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ABSTRACT

We wish to constrain the possible contribution of a magnetohydrodynamic disk wind (DW) to the HH212 molecular jet. We mapped
the flow base with ALMA Cycle 4 at 0′′.13∼ 60 au resolution and compared these observations with synthetic DW predictions. We
identified, in SO/SO2, a rotating flow that is wider and slower than the axial SiO jet. The broad outflow cavity seen in C34S is not
carved by a fast wide-angle wind but by this slower agent. Rotation signatures may be fitted by a DW of a moderate lever arm launched
out to ∼40 au with SiO tracing dust-free streamlines from 0.05−0.3 au. Such a DW could limit the core-to-star efficiency to ≤50%.
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1. Introduction

The question of angular momentum extraction from protoplane-
tary disks (hereafter PPDs) is fundamental in understanding the
accretion process in young stars and the formation conditions of
planets. Pioneering semi-analytical work, followed by a grow-
ing body of magnetohydrodynamic (MHD) simulations, have
shown that when a significant vertical magnetic field is present,
MHD disk winds (hereafter DWs) can develop that extract some
or all of the angular momentum flux required for accretion (see
e.g. Ferreira et al. 2006; Béthune et al. 2017; Zhu & Stone 2017,
and references therein). The wind dynamics depend crucially on
the disk magnetization, surface heating, and ionization structure,
which are still poorly known in PPDs. Observing signatures of
DWs would thus provide unique clues to these properties.

Spatially resolved rotation signatures suggestive of a DW
were first reported in the intermediate velocity component (V '
50 km s−1) surrounding the DG Tau optical atomic jet by
Bacciotti et al. (2002). Their variation with radius was found to
be in excellent agreement with synthetic predictions for an ex-
tended DW that extracts all of the accretion angular momentum
out to a radius of 3 au (Pesenti et al. 2004). The inner regions
of the same DW could also explain the speed of the fast ax-
ial jet (Ferreira et al. 2006). However, rotation signatures in this
faster component are less clear (e.g. Louvet et al. 2016) because
of the limited spectral resolution and wavelength accuracy in the
optical. Sub/mm interferometric observations do not have this
limitation and have provided clear evidence for flow rotation in
several younger protostellar sources, although at lower speeds
than the axial jets, suggesting ejection from ∼5−25 au in the
disk (Launhardt et al. 2009; Matthews et al. 2010; Bjerkeli et al.
2016; Hirota et al. 2017). Thermo-chemical models show that

dusty DWs launched from this range of radii would indeed re-
main molecular despite magnetic acceleration (Panoglou et al.
2012). These models would also reproduce all characteristics
of the ubiquitous broad (±40 km s−1) H2O line components re-
vealed by Herschel in low-mass protostars (Yvart et al. 2016).

More stringent tests of the DW paradigm require high an-
gular resolution. Using ALMA observations with an 8 au beam,
Lee et al. (2017a) recently detected evidence for rotation in fast
SiO jet knots from the HH212 protostar in the same sense as the
rotating envelope. Assuming steady magneto-centrifugal launch-
ing and taking the observed gradient as a direct measure of spe-
cific angular momentum, these authors inferred a launch radius
of 0.05+0.05

−0.02 au, which suggested that the SiO jet arises from the
inner disk edge. Here we present Cycle 4 ALMA observations
of the same source at 0′′.13 ∼ 60 au resolution (for d = 450 pc),
which reveal rotation in SO2 and SO in the same sense as the SiO
jet, but in a wider structure surrounding it. We compare the ob-
servations with synthetic predictions for extended DWs to con-
strain the possible range of launch radii and magnetic lever arm,
and we discuss the major implications of our findings.

2. Observations

HH212 was observed in Band 7 with ALMA between 6 October
and 26 November 2016 (Cycle 4) using 44 antennas of the 12 m
array with a maximum baseline of 3 km. The SO2(82,6−71,7) line
at 334.67335 GHz was observed with a spectral resolution of
1 km s−1 and the lines of SO(98−87) 346.52848 GHz, SiO(8−7)
347.33063 GHz, C34S(7−6) 337.39669 GHz, and C17O(3−2)
337.06113 GHz with a spectral resolution of 0.1 km s−1 (re-
binned to 0.44 km s−1). Calibration was carried out following
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Fig. 1. Panel a: HH212 inner region viewed by ALMA Cycle 4. The SiO jet at |VLSR − Vsys|= 5−10 km s−1 (blue and red contours), C17O rotating
envelope at |VLSR−Vsys|= 1.5 km s−1 (pink and turquoise), and cavity walls in C34S at |VLSR−Vsys|≤ 0.6 km s−1 (green, with parabolic fits in dashed
magenta) are shown. First contour and step are 6σ and 18σ for SiO, 6σ and 6σ for C17O, 4σ and 4σ for C34S, where σ is the rms noise level. The
source is shown as a white cross and beam sizes are in the bottom left corner. Panel b: zoom-in on blue and red SO2 at ±2 km s−1 shows a slow
outflow rotating in the same sense as the C17O disk. First contour and step are 7σ. White segments show the positions of PV cuts in Fig 2. Green
squares show inner SiO knots imaged by Lee et al. (2017a); the yellow ellipse marks the centrifugal barrier radius at r ∼ 45 au and the height of
the COM-rich disk atmosphere at z± 20 au (Lee et al. 2017c). Images are rotated such that the vertical axis corresponds to the jet axis at PA = 22◦.

standard procedures under the CASA environment using quasars
J0510+1800, J0552+0313, J0541–0211, and J0552–3627. Spec-
tral line imaging was performed in CASA with natural weight-
ing for C34S to increase sensitivity, resulting in a clean-beam
0.19′′ × 0.17′′ (PA = −76◦), and with a R = 0.5 robust factor for
the other lines, resulting in a beam of .15′′ × 0.13′′ (PA ∼ −89◦).
The rms noise level is σ ∼ 1 mJy/beam in SO2 in 1 km s−1 chan-
nels, andσ ∼ 1.5 mJy/beam in 0.44 km s−1 channels for the other
lines. Further data analysis was performed using the GILDAS1

package. Positions are given with respect to the continuum peak
at α(J2000) = 05h 43m 51s.41, δ(J2000) = −01◦ 02′ 53′′.17 (Lee
et al. 2014) and velocities are with respect to a systemic velocity
Vsys = 1.7 km s−1 (Lee et al. 2014).

3. Results and discussion

3.1. Evidence for a rotating wide-angle flow in SO and SO2

Figure 1a presents a view of the various components of the
HH 212 outflow system from our Cycle 4 data. The chemi-
cal stratification first noted by Codella et al. (2014) in Cycle 0
is even more striking: SiO traces the narrow high-velocity jet,
while C34S outlines the dense walls of a broad outflow cavity,
and C17O traces the rotating equatorial envelope and disk. We
find that the cavity walls may be fitted by a parabolic shape
z = r2/a + 0.05′′ with a = 0.9′′ in the north and a = 1′′ in
the south (slightly less open than sketched in Lee et al. 2017c).

Figure 1b presents a zoom on SO2 emission within 0.5′′ =
250 au of the source. This tracer, together with SO, was found
to be abundant in the HH 212 jet on a larger scale (Podio et al.
2015). Our data resolve its bright emission near the base, reveal-
ing a rotation signature in the form of a transverse shift '±0.05′′
between redshifted and blueshifted emission at ±2 km s−1 from
systemic, in the same (east-west) sense in both lobes and in the
same sense as the envelope rotation in Fig. 1a. The emission

1 http://www.iram.fr/IRAMFR/GILDAS

peaks at a typical distance of 0.1−0.15′′, well above the disk at-
mosphere at z ' ±0.05′′ traced by complex organic molecules
(Lee et al. 2017c; Bianchi et al. 2017) and extends out to ± 0.3′′
along the jet axis, indicating that this rotating material is out-
flowing. In the equatorial plane, the emission appears to origi-
nate from a region of typical radius '0.1′′ = 45 au, i.e., similar
to the centrifugal barrier (herafter CB) estimated from HCO+

infall kinematics, inside which the disk is expected to become
Keplerian (Lee et al. 2017c). Channel maps (see Fig. A.1) fur-
ther show that this rotating outflow has an onion-like velocity
structure with increasing width at progressively lower veloci-
ties, which eventually fills up the base of the cavity. The SO
emission has a similar behavior (see Fig. A.2). Figure 2 shows
transverse position-velocity (PV) cuts and line profiles of SO2
and SO at ±70 au from the midplane (beyond 1 beam diam-
eter, to avoid any contamination by infall). Rotation is clearly
apparent as a tilt in the PV cuts. The velocity decrease away
from the jet axis is also visible. The centroid velocity in on-axis
line profiles, ∼1−2 km s−1, yields a mean deprojected speed of
Vp ' 20−40 km s−1 for an inclination i ' 87◦ (Claussen et al.
1998). Hence, the outflow cavity is not carved by a fast wide-
angle wind at ∼100 km s−1, but by a slower component.

3.2. Comparison with MHD disk wind models

We compared the PV cuts and line profiles with synthetic pre-
dictions for steady-state, axisymmetric, self-similar DWs from
Keplerian disks, calculated following the equations described
in Casse & Ferreira (2000). Two key properties of the MHD
solution affect the predictions. First, the magnetic lever arm pa-
rameter λ ' (rA/r0)2, where rA is the Alfvén radius along the
streamline launched from r0, which determines the extracted an-
gular momentum and poloidal acceleration. Second, the maxi-
mum widening W = rmax/r0 reached by the streamline, which
controls the flow transverse size. In order to limit the number
of free parameters, we kept a fixed inclination i = 87◦ and stel-
lar mass M? = 0.2 M� (Lee et al. 2017c). The minimum and
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Gaussian profile. For knot S1, the emission at ∼ 4–12 au is unlikely to be from 
the jet itself and is thus excluded from the fitting. The deconvolved width is the 
width deconvolved with the beam size of ∼ 8 au (0.02″ ). Knots N2, N3 and S3 
have a deconvolved width greater than the beam size. Knots N1, S1 and S2 have a 
deconvolved width smaller than the beam size.

Mean (or systemic) velocities of the jet. Supplementary Fig. 2 shows the position–
velocity diagram of the SiO jet cut along the jet axis. The northern jet component  
is detected from ∼ − 14 to 8 km s−1 LSR, with a mean velocity of ∼ − 3 km s−1 LSR  
(as indicated by the vertical dashed line). The southern jet component is detected 
from ∼ − 5 to 13 km s−1 LSR, with a mean velocity of ∼ 4 km s−1 LSR (as indicated 
by the vertical dashed line). These mean velocities are taken to be the systemic 
velocities in the northern and southern jet components.

Estimation of jet launching radius. Protostellar jets are generally thought to be 
launched magneto-centrifugally from disks1. In this framework, the launching 
radius of the jet can be derived from the specific angular momentum and the 
velocity of the jet, based on the conservation of energy and the angular momentum 
along the field line, if the mass of the central protostar is known7. For HH 212, 
because (1) the jet velocity (poloidal velocity) is so high that the gravitational 
potential can be neglected at large distances, (2) the jet velocity is much higher 
than the jet rotation and (3) the jet inclination angle is very small (∼ 4°)21, the 
governing equation (equation (4) in ref. 7) used to derive the jet launching radius 
can be simplified and rewritten as:
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to find approximate solutions analytically, where r0 is the launching radius at 
the footpoint, υj is the jet velocity, lj is the specific angular momentum of the jet 
measured at a large distance, G is the graviational constant and M⋆ is the mass of 
the central protostar. Solving this equation, we find the jet launching radius to be:
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out with two executions in 2015, one on 5 November and the other on 3 December 
during the Early Science Cycle 3 phase. The projected baselines are 17–16,196 m. 
The maximum recoverable size scale is ∼ 0.4″ . One pointing was used to map  
the innermost part of the jet at an angular resolution of 0.02″  (8 au). For the  
Cycle 1 project, the correlator was set up to have four spectral windows, with  
one for CO J =  3− 2 at 345.795991 GHz, one for SiO J =  8− 7 at 347.330631 GHz, 
one for HCO+ J =  4− 3 at 356.734288 GHz and one for the continuum at 358 GHz  
(see Supplementary Table 2). For the Cycle 3 project, the correlator was more 
flexible and thus was set up to include two more spectral windows, with  
one for SO NJ =  89 =  78 at 346.528481 GHz and one for H13CO+ J =  4− 3 at 
346.998338 GHz (see Supplementary Table 3). The total time on the HH 212  
system was ∼ 148 minutes.

We present here the observational results in SiO, which traces the jet emanating 
from the central source. The velocity resolution is 0.212 km s−1 per channel. 
However, we binned four channels to have a velocity resolution of 0.848 km s−1 to 
map the jet with sufficient sensitivity. The data were calibrated with the Common 
Astronomy Software Applications (CASA) software package (versions 4.3.1 and 4.5)  
(https://casa.nrao.edu/) for the passband, flux and gain (see Supplementary  
Table 4). We used a robust factor of two (natural weighting) for the visibility 
weighting to generate the SiO maps. To avoid the proper motion effect  
(∼ 2 au or 0.005″  per month using 115 km s−1 for the jet velocity22), only Cycle 3 data 
were used to study the jet rotation in the innermost part of the jet. This generated 
a synthesized beam with a size of 0.02″  (8 au) for the maps of the innermost part 
of the jet (see Fig. 2). To map the knots further out, which are more extended, 
we also include the Cycle 1 data, which has a larger maximum recoverable scale. 
In addition, a taper of 0.05″  was used to degrade the beam size to 0.06″  (24 au, 
see Fig. 1) to improve the signal-to-noise ratio. The noise levels can be measured 
from line-free channels and were found to be ∼ 1.6 mJy beam−1 (or ∼ 40 K) for a 
beam of ∼ 0.02″  (8 au) and 1.9 mJy beam−1 (or ∼ 6 K) for a beam of ∼ 0.06″  (24 au), 
respectively. The velocities in the channel maps and the resulting position–velocity 
diagrams are LSR.

Gaussian deconvolved width of the jet knots. Supplementary Fig. 1 shows the 
spatial profile of the jet knots perpendicular to the jet axis, extracted from the 
SiO total intensity map shown in Fig. 2a (see the white lines for the cuts). To 
derive the width of the knots, we fitted the spatial profiles of the knots with a 
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Gaussian profile. For knot S1, the emission at ∼ 4–12 au is unlikely to be from 
the jet itself and is thus excluded from the fitting. The deconvolved width is the 
width deconvolved with the beam size of ∼ 8 au (0.02″ ). Knots N2, N3 and S3 
have a deconvolved width greater than the beam size. Knots N1, S1 and S2 have a 
deconvolved width smaller than the beam size.

Mean (or systemic) velocities of the jet. Supplementary Fig. 2 shows the position–
velocity diagram of the SiO jet cut along the jet axis. The northern jet component  
is detected from ∼ − 14 to 8 km s−1 LSR, with a mean velocity of ∼ − 3 km s−1 LSR  
(as indicated by the vertical dashed line). The southern jet component is detected 
from ∼ − 5 to 13 km s−1 LSR, with a mean velocity of ∼ 4 km s−1 LSR (as indicated 
by the vertical dashed line). These mean velocities are taken to be the systemic 
velocities in the northern and southern jet components.
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velocity of the jet, based on the conservation of energy and the angular momentum 
along the field line, if the mass of the central protostar is known7. For HH 212, 
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potential can be neglected at large distances, (2) the jet velocity is much higher 
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Table 4). We used a robust factor of two (natural weighting) for the visibility 
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we also include the Cycle 1 data, which has a larger maximum recoverable scale. 
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model fit, with λ = 5.5 andW = 30 (see text), is overplotted in black for parameters denoted in each panel. Panels e−f : PV diagrams observed by
Lee et al. (2017a) across the SiO knots N2 and S3 (grayscale and black/red contours). Their measured centroids are shown as green squares and
fitted rotation gradient as a black line. The DW model is overplotted in cyan (top) or magenta (bottom) with parameters denoted above each panel.

maximum launch radii, rin and rout, then determine the range
of velocities in the wind (through the Keplerian scaling). Since
initial SO and SO2 abundances at the disk surface are very un-
certain, we did not compute the emissivity from a full thermo-
chemical calculation along flow streamlines, as carried out for
H2O by Yvart et al. (2016). Instead we assumed a power-law
variation with radius ∝rα which allowed us to investigate rapidly
a broader range of parameters. Synthetic data cubes were then
computed assuming optically thin emission and a velocity dis-
persion of 0.6 km s−1 (the sound speed in molecular gas at
100 K), and convolved by a Gaussian beam of the same FWHM
as the ALMA clean beam. Parameter α determines the relative
weight of inner versus outer streamlines and influences the pre-
dicted tilt in the PV. For a given MHD solution, the value of α is
well constrained by the slope of the line profile wings.

We find that the DW solution with λ = 13 used to fit the DG
Tau jet in Pesenti et al. (2004) is too fast to reproduce the HH212
data; this solution would require an angle from the sky plane of
only 0.5◦, outside the observed estimate of 4+3◦

−1◦ (Claussen et al.
1998). However, we could obtain a good fit for a slower MHD
solution with λ = 5.5 and W = 30. While the emission peaks
defining the tilt in PV diagram can be reproduced with rout =
8 au, the more extended emission is better reproduced if we in-
crease rout to the expected radius of the Keplerian disk, namely
40 au (Lee et al. 2017c). The corresponding best-fit predictions
are superposed in black in Fig. 2. The value of rin is constrained
by the highest velocity present in the data; in the blue lobe, the
extent of the blue wing suggests rin ≤ 0.1 au. In the red lobe, our
model fit is less good because the centroid is slower than in the

blue by a factor 1.5−2. A slower solution with a smaller lever
arm (not yet available to us) would probably work better; nu-
merical simulations show that it is indeed possible for a DW to
have asymmetric lobes (Fendt & Sheikhnezami 2013). The value
rin ' 0.2 au in Figs. 2b, d is thus only illustrative. The model
poloidal speeds at z = 70 au range from ∼100 to 2 km s−1 for
r0 = 0.1 to 40 au.

Interestingly, we find that the same DW solution that fits
the SO and SO2 PV cuts can also reproduce the rotation sig-
natures across axial SiO knots at similar altitude, if SiO traces
only inner streamlines launched from 0.05−0.1 au to 0.2−0.3 au.
This is shown in Figs. 2e−f, where our synthetic predictions,
convolved by 8 au are compared with the ALMA SiO data of
Lee et al. (2017a). The predicted range of terminal speeds is
70−170 km s−1, which is consistent with SiO proper motions.
Since the dust sublimation radius is also 0.2−0.3 au (Yvart et al.
2016), SiO would be released by dust evaporation at the wind
base.

3.3. Biases in analytical estimates of DW outer launch radius

An unexpected result is that our best fitting rout ' 0.2−0.3 au
for SiO knots is 2−10 times larger than the 0.05+0.05

−0.02au estimated
by Lee et al. (2017a) with the Anderson et al. (2003) formula,
which is valid for all steady DWs. Since the knots are resolved,
this cannot be due to beam smearing as in the cases investi-
gated by Pesenti et al. (2004). The same applies to our SO and
SO2 PV cuts, whereas inserting the apparent velocity gradient in
the Anderson formula would give rout ∼ 1 au instead of 40 au.
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We explored the reason for this discrepancy and found that the
superposition of many flow surfaces along the line of sight cre-
ates a shallower velocity gradient leading to strongly underes-
timate rout. A detailed study of this effect, which also leads to
underestimating λ, will be presented in Tabone et al. (in prep.).

3.4. Further model tests and limitations

A strong test of the DW picture would be to detect the predicted
helical magnetic field structure, for example, through dust polar-
ization measurements with ALMA. Figure 3 plots the poloidal
magnetic surfaces in our best-fit model. Beyond the Alfvén sur-
face (at z/r0 ' 2), a strong toroidal field develops. In the disk
atmosphere at z ∼ 20 au, brightest in dust continuum, the ra-
tio of toroidal to poloidal magnetic field Bφ/Bp ranges from 1.5
to 10, from outer to inner streamlines. Hence, polarization maps
(if not dominated by dust scattering) should not show a pure
“hourglass” geometry but be more toroidal closer to the axis.

We also caution that our DW modeling is only illustrative,
owing to its simplifications. Notably, self-similarity cannot prop-
erly treat the effect of outer truncation. In reality, the shape and
dynamics of the last DW streamlines would be determined by
pressure balance with the cavity and infalling envelope. As de-
picted in Fig. 3, they would thus open in the cavity more widely
than predicted. This wider opening might explain the broader
SO and SO2 emission beyond the last model contour in PV di-
agrams and the slow HCO+ wind noted by Lee et al. (2017c).
The opposite pressure effect occurs near the equator, where the
thick infalling stream would confine the streamlines inside the
CB more tightly than in our model. As shown in Fig. 3, the heat-
ing resulting from this interaction might naturally explain the
presence of a warm ring of COM emission close to the centrifu-
gal barrier (Lee et al. 2017c; Bianchi et al. 2017). DW models
including these effects remain to be developed.

4. Conclusions

Our Cycle 4 ALMA data reveal a rotating wide-angle flow in SO
and SO2 around the SiO jet with a mean speed of ∼30 km s−1

and an onion-like velocity structure filling in the base of the out-
flow cavity. Hence, the cavity is not carved by a fast wide-angle
wind, but by a slower component. This component emerges from
within and up to the centrifugal barrier, and contributes to re-
move excess angular momentum and mass from this region.

The observed kinematics set tight constraints on stationary,
self-similar MHD disk wind models. The lever arm parameter λ
should be <∼5, smaller than in the atomic DG Tau rotating flow
(Pesenti et al. 2004), and the launch radii would range from 0.05
to ∼40 au, with SiO tracing only dust-free streamlines launched
up to 0.2−0.3 au. If such a disk wind is extracting most of the an-
gular momentum required for disk accretion, it would be eject-
ing 50% of the incoming accretion flow2. If this is widespread
among low-mass protostars, as suggested by H2O line profiles
(Yvart et al. 2016), this component could strongly contribute to
the low core-to-star efficiency '30% (e.g. André et al. 2010).
We nevertheless caution that our modeling is very idealized and
probably not unique. Higher angular resolution and dust polar-
ization maps with ALMA could provide powerful tests of this
scenario.

Finally, an important side result of our study is that the ap-
parent rotation gradient strongly underestimates the actual out-
ermost launch radius of an extended MHD disk wind. A detailed

2 Ṁej/Ṁacc(rout) = [1 − (rin/rout)ξ] with ξ ' 1/(2λ − 2) when the wind
braking torque dominates (Casse & Ferreira 2000).
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Fig. 3. Schematic view of the inner 180 au of the HH212 system follow-
ing our MHD disk-wind modeling. The streamlines rich in SiO are pic-
tured in green, the wider component traced by SO and SO2 is in black,
for launch radii of 0.25, 0.9, 3, 11, and 40 au. The magenta dashed
curve shows the boundary of the cavity from Fig. 1. The dusty disk
scale height from Lee et al. (2017b) is indicated in blue, the centrifugal
barrier in red, and the COMs warm ring in orange (Lee et al. 2017c;
Bianchi et al. 2017).

study of the magnitude of this effect, which applies beyond
HH 212, will be presented in Tabone et al. (in prep.).
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Appendix A: SO and SO2 channel maps

Fig. A.1. Channel maps of continuum-subtracted SO2 8(2, 6) − 7(1, 7) emission within ±0.5′′ of the central source of HH212. The velocity offset
from the systemic velocity (Vsys = 1.7 km s−1) is indicated (in km s−1) in the upper right corner with blue and red contours denoting blueshifted
and redshifted emission. The channel width is 1 km s−1. First contour and steps corresponds to 4σ and 6σ (σ = 1 mJy/beam), respectively. The
C34S cavity boundary from Fig. 1 is drawn in magenta dashed lines.
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Fig. A.2. Channel maps of continuum-subtracted SO 98−87 emission within ±0.5′′ of the central source of HH212. The velocity offset from
the systemic velocity (Vsys = 1.7 km s−1) is indicated (in km s−1) in the upper right corner with blue and red contours denoting blueshifted and
redshifted emission. The channel width is 0.44 km s−1. First contour and steps corresponds to 6σ and 16σ (σ =1.7mJy/beam), respectively. The
C34S cavity boundary from Fig. 1 is drawn in magenta dashed lines.

L6, page 6 of 6

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731691&pdf_id=5

	Introduction
	Observations
	Results and discussion
	Evidence for a rotating wide-angle flow in SO and SO2
	Comparison with MHD disk wind models
	Biases in analytical estimates of DW outer launch radius
	Further model tests and limitations

	Conclusions
	References
	SO and SO2 channel maps

