|qc(−pk1,pk2), (B.4)

where q = k2 − k1 is the degree of the resonance, and c(−pk1,pk2) is
of the order of unity. In a first approximation, we only keep the
terms of order q in eccentricity, and obtain the Hamiltonian

H ′ = H ′0 + |C−k1,k2 | cos(k2λ
′
2 − k1λ

′
1 + φ), (B.5)
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where C0 has been dropped since we assumed it to be constant.
We introduce the canonical change of coordinates

ψ = k2λ
′
2 − k1λ

′
1 + φ, J =

Λ′1,0 − Λ′1
k1

, (B.6)

ξ = λ′2, Γ = Λ′2 +
k2

k1
Λ′1. (B.7)

Since H ′ only depends on the angle ψ and not on ξ, Γ is a con-
served quantity. We now develop the Keplerian partH ′0 in power
series of J. Constant terms can be neglected since they do not
contribute to the dynamics. Moreover, the first order terms can-
cel out for a resonant system. We thus obtain, up to second order
in J,

H ′0 ≈ −K2J2, (B.8)

with

K2 =
3
2

(
k2

1
n1

Λ1,0
+ k2

2
n2

Λ2,0

)
· (B.9)

With this approximation, the Hamiltonian (B.5) reads

H ′ = −K2J2 + |C(−k1,k2)| cosψ, (B.10)

which is the Hamiltonian of a simple pendulum. The frequency
of libration is given by

ν =
√

2K2|Ck |π2 K
(
sin

(
ψmax

2

))
, (B.11)

where K is the complete elliptical integral of the first kind, and
the amplitude of libration ψmax is in the range [0, π]. For small
amplitude oscillations, we have

ν =
√

2K2|Ck | ∼ n
√

mp

m0
eq,

ψ = ψmax sin(νt + ζ), (B.12)

J = −νψmax

2K2
cos(νt + ζ),

and from Eqs. (B.6), (B.7), we obtain

Λ′1 = Λ′1,0 − k1J = Λ′1,0 + k1
νψmax

2K2
cos(νt + ζ), (B.13)

Λ′2 = Λ′2,0 + k2J = Λ′2,0 − k2
νψmax

2K2
cos(νt + ζ). (B.14)

In principle, we should revert to the original coordinate system
(coordinates without primes), as in the non-resonant case (see
Appendix A). However, in the resonant case, there are no en-
hanced terms (with small divisors) in the change of coordinates
W, since we kept these terms in the secular HamiltonianH ′. We
thus have Λi ≈ Λ′i . Finally, from Eqs. (16), (B.13), (B.14), we
deduce

α =
3
2

kini

K2Λi,0
ψmax

=
1/Λi,0

k1/Λ1,0 + k2/Λ2,0
ψmax

≈ n1/3
i /mi

k1n1/3
1 /m1 + k2n1/3

2 /m2
ψmax. (B.15)

In particular, for m1 � m2, we have α = ψmax/k1 for the inner
planet (1), and α = 0 for the outer planet (2). On the contrary, for
m1 � m2, we have α = 0 for the inner planet, and α = ψmax/k2
for the outer one. This is not surprising as the less massive planet
undergoes the strongest perturbations.

Appendix C: Permanent and tidally induced
deformation

In this appendix we show how to estimate the width of the syn-
chronous resonance (σ) from the known properties of the plan-
ets. From Eq. (6), we have

σ

n
=

√
12 C22/ζ . (C.1)

The internal structure factor ζ can be estimated from kf through
the Darwin-Radau equation (e.g. Jeffreys 1976)

ζ =
2
3

1 − 2
5

√
4 − kf

1 + kf

 · (C.2)

We have ζ = 2/5 (kf = 3/2) for a homogenous sphere, ζ ≈ 1/3
for rocky planets, and ζ ≈ 1/4 for gaseous planets.

The deformation of the planet (C22) has two components, the
permanent deformation (C22,r) due to the intrinsic mass reparti-
tion in the planet and the tidally induced deformation (C22,t). The
permanent asymmetry of the mass repartition can be roughly es-
timated from the mass and radius of a rocky planet, and using
observations of the solar system planets (see Yoder 1995)

C22,r ∼ 10−6
(

R
R⊕

)5 (
m

M⊕

)−5/2

· (C.3)

For gaseous planets, the permanent asymmetry is very weak
(C22,r ≈ 0).

The tidally induced deformation corresponds to the adjust-
ment of the planet’s mass distribution to the external gravita-
tional potential. This deformation is not instantaneous, and the
relaxation time (τ, see Sect. 4.2) depends on the planet’s inter-
nal structure. If the deformation were instantaneous, the C22,t
coefficient would be given by (Eq. (35) with τ = 0, see also
Correia & Rodríguez 2013)

C22,t,inst. =
kf

4
m0

m

(R
r

)3

cos 2(θ − f ), (C.4)

where we assume the obliquity to be negligible. This expression
is very similar to Eq. (1), and using the same approximations, we
obtain an expression very similar to Eq. (20):

C22,t,inst. = C(0)
22,t

[
cos 2γ

+
∑

j

α j

(
1 − ν j

n

)
cos 2

(
γ +

ν jt + φ j

2

)
(C.5)

+
∑

j

α j

(
1 +

ν j

n

)
cos 2

(
γ − ν jt + φ j + π

2

) ]
with

C(0)
22,t =

kf

4
m0

m

(
R
a0

)3

· (C.6)

We assume in the following that the relaxation time τ is much
longer that the variations of C22,t,inst., such that the actual C22,t of
the planet is the mean value of C22,t,inst. (see Eq. (35)):

C22,t =
〈
C22, t, inst.

〉
. (C.7)

From Eq. (C.5), we deduce that as long as the spin is outside
of any resonance, the tidal deformation average out (C22,t = 0).
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Therefore, before the resonant capture, the C22 coefficient of the
planet reduces to its permanent deformation (C22,r).

If the spin is locked in the synchronous resonance, the aver-
aged tidally induced deformation reaches

C22,t = C(0)
22,t (C.8)

when the amplitude of libration is small (sin 2γ ≈ 0, cos 2γ ≈
1). Similarly, if the spin is locked in a sub/super-synchronous
resonance, we have

C22,t = α j

(
1 ± ν j

n

)
C(0)

22,t (C.9)

at the centre of the resonance.
Let us apply this reasoning to KOI-227 b (rocky planet). We

obtain C22,r = 1.4 × 10−7 for the permanent deformation (see
Eq. (C.3)). The tidal deformation is C22,t = 2.6 × 10−6 at the
centre of the synchronous resonance (see Eq. (C.8)), and C22,t =
7.9 × 10−7 at the centre of the sub/super-synchronous resonance
(see Eq. (C.9)). The maximum deformation (C22 = C22,r + C22,t)
is thus 2.8 × 10−6 in the synchronous case, and 9.3 × 10−7 in the
sub/super-synchronous case.

In the case of Kepler-88 b (gaseous planet) we obtain C22,r =
0, C22 = C22,t = 2.0 × 10−5 for the synchronous resonance,
and C22 = C22,t = 5.6 × 10−6 for the sub/super-synchronous
resonances.

We note that all these values assume that the amplitude of
libration in the resonance is vanishing. We show in Appendix D
that forced oscillations are non-negligible and significantly re-
duce the tidal deformation.

Appendix D: Forced oscillations and tidal
deformation

In this appendix we derive the amplitude of forced oscillations in
the synchronous and sub/super-synchronous resonances, as well
as their implications on the tidal deformation of the planet. We
assume that a single term is dominating the planet’s TTVs, with
amplitude α, and frequency ν � n. We neglect here the semi-
major axis variations since their contribution to the spin evolu-
tion is of order ν/n compared to the contribution of the mean
longitude variations (see Eqs. (15), (19), and (20)).

D.1. Synchronous case

We first assume that the spin of the planet is locked in the syn-
chronous resonance. From Eqs. (3) and (15) we deduce

γ̈ ≈ −σ
2

2
sin 2

(
γ + α sin(νt + φ)

)
, (D.1)

where (see Eq. (C.1))

σ2 = 12C22n2/ζ (D.2)

and (see Eq. (C.4))

C22 = C22,r + C(0)
22,t

〈
cos 2

(
γ + α sin(νt + φ)

)〉
. (D.3)

We introduce h = γ + α sin(νt + φ), such that

ḧ = −αν2 sin(νt + φ) − σ
2

2
sin 2h, (D.4)

σ2 = σ2
r + σ2

t,0 〈cos 2h〉 , (D.5)

with

σ2
r = 12C22,rn2/ζ, (D.6)

σ2
t,0 = 12C(0)

22,tn
2/ζ. (D.7)

Equations (D.4), (D.5) can be developed in power series of h

ḧ = −αν2 sin(νt + φ) − σ2
(
h − 2

3
h3 +

2
15

h5 + ...

)
, (D.8)

σ2 = σ2
r + σ2

t,0

〈
1 − 2h2 +

2
3

h4 + ...

〉
. (D.9)

At first order (linearized equation), the forced solution is simply

hlin. =
ν2

ν2 −
(
σ2

r + σ2
t,0

)α sin(νt + φ), (D.10)

which is of order α. At higher orders, odd harmonics of the
forced frequency ν appears, and h takes the form

h =
∑

k∈2N+1

hk sin k(νt + φ), (D.11)

where hk is of order αk. We replace Eq. (D.11) in Eqs. (D.8) and
(D.9), and truncate the resulting expression at a given order N in
α. By identifying terms of frequency kν (k ∈ [1,N]), we obtain
N polynomial equations on the coefficients h1,...,hN . Solving this
set of equations allows us to determine the coefficients hi, as well
as the corresponding C22 value. The forced oscillations of γ are
then given by

γforced =
∑

k∈2N+1

γk sin k(νt + φ), (D.12)

with γ1 = h1 − α, γk = hk (k > 1).
Applying this reasoning to KOI-227 b, we obtain C22,t =

1.8 × 10−6 (instead of 2.6 × 10−6) and C22 = C22,t + C22,r =
1.9 × 10−6 (instead of 2.8 × 10−6). The forced amplitude at fre-
quency ν is γ1 = 17◦, while the amplitudes of harmonics (3ν,
etc.) decrease rapidly (γk+2/γk ∼ 10−2). In the case of Kepler-
88 b, we obtain C22 = C22,t = 6.7 × 10−6 (instead of 2.0 × 10−5)
and a forced amplitude of 36◦ (at frequency ν). As was true
for KOI-227 b, for Kepler-88 b the amplitudes of harmonics de-
crease rapidly.

D.2. Sub/super-synchronous case

We now consider the same effect (forced oscillations at fre-
quency ν and its harmonics) but for the sub/super-synchronous
resonances. We assume that the spin is locked in one of these
resonances, such that

γ = ±νt + φ±
2

+ γforced, (D.13)

with φ+ = φ + π, φ− = φ. As for the synchronous resonance, we
introduce h = γforced + α sin(νt + φ) such that

ḧ = −αν2 sin(νt + φ) ∓ σ
2

2
sin(2h ± (νt + φ)), (D.14)

σ2 = σ2
r ± σ2

t,0 〈cos(2h ± (νt + φ))〉 . (D.15)
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As we did for the synchronous case, these expressions can be
developed in power series of h. Replacing h by

h =
∑

k∈2N+1

hk sin k(νt + φ), (D.16)

and truncating at a given order N in α (hk being of order αk), we
obtain a set of N polynomial equations on h1, ..., hN . We then
solve for hi and determine the corresponding C22 value.

In the case of KOI-227 b, we obtain C22,t = 5.2 × 10−7 (in-
stead of 7.9× 10−7) and C22 = 6.6× 10−7 (instead of 9.3× 10−7),
with a forced amplitude of γ1 = −6◦ (at frequency ν). The neg-
ative sign means that the forced oscillations are dephased by an
angle π with respect to the TTV signal. In the case of Kepler-
88 b, we find C22 = C22,t = 2.2 × 10−6 (instead of 5.6 × 10−6),
with a forced amplitude of −10◦. As in the case of the syn-
chronous resonance, the amplitudes of harmonics (3ν, etc.) de-
crease rapidly for both planets (γk+2/γk ∼ 10−3).
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