
HAL Id: hal-02237895
https://hal.science/hal-02237895v1

Submitted on 1 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One can only gain by replacing EASY Backfilling: A
simple scheduling policies case study

Danilo Carastan-Santos, Raphael y de Camargo, Denis Trystram, Salah Zrigui

To cite this version:
Danilo Carastan-Santos, Raphael y de Camargo, Denis Trystram, Salah Zrigui. One can only gain
by replacing EASY Backfilling: A simple scheduling policies case study. CCGrid 2019 - Interna-
tional Symposium in Cluster, Cloud, and Grid Computing, May 2019, Larnaca, Cyprus. pp.1-10,
�10.1109/CCGRID.2019.00010�. �hal-02237895�

https://hal.science/hal-02237895v1
https://hal.archives-ouvertes.fr


One can only gain by replacing EASY Backfilling:
A simple scheduling policies case study

Danilo Carastan-Santos*
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG

38000 Grenoble, France
danilo.santos@ufabc.edu.br

Raphael Y. de Camargo*
Center of Mathematics, Computation and Cognition

Federal University of ABC
Santo André, Brazil

raphael.camargo@ufabc.edu.br

Denis Trystram*
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG

38000 Grenoble, France
trystram@imag.fr

Salah Zrigui*
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG

38000 Grenoble, France
salah.zrigui@univ-grenoble-alpes.fr

Abstract—High-Performance Computing (HPC) platforms are
growing in size and complexity. In order to improve the quality
of service of such platforms, researchers are devoting a great
amount of effort to devise algorithms and techniques to improve
different aspects of performance such as energy consumption,
total usage of the platform, and fairness between users. In spite
of this, system administrators are always reluctant to deploy
state of the art scheduling methods and most of them revert
to EASY-backfilling, also known as EASY-FCFS (EASY-First-
Come-First-Served). Newer methods frequently are complex and
obscure and the simplicity and transparency of EASY are too
important to sacrifice.

In this work, we used execution logs from five HPC platforms
to compare four simple scheduling policies: FCFS, Shortest esti-
mated Processing time First (SPF), Smallest Requested Resources
First (SQF), and Smallest estimated Area First (SAF). Using
simulations, we performed a thorough analysis of the cumulative
results for up to 180 weeks and considered three scheduling
objectives: waiting time, slowdown and per-processor slowdown.
We also evaluated other effects, such as the relationship between
job size and slowdown, the distribution of slowdown values,
and the number of backfilled jobs, for each HPC platform and
scheduling policy.

We conclude that one can only gain by replacing EASY-
backfilling with SAF with backfilling, as it offers improvements
in performance by up to 80% in the slowdown metric while main-
taining the simplicity and the transparency of FCFS. Moreover,
SAF reduces the number of jobs with large slowdowns and the
inclusion of a simple thresholding mechanism guarantees that no
starvation occurs. Finally, we propose SAF as a new benchmark
for future scheduling studies.

Index Terms—High Performance Computing, Online Schedul-
ing, EASY, Backfilling, SAF

I. INTRODUCTION

It is well known that High Performance Computing (HPC) is
becoming a requirement in order to solve the arising complex
problems that come from many fields of science and industry
(health, climate, economics, etc). The ever increasing demand
of computing power has led to the construction of extreme-
scale, parallel and distributed computing platforms, with an

*Authors’ names are sorted alphabetical order

impressive fast evolution of computing power, as it can be
seen in the Top500 [1] supercomputer ranks. In order to keep
this fast evolution, it is necessary to solve many scientific
and technical problems that arise from many aspects of HPC,
ranging from hardware architecture, to resource management
and applications.

The resource management aspect plays a key role in the
performance of HPC platforms: it is the component that as-
signs when and where the applications will be executed in such
platform. In this regard, a common practice of HPC platform
administrators is to deploy a Resources and Jobs Management
System (RJMS) to perform the resource management. In a
standard scenario, HPC applications (here called as jobs) arrive
in the RJMS to be executed in the HPC platform. These jobs
arrive in an unpredictable (on-line) manner in the RJMS queue
and one of the challenges of the RJMS is to assign a priority
order of the jobs in the queue, in order to satisfy one or many
performance metrics.

This priority assignment problem is a nontrivial task and
it is known in the literature as the Parallel On-line Job
Scheduling Problem [2]. While there is indeed many works
that propose clever approaches to solve this problem (see
Section II), yet there is a noticeable distance between theory
and practice [3], as most of the HPC platform administrators
opt to use simple scheduling heuristics, with the Aggressive
Backfilling with First-Come-First-Served order (also called
EASY Backfilling [4]) being by far the most popular heuristic.

Many reasons can be devised to justify the choice of
EASY Backfilling: it is established that EASY Backfilling
increases the overall utilization of the platform, while keeping
a relative simplicity and job starvation guarantees. Further-
more, although it is also established that there is room for
improvement in the scheduling, replacing EASY Backfilling
with another algorithm might be seen as a risky change: one
can see this change as a “jump into the dark”, with the changes
in performance only noticeable after a long period of time,
and potentially after many strong-worded emails from many



(important) users.
This work goes towards bringing light to this jump. We

selected a class of scheduling algorithms that keep the same
simplicity and starvation guarantees of EASY Backfilling and
we used a fast and reliable HPC simulation software to provide
sound evidence on what could be gained – considering many
relevant performance metrics – if one replaces EASY Back-
filling. More specifically, this paper presents the following
contributions:

• We present an experimental study that addresses the
expectations and potential gains that come from replacing
the EASY Backfilling scheduling policy in typical high-
performance computing platforms;

• We highlight the Shortest Area First (SAF) scheduling
policy, which, we argue, has the best-observed overall
performance among the tested policies. In fact, we pro-
pose SAF as a new benchmark for future batch scheduling
studies;

• We highlight an aspect that is often overlooked when
evaluating the performance of a scheduling policy, which
is the link between the number of resources used by jobs
and the fairness of a given scheduling policy;

• We address the influence of the aggressive backfilling
mechanism on the transparency and predictability of
scheduling algorithms.

The remainder of this paper is organized as follows. In
Section II we present some closely related works, while in
Sections III and IV we explain the scheduling problem under
study and the performed experimental protocol. In Section V
we present and discuss the obtained experimental results.
Finally, we summarize the main conclusions of the paper and
present future works in Section VI.

II. RELATED WORK

Due to the several classes of scheduling problems and their
different levels of complexity, many works have been proposed
to solve them using a wide range of approaches, ranging from
integer linear programming [5], [6] to genetic algorithms [7],
[8] and neural networks [9]. Xhafa and Abraham [10] present
an overall review of scheduling algorithms, mainly focused on
HPC platforms.

In the literature, the parallel job scheduling problem is, in its
majority, studied under the view of a more general and closely
related problem called multiple-strip packing problem [11] in
which, informally, aims to find a packing configuration of
rectangles (jobs) into a set of strips (set of processors) in order
to minimize the maximum height among the used strips. It
is known that the single strip case is NP-hard [11] and, thus,
many approximation algorithms and performance bounds were
proposed [12]–[16]. One notable characteristic of these works
is that most of them are concerned to minimize objectives that
are arguably analytically easier to be treated such as makespan
(the largest completion time among the jobs).

A lot of effort has also been applied in list scheduling [17]
based algorithms, whose its core relies on queue ordering
policies. There is a vast number of queue ordering policies

conceived, from hand-engineered [18] to tuned or machine-
learned [19]–[22] policies. Although almost all queue order-
ing policies are easier to understand, it is well known [3]
that most RJMSs deploy the First-Come-First-Served (FCFS)
policy with some backfilling mechanism [4], and optionally
with an arbitrary job prioritization, represented by multi-queue
priorities [23].

This unwillingness to apply different policies other than
FCFS is arguably due to the lack of clarity and interpretability
of these policies, making the whole scheduling algorithm less
transparent to the users. In this paper we go towards resolving
this unwillingness, by arguing and showing that there exist
other policies that are equally simple and clear as FCFS
– notably the Shortest Processing Time First and Shortest
Area First (SPF and SAF, see Section V) – that can provide
significant performance improvements in comparison to FCFS
under many different performance objectives, and they only
need an equally simple threshold mechanism to provide the
same job starvation guarantees as FCFS. We also argue that
these two policies (SPF and SAF) with threshold should be
considered as new baselines of performance for future online
parallel job scheduling research.

III. ONLINE BATCH SCHEDULING PROBLEM

A. Preliminary Definitions

In this work, we consider an HPC platform as constituted
by a set of m homogeneous processing resources connected
by a interconnection topology. In the on-line setting, parallel
and rigid (i.e. fixed and known in advance number of required
resources) jobs arrive in a centralized waiting queue at any
moment in time. For each job t, we consider the following
characteristics:

• The actual processing time pt of the job (only known
after the job has been executed);

• The estimated processing time p̃t of the job informed by
the user (frequently considered an upper bound of pt);

• The resource requirement of the job, measured as the
number of processors qt;

• The arrival time rt of the job (also called release date)
Typically several simplifications about t are made under the

perspective of the RJMS: parallel efficiency, interdependence,
and computation and communication intensities are often
ignored. Instead, t is seen as an independent “black box” that
will require qt resources for p̃t units of time.

It is a common practice to log the characteristics of the jobs
submitted in an HPC platform. One of the initiatives in main-
taining such logs (also called traces) are the logs present in the
Parallel Workloads Archive, shared in the Standard Workload
Format (SWF) [24]. We exploit the rich information present
in these logs to drive the simulation workflow explained in
Section IV.

There is a large number of cost metrics [25] – which focus
on different performance aspects of the scheduling – that can
be used by HPC platform administrators. In this regard, we
focus on three platform-wise, job-oriented metrics. The first



metric is the waiting time (Equation 1) which, measures the
time that the job waited for execution, and it can be defined
for a job t as:

wt = startt − rt (1)

where startt is the time that t started its execution. The sec-
ond metric is the bounded slowdown (bsld or just slowdown,
Equation 2) which, informally, measures the ratio between
the time that a job t spent on the platform, and the actual
processing time of t. Formally, the bsld can be defined as
follows for a job t:

bsldt = max

(
wt + pt

max(pt, τ)
, 1

)
(2)

where wt is the waiting time of t and τ is a constant to
prevent smaller jobs from reaching very high bsld values, and
it is often set to 10 seconds. The reasoning behind slowdown
is based on the expectation that the waiting time of a job
should be proportional of its processing time, thus giving a
balanced waiting time distribution among jobs with different
characteristics, notably the processing time pt.

Finally, the third metric is the per-processor bounded slow-
down [26] (pp-bsld or pp-slowdown, Equation 3), which is
defined for a job t as:

pp-bsldt = max

(
wt + pt

qt ·max(pt, τ)
, 1

)
(3)

where wt and τ are the same as for bsld. The reasoning
behind the per-processor bounded slowdown is to normalize
the slowdown results for jobs who perform the same amount
of work, though with different degrees of parallelism (number
of processors). The pp-slowdown can be seen as a more ap-
propriate objective for the parallel batch scheduling problem,
as it tries to balance the waiting time of the jobs in function of
the number of processors qt, which is not taken into account
by the waiting time and slowdown.

Like other cost metrics, the waiting time, slowdown and pp-
slowdown are usually considered in their cumulative versions,
which means that one seeks to minimize the average waiting
time, bsld or pp-bsld. It is worth noting that other metrics such
as the maximum waiting time bsld or pp-bsld of all the jobs
are also worthy of interest, though they must be taken more
carefully, as we explain in Section V-C.

For a queue of jobs Q, we consider the average waiting
time, slowdown or pp-slowdown of Q as being the average of
the respective metric, over all jobs t ∈ Q.

B. Fairness and User Satisfaction

Specifically for slowdown and pp-slowdown, the expecta-
tion of a good scheduling performance is that the waiting
time of the jobs should be proportional of its running time,
that is, a job that must perform a larger amount of work
(and thus requires many resources and/or for a longer period)
could “afford” a longer waiting time. Indeed, it is arguable
that the slowdown metric can be a good performance metric

for a job-centric fairness, in comparison to other metrics
such as waiting time. One could envision, however, that a
better performance metric could be an user-centric metric, that
captures the overall satisfaction among users. Although this
could be indeed the case, one can not simply simulate user
behavior by reproducing a workload trace due to the fact that
the workload would change (in an on-line manner) in function
of the scheduler’s performance (e.g. a more efficient scheduler
would stimulate users to submit more jobs and vice versa). At
the time of writing of this paper, there is no consensus in the
community about accurate and/or meaningful ways to simulate
user behavior, which leads us to choose a job-centric approach
rather than a user-centric one.

C. On-line Batch Scheduling Algorithm

In this work we consider a queue-ordering based, on-
line batch scheduling algorithm that works as follows: the
scheduler sorts – in increasing order according to a scheduling
policy f(t) – its waiting queue in two distinct events: (i) when
a job arrives in the queue or (ii) when a resource (set of
processors) is released and becomes available. When a job
t is selected for execution and if the requested number of
processors qt is lower than the total number of processors
available, then qt processors are reserved for this job and they
become unavailable. These processors will become available
again only when pt units of time have passed since the start of
the execution of t. If the actual processing time pt is larger than
its estimate p̃t, t is killed, that is, its execution is terminated.

In the case that there are not enough processors to process t,
an aggressive backfilling subroutine [4] is applied. In this case,
it is estimated at which time there will be enough resources
to process t. Next, the scheduler looks for jobs in the waiting
queue – following the order of jobs already established by the
scheduling policy f(t) – for which there are enough processing
resources and that do not delay the execution of t. If a job
meets these aforementioned conditions, then it “jumps ahead”
and is scheduled for execution.

A key component of this scheduling algorithm is the
scheduling policy f(t). Although many scheduling policies
can be devised, in this work we are concerned in comparing
simple scheduling policies. Table I shows the simple schedul-
ing policies considered in this paper. We define a scheduling
policy f(t) as simple if f(t) is equal to one of the jobs’ char-
acteristics (notably FCFS, SPF and SQF, in which FCFS and
SPF are well known policies in the off-line batch scheduling
literature) or its meaning is intuitive and transparent to the
platform user (notably SAF, which sorts the jobs according to
their “area” or “geometry”). One can observe that we could
also envision the “largest” variant of the presented scheduling
policies. However, we decided to not consider them because
in our preliminary experiments, and as well as reported in the
works of Gaussier et al. [22], the “largest” variants present
consistent worse scheduling performances than their “shortest”
variants.

1) Starvation Prevention: It is possible to observe that
among all scheduling policies presented in Table I, only FCFS



TABLE I
SCHEDULING POLICIES USED FOR COMPARISON.

Name Description Function
FCFS First-Come-First-Served [27] f(t) = rt
SPF Smallest Estimated Processing Time First [28] f(t) = p̃t
SQF Smallest Resource Requirement First f(t) = qt
SAF Smallest Estimated “Area” First f(t) = p̃t · qt

can straightforwardly prevent starvation, that is, it guarantees
that no job will wait for execution for an unbounded amount
of time. Therefore, some starvation prevention mechanism is
mandatory for the remaining policies in order to be appli-
cable in real scenarios. In this regard, we adopted a simple
thresholding mechanism [22], in which a job t would receive
a maximum priority (bypassing the priority given by the
scheduling policy f(t)) if its waiting time exceeds a maximum
threshold value Θ. If many jobs receive a maximum priority
at the same time, they will follow a FCFS order.

The threshold value Θ is an important parameter and indeed
must be set with some caution: a too small threshold value
would constrain the scheduling policy f(t), by assigning the
maximum priority at too many jobs and thus too many jobs
will follow FCFS order instead of f(t). Conversely, a too
large threshold value could be too prohibitive in the Quality
of Service point of view of the platform. In this work we
set the threshold value Θ as being three times the maximum
processing time estimate allowed by the platform. In general,
it is a common practice in HPC platforms to set a maximum
processing time allowed, setting the threshold as being three
times this value means that the slowdown of larger jobs (i.e.
jobs with processing time close to the maximum) would have
a value of around three. Since the policies used this work
prioritize sorter/smaller jobs. This thresholding mechanism is
dedicated to the longer/larger jobs and is proven to be effective
in preventing starvation, as we show in Section V that the
majority of jobs that reach the threshold are larger ones.

IV. EXPERIMENTAL PROTOCOL

In this Section we present the experimental protocol adopted
in this work. We make use of BatSim [29], which is a scientific
instrument based on SimGrid [30] – a well known HPC
systems simulator – specially tailored to simulate and study the
behavior of batch scheduling algorithms. BatSim and SimGrid
allows us to rapidly and accurately simulate the scheduling of
many workload traces with using only a single workstation
and in only a matter of days, which would not be feasible
without simulation.

Table II shows the real workload traces used in this work.
In order to provide statistically meaningful results with the
scheduling of the traces, we adopted a sampling technique
based on [31]. Algorithm 1 presents the pseudo-code. The
idea is to generate new data using existing user profiles. A
profile can be defined as the activity of a single user throughout
the trace, split into many weekly time periods. To generate a

TABLE II
REAL WORKLOAD TRACES USED FOR EVALUATION OF THE SCHEDULING

POLICIES.

Name Year # CPUs # Jobs Util % Duration
HPC2N 2002 240 202,871 60.1 42 Months
SDSC Blue 2000 1,152 243,306 76.7 32 Months
SDSC SP2 1998 128 59,715 83.4 24 Months
CTC SP2 1997 338 77,222 85.2 11 Months
KTH SP2 1996 100 28,476 70.1 11 Months

new trace we combine several random permutations of each
user’s profiles. One can observe that this sampling technique
is not capable of reflecting the workload changes in function
of the scheduler’s performance (as discussed in Section III-B).
However, it allows to generate as many logs as needed while
preserving the jobs’ properties of each user.

Algorithm 1 Workload trace resampling algorithm.
Input: list of user profiles P extracted from the original

workload trace. Number of weeks in the resampled trace
nw

Output: resampled trace Wres

1: Wres ← ∅
2: for i = 1 to nw do
3: wres ← ∅
4: for each user profile p in P do
5: pires ← random weekly split from p
6: add pires to wres

7: end for
8: append wres in Wres

9: end for
10: return Wres

For each trace of Table II, we generate 10 samples using
the aforementioned procedure. The size of each sample is
proportional to the size of the original trace. Each sample is
then simulated following the scheduling algorithm presented in
Section III-C, taking into consideration each of the scheduling
policies presented in Table I. The results for each scheduling
policy and workload trace presented in the next Section are
statistical summaries of the ten samples of each trace.

V. EXPERIMENTAL RESULTS

In this section we present the main results obtained by the
experimental procedure described at Section IV. We perform
several analysis in order to provide a better understanding of
the behavior of the scheduling policies and what gains could
be expected if a certain scheduling policy is chosen.

A. Overall Scheduling Performance

In this Section we aim to answer the following question: If a
certain scheduling policy of the Table I is chosen, what would
be its overall scheduling performance if the chosen policy is
kept throughout time?



Figure 1 shows the overall performance results for the aver-
age slowdown, waiting time, and pp-slowdown. Each subplot
refers to a workload trace from Table II. To avoid outlier
interference in the results, for each trace and scheduling policy
we discarded the best performing and the worst performing
workload sample (see Section IV) from the 10 initial workload
samples. In other words, we present only the scheduling
results of the samples whose performance belongs to the
10-90% percentile range. Each subplot contains statistics of
the scheduling simulation of these remaining samples. The
solid lines in the subplots represent the cumulative mean of
the objective metric (average slowdown, waiting time, or pp-
slowdown) of the finished jobs at each week of simulation,
from the beginning to the end of the workload, and the
dashed lines represent the cumulative maximum and minimum
average values of the respective metric at each week.

Looking at the scheduling performance in Figure 1, we can
cluster the tested policies in two classes: the ones that are
oblivious of the processing time estimate p̃ (FCFS and SQF),
and the ones that are not oblivious (SPF and SAF). From the
aforementioned Figure, we can observe a strong correlation
between the scheduling performance of these clusters, with
the former cluster consistently presenting worst performances
than the latter. This result is expected: for the slowdown and
pp-slowdown, jobs with a lower p̃ – and thus lower p, since
p̃ is an upper bound of p – have a higher risk of inflating the
metrics if they wait too much (see Equations 2 and 3). By
favoring jobs with a lower p̃ (SPF and SAF), we assure that
these high risk jobs are executed quickly, and thus the average
for both slowdown and pp-slowdown are kept under control.
The waiting time is also favored by prioritizing jobs with lower
p̃, since for all traces these jobs are more frequent [32].

One point that is worth noticing is how much can be gained
in quantitative values if a policy other than FCFS (notably
SPF or SAF) is chosen and kept during a long period. In
our experiments we achieve performance gains up to 83.4%
(SPF), 61.4% (SAF), and 85.1% (SAF) for the slowdown,
waiting time, and pp-slowdown respectively, in comparison
with FCFS. It is important to note here that the scheduling sim-
ulation is performed with a starvation prevention mechanism
(see Section III-C). Therefore, these gains can be obtained
while guaranteeing that no job will starve.

Another important observation is how SAF – which in
contrast with SPF, is less known in the literature – performs
consistently well in all objectives considered. We further
address this phenomenon in the next Section.

B. Is SAF the ultimate simple policy?

As highlighted in the previous Section, the scheduling
policies that are not oblivious to the processing time estimate
p̃ (notably SPF and SAF) are the ones who achieved the
most consistent good performances in the experiments that
we performed. In this Section we make a further analysis
on which are the characteristics of the jobs that make them
prioritized/delayed by these two policies, with an emphasis on
the delayed jobs.

For the processing time estimate p̃ this analysis can be easily
devised: SPF delays jobs with a larger p̃ and SAF is similar,
with the distinction that it considers the number of processors
q as well. This raises the importance of our thresholding
mechanism, which specifically concerns jobs with a large p̃.

In its turn, for the number of processors q, Figure 2 shows
the number of processors q of the top 100 jobs – of each
sample of each trace – who got delayed the most (here defined
as the jobs with the highest slowdown) for each scheduling
policy. An interesting observation here is that SPF is oblivious
to the number of processors q and thus no correlation should
be expected for the delayed jobs in function of q. Therefore,
SPF had a high risks of delaying jobs with smaller q which, in
principle, should be easier to be scheduled in an HPC platform.

Indeed, we recall a known observation [25] that the slow-
down and the waiting time metrics (arguably the most popular
ones) do not take into consideration one important dimension
of the scheduling problem: the number of requested processors
q. Jobs that perform the same amount of work though with
different shapes are treated indifferently by these metrics. The
pp-slowdown generalizes the standard slowdown by including
the number of processors q in the metric.

At this light SAF shows up as a solid policy among the
simple ones we evaluated. It achieved close to best observed
performances for the slowdown and waiting time objectives,
and systematically outperformed all other simple policies for
the pp-slowdown objective (Figure 1) . This complies with
the results of our previous work [20], where the machine
learned policies converged to functions that contain a SAF-
like component. Although one can claim that SAF could
be biased towards pp-slowdown, since with pp-slowdown we
would seek to minimize an objective function that is related
to the area of the jobs, we argue that the pp-slowdown is a
more appropriate objective for the parallel batch scheduling
problem, in comparison with waiting time or slowdown.

C. Accounting the Maximum: one should care with caution

One can notice that in this work we only seek to find good
scheduling algorithms aiming at the average of the objective
functions and not the maximum. Although one can argue that
the maximum of the objective functions are important as well,
in this Section we present some observations found by our
study that show that aiming only for the maximum can be
potentially problematic.

The first point is that the maximum metric is centred at the
performance of only one job, meaning that the value of the
maximum can be unstable and subject to unpredictable factors,
such as unavoidable bursts of jobs submissions and/or jobs
that have some characteristic that can potentially mistakenly
inflate the metric. To illustrate this potential, we clustered
the jobs into two classes: the premature jobs, in which the
difference between the processing time estimate p̃ and the
actual processing time p is at least 100 times higher, and the
standard jobs, which are the remaining jobs. Table III shows
the percentage of premature jobs found for each workload
trace. What is interesting to observe is that the number of



SDSC−SP2

SDSC−BLUE

KTH−SP2

HPC2N

CTC−SP2

0 15 30 45 60 75 90 105

0 15 30 45 60 75 90 105 120 135

0 15 30 45

0 15 30 45 60 75 90 105 120 135 150 165 180

0 15 30 45

0

200

400

0

10000

20000

30000

0

2000

4000

6000

8000

0

500

1000

1500

2000

0

2000

4000

6000

Week

C
um

ul
at

iv
e 

A
ve

ra
ge

 S
lo

w
do

w
n

SDSC−SP2

SDSC−BLUE

KTH−SP2

HPC2N

CTC−SP2

0 15 30 45 60 75 90 105

0 15 30 45 60 75 90 105 120 135

0 15 30 45

0 15 30 45 60 75 90 105 120 135 150 165 180

0 15 30 45

0

50

100

150

0

3000

6000

9000

0

300

600

900

0

25

50

75

100

0

400

800

1200

Week

C
um

ul
at

iv
e 

A
ve

ra
ge

 p
p−

S
lo

w
do

w
n

SDSC−SP2

SDSC−BLUE

KTH−SP2

HPC2N

CTC−SP2

0 15 30 45 60 75 90 105

0 15 30 45 60 75 90 105 120 135

0 15 30 45

0 15 30 45 60 75 90 105 120 135 150 165 180

0 15 30 45

0

50000

100000

150000

0

500000

1000000

1500000

0e+00

2e+05

4e+05

6e+05

0e+00

1e+05

2e+05

3e+05

4e+05

0

500000

1000000

1500000

Week

C
um

ul
at

iv
e 

A
ve

ra
ge

 W
ai

tin
g 

tim
e

Policy
FCFS
SAF
SPF
SQF

Fig. 1. Cumulative weekly average slowdown, pp-slowdown and waiting time: For each trace, the middle solid line represents the mean and the two dashed
lines represent the lower and upper 10-90 percentiles.



SDSC−SP2

SDSC−BLUE

KTH−SP2

HPC2N

CTC−SP2

FCFS SAF SPF SQF

FCFS SAF SPF SQF

FCFS SAF SPF SQF

FCFS SAF SPF SQF

FCFS SAF SPF SQF
0

100

200

300

0

50

100

0

25

50

75

100

0

300

600

900

1200

0

50

100

Policy

N
um

be
r 

of
 r

eq
ue

st
ed

 p
ro

ce
ss

or
s

Fig. 2. Number of processors of the top 100 jobs with highest slowdown
values.

premature jobs is not negligible, up to one third of all of the
jobs of the trace. Furthermore, the difference between p̃ and
p can be sometimes quite extreme: jobs that are marked as
successful jobs (i.e. job that did not crash) and require the
maximum processing time allowed p̃, though actually execute
for around one minute happen in every trace. Since these jobs
are marked as successful, we can not discard them from the
analysis.

Therefore, any scheduling policy that prioritizes jobs in
function of the processing time estimate p̃ has a risk of
delaying these premature jobs and, when the objective function
of these jobs are evaluated, they will obtain poor results which
will harm the maximum of the objective function. To illustrate
this effect, Table IV shows the ratio between the average
slowdown of the premature jobs and the average slowdown
of the standard ones, for all traces and scheduling policies.
We can notice that the difference in scheduling performance
of these two classes of jobs is large, up to 17 times larger
for all policies in the HPC2N trace, and this difference in
the maximum slowdown between these two classes (result not
shown in Table IV) is even larger. We can also notice that the

this difference is often amplified by policies that takes p̃ into
account (SPF and SAF).

Agreeing whether or not these performance gaps are due
to the scheduler is always up to argument. However, Figure 3
shows a more holistic view of the scheduling performance:
we grouped the jobs in many categories that are in function
of the jobs’ scheduling performance, from the jobs that were
executed immediately (slowdown of 1), to the jobs that were
poorly scheduled (slowdown of at least 100). We can observe
that choosing another policy than FCFS shows performance
improvements in all categories: the number of jobs who got
executed immediately increases and the number of jobs in all
other categories (the jobs who had to wait) decreases, with
an exception of the SPF policy at the 1-10 slowdown range.
These results are even more impressive for the category of
jobs with poorer scheduling performances (100+ slowdown).
For instance, by choosing SAF, the number of jobs who got
badly scheduled can be lowered by more than half, up to 2.8x
less poorly scheduled jobs in comparison with FCFS.

All of these points elucidate the importance of analyzing
the scheduling performance in a holistic view, and the caution
that must be taken into account when evaluating the scheduling
performance with maximum values. We would certainly over-
look these good properties of the studied scheduling policies
if we had considered only the maximum of the objective
functions.

TABLE III
PERCENTAGE OF PREMATURE JOBS FOR EACH WORKLOAD TRACE

Trace % of premature jobs
HPC2N 17.4
SDSC Blue 30.2
SDSC-SP2 16.1
CTC-SP2 9.5
KTH-SP2 12.4

D. Backfilling Influence

One important question that raises when the queue ordering
policy is changed (see Section III-C) is how the backfilling
mechanism behaves in function of the queue ordering policy.
Although it is well known that backfilling increases the plat-
form’s utilization and is unlikely to harm the original (without
backfilling) schedule, its relevance in performance is not clear.
This question is also worth of importance to bring a clearer
notion about the predictability of the scheduling policies, that
is, given one policy, how much it is likely that the jobs will
actually follow such an order.

In order to clarify this point, for all samples of each trace
and each scheduling policy we kept track on how many jobs
got scheduled to execution by the backfilling mechanism.
Figure 4 shows the distribution of the number of backfilled
jobs over all samples, for each workload trace and scheduling
policy. One interesting observation is the absence of backfilled
jobs for the SQF policy for every trace and sample. This result
is expected and we formalize it with the following proposition:



83.27%
78.06%

82.32%

73.16%

10.98%
16.08%

12.58%
17.49%

4.31%4.69%4.14%6.59%
1.45%1.17%0.96%2.76%

79.83%78.77%79.96%
74.99%

14.09%15.96%15.24%16.62%

2.45%2.39%2.2%3.52% 3.63%2.88%2.59%4.87%

72.09%

65.86%
70.14%

60.74%

15.51%

22.12%
18.35%

21.88%

6.52%6.7%6.52%8.36%
5.88%5.33%4.99%

9.02%

86.89%85.12%86.91%
80.89%

8.75%10.72%9.47%10.98%

3.24%3.26%2.82%
5.75%

1.12%0.91%0.8%2.37%

70.73%
67.48%

69.91%

61.38%

16.23%
19.74%17.66%18.99%

7.59%8.54%8.1%10.16%
5.44%4.23%4.33%

9.47%

SDSC−SP2

SDSC−BLUE

KTH−SP2

HPC2N

CTC−SP2

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+

1 (1,10] (10,100] 100+
0

25

50

75

0

20

40

60

80

0

20

40

60

0

25

50

75

0

20

40

60

Bounded slowdown

N
um

be
r 

of
 jo

bs
 (

%
)

policy
FCFS
SAF
SPF
SQF

Fig. 3. Distribution of the bounded slowdown values for all jobs

TABLE IV
RATIO OF THE AVERAGE SLOWDOWN BETWEEN THE PREMATURE THE

STANDARD JOBS

Policy HPC2N SDSC Blue SDSC SP2 CTC SP2 KTH SP2
FCFS 17.84 3.59 3.94 5.58 8.69
SPF 17.29 7.17 4.36 5.04 12.09
SQF 14.02 2.96 2.04 1.67 9.31
SAF 17.88 7.41 3.79 2.61 11.41

Proposition 1. If the aggressive backfilling algorithm uses
a queue of jobs sorted by SQF and there is no threshold
mechanism added to the scheduling, no job is backfilled.

Proof. As explained in Section III-C, scheduling decisions are
performed in two cases:

1) When a job arrives in the queue: in this case, let th be the
job with the highest priority in the queue. Job th is in the
queue, therefore there is not enough resources to process
th. Since the queue is sorted by SQF order, there is no
job in the queue that requires less resources than th, so
none of them can be backfilled. If a new job t arrives in

the queue and its number of required processors is lower
than the number of processors required by th, SQF will
assign t with the highest priority and thus backfilling
will no longer be applied for t. Conversely, where t
requires more processors than th, t cannot be backfilled
as aforementioned.

2) When a job is finished and its allocated resources are
released: in this case, the jobs will be scheduled for
execution following SQF order until it is no longer
possible to schedule jobs with the current available
resources. At this point, there are not enough resources
to schedule the job with the highest priority in the queue
and, since the queue is sorted in SQF order, no other job
in the queue can be backfilled as aforementioned.

Since in both of the above cases it is impossible to backfill
jobs, no jobs are backfilled.

Yet, some backfilling may happen when using SQF with
jobs that exceeded the threshold in the waiting queue (since
they break the SQF order). However, such jobs are expected
to be very few. This explains some results found by Lelong et
al. [21], in which they state that the SQF policy did not lead
to many backfilling decisions in their experiments.

Interestingly, using SAF and SPF resulted in 78% and 56%
less backfilled jobs on average, respectively, when compared
to FCFS. Although it is unlikely that backfilling would harm
the scheduling, as mentioned above, SPF and SAF are more
consistent and predictable policies, since jobs are more likely
to be scheduled for execution following the policy order, as
oppose to being scheduled by “jumping ahead” in the waiting
queue in unpredictable moments.

VI. CONCLUSIONS AND FUTURE WORK

As the scale and power of high-performance computing
(HPC) platforms increases, it becomes more crucial to deploy
efficient resource management approaches (notably scheduling
algorithms) in order to prevent the dampening of such increase
in computing power. In an adversarial manner, it is also
important that such scheduling algorithms stay simple and
easily understandable by the users. Furthermore, changing the
scheduling algorithm is often seen as a risky move, mainly due
to the possibility of having unseen and unpredictable changes
in the performance of the platform, which could be detected
only after a long period of time.

In this paper, we move towards providing more knowledge
and experience on what are the expectations if one decides to
change the First-Come-First-Served (FCFS) scheduling policy
with aggressive backfilling – the popular EASY Backfilling –
scheduling algorithm. We selected a class of simple scheduling
algorithms that differs from EASY Backfilling by changing the
scheduling policy (other than FCFS) and adding a thresholding
mechanism (to provide the same no starvation guarantees as
FCFS). We used a flexible and reliable simulation software
and exploited the rich information presented in HPC platform
workload traces to find what could be observed and gained



SDSC−SP2

SDSC−BLUE

KTH−SP2

CTC−SP2

FCFS SAF SPF SQF

FCFS SAF SPF SQF

FCFS SAF SPF SQF

FCFS SAF SPF SQF
0%

5%

10%

15%

20%

0%

10%

20%

30%

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

0%

5%

10%

15%

20%

Policy

B
ac

kf
ill

ed
 J

ob
s 

(%
)

Fig. 4. Distribution of backfilled jobs between resamplings.

by using these other simple scheduling algorithms rather than
EASY Backfilling.

Our results indicate that one can only gain by replacing
EASY Backfilling with simple policies that consider the
estimated processing time and the required resources, notably
the Shortest Processing time First (SPF) and Shortest Area
First (SAF). By adding a simple thresholding mechanism, it
is possible to obtain significant performance improvements
for the long run, using three relevant performance objectives,
while also guaranteeing that no job will wait for an unbounded
amount of time. We show that these simple policies not only
present better performance in average values, but they also
significantly increase the number of jobs executed instantly
(without waiting) and lower the number of jobs that wait for
a long time. The performance gains over EASY Backfilling is
distributed among all waiting jobs.

These simple policies also show that they can perform
well with less interference from backfilling: the scheduler is
more likely to follow the original order as set by the chosen
scheduling policy, and not by the rules of backfilling, thus
providing more predictability and transparency, two properties

that are sought by HPC platform administrators.
We also highlight a less known scheduling policy in the

literature, the Shortest Area First (SAF). In our experimental
campaign, we found that this policy managed to consistently
provide close to the best (if not the best) observed performance
in all scenarios and performance objectives we evaluated. For
instance, considering the slowdown objective, SAF not only
provided an average overall performance increase up to 83.4%,
but as well increased the number of jobs that run immediately
by up to 9% and lowered the number of jobs who waited
for a long time (very long slowdown) by up to 2.8 times, in
comparison with FCFS. This result reinforces the relevance
of the jobs’ area property, which was seen in our previous
work [20], and raises the question about possible analytical
properties of SAF. Nevertheless, we reinforce that SAF must
be considered as a baseline of comparison in future parallel
batch scheduling research.

Last but not least, we present some cautions that must be
considered if one wants to provide a scheduling algorithm that
minimizes the maximum of an objective function. Taking the
slowdown objective function as an example, we observed a
class of jobs whose presence in the workload is not negligible
and can mistakenly lead to inflated maximum slowdown val-
ues. If one only looks at the maximum of an objective function
to evaluate the scheduling performance, some good scheduling
policies (as the aforementioned ones) can be overlooked.

There is still work to be done in this subject: the first point
is to address how users play a role in the global scheduling.
As mentioned in Section III-B, our approach on evaluating
the scheduling performance is centred at the platform and the
jobs, where users are not taken into account. An ideal scenario
would be to simulate the users reacting to the scheduler’s
performance. In this regard, accurate and reliable user models
are required to properly simulate user behavior. Another point
is how we can exploit SAF to provide SAF-like scheduling
policies that are adapted to certain situations and/or time
periods.

ACKNOWLEDGMENT

This research was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

The authors would like to thank Arnaud Legrand for his
help and comments and Michael Mercier for his help in the
simulation. We thank the contributors of the Parallel Work-
loads Archive, Victor Hazlewood (SDSC SP2), Travis Earheart
and Nancy Wilkins-Diehr (SDSC Blue), Lars Malinowsky
(KTH SP2), Dan Dwyer, Steve Hotovy (CTC SP2), and Ake
Sandgren (HPC2N).

REFERENCES

[1] “TOP500 Supercomputer Sites,” https://www.top500.org/, 2018, online;
last access 30 november 2018.

[2] P. Brucker, Scheduling Algorithms, fifth edition ed. Springer, 2007.
[3] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and

P. Wong, “Theory and practice in parallel job scheduling,” in Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, 1997,
pp. 1–34.



[4] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, work-
loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 6, pp. 529–543, 2001.

[5] C. A. Floudas and X. Lin, “Mixed integer linear programming in
process scheduling: Modeling, algorithms, and applications,” Annals of
Operations Research, vol. 139, no. 1, pp. 131–162, Oct 2005. [Online].
Available: https://doi.org/10.1007/s10479-005-3446-x

[6] H. Al-Daoud, I. Al-Azzoni, and D. G. Down, “Power-aware linear
programming based scheduling for heterogeneous computer clusters,”
in International Conference on Green Computing, Aug 2010, pp. 325–
332.

[7] J. E. Pecero, D. Trystram, and A. Y. Zomaya, “A new genetic algorithm
for scheduling for large communication delays,” in European Conference
on Parallel Processing. Springer, 2009, pp. 241–252.

[8] E. S. H. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multi-
processor scheduling,” IEEE Transactions on Parallel and Distributed
Systems, vol. 5, no. 2, pp. 113–120, Feb 1994.

[9] A. Agarwal, S. Colak, V. S. Jacob, and H. Pirkul, “Heuristics
and augmented neural networks for task scheduling with non-
identical machines,” European Journal of Operational Research,
vol. 175, no. 1, pp. 296 – 317, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221705004303

[10] F. Xhafa and A. Abraham, “Computational models and heuristic
methods for grid scheduling problems,” Future Generation Computer
Systems, vol. 26, no. 4, pp. 608 – 621, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X09001782

[11] B. S. Baker, E. G. Coffman, Jr, and R. L. Rivest, “Orthogonal packings
in two dimensions,” SIAM Journal on computing, vol. 9, no. 4, pp. 846–
855, 1980.

[12] M. Bougeret, P. Dutot, K. Jansen, C. Otte, and D. Trystram,
“Approximation algorithms for multiple strip packing,” in Approximation
and Online Algorithms, 7th International Workshop, WAOA 2009,
Copenhagen, Denmark, September 10-11, 2009. Revised Papers,
2009, pp. 37–48. [Online]. Available: https://doi.org/10.1007/978-3-
642-12450-1 4

[13] D. Ye, X. Han, and G. Zhang, “Online multiple-strip packing,”
Theoretical Computer Science, vol. 412, no. 3, pp. 233 – 239, 2011,
combinatorial Optimization and Applications. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397509006896

[14] J. L. Hurink and J. J. Paulus, “Online algorithm for parallel job schedul-
ing and strip packing,” in International Workshop on Approximation and
Online Algorithms. Springer, 2007, pp. 67–74.

[15] S. Zhuk, “Approximate algorithms to pack rectangles into several strips,”
Discrete Mathematics and Applications dma, vol. 16, no. 1, pp. 73–85,
2006.

[16] D. Ye and G. Zhang, “On-line scheduling of parallel jobs in a list,”
Journal of scheduling, vol. 10, no. 6, pp. 407–413, 2007.

[17] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer,
2016.

[18] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-
based job scheduling on BlueGene/P systems,” in Cluster Computing
and Workshops, 2009. CLUSTER’09. IEEE International Conference on.
IEEE, 2009, pp. 1–10.

[19] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving
backfilling by using machine learning to predict running times,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: ACM, 2015, pp. 64:1–64:10. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807646

[20] D. Carastan-Santos and R. Y. de Camargo, “Obtaining dynamic
scheduling policies with simulation and machine learning,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 32:1–32:13. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126955

[21] J. Lelong, V. Reis, and D. Trystram, “Tuning EASY-Backfilling
Queues,” in 21st Workshop on Job Scheduling Strategies for Parallel
Processing, ser. 31st IEEE International Parallel & Distributed
Processing Symposium, Orlando, United States, May 2017. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01522459

[22] E. Gaussier, J. Lelong, V. Reis, and D. Trystram, “Online tuning of
easy-backfilling using queue reordering policies,” IEEE Transactions on

Parallel and Distributed Systems, vol. 29, no. 10, pp. 2304–2316, Oct
2018.

[23] G. P. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber, and
L. Ramakrishnan, “Towards understanding hpc users and systems: a
nersc case study,” Journal of Parallel and Distributed Computing, vol.
111, pp. 206–221, 2018.

[24] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967 – 2982, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001154

[25] D. G. Feitelson and L. Rudolph, “Metrics and benchmarking for parallel
job scheduling,” in Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, 1998, pp. 1–24.

[26] D. Zotkin and P. J. Keleher, “Job-length estimation and performance
in backfilling schedulers,” in High Performance Distributed Computing,
1999. Proceedings. The Eighth International Symposium on. IEEE,
1999, pp. 236–243.

[27] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The easy—loadleveler
api project,” in Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, 1996, pp. 41–47.

[28] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of backfilling strategies for parallel job scheduling,” in
Parallel Processing Workshops, 2002. Proceedings. International Con-
ference on. IEEE, 2002, pp. 514–519.

[29] P.-F. Dutot, M. Mercier, M. Poquet, and O. Richard, “Batsim: A realistic
language-independent resources and jobs management systems simula-
tor,” in Job Scheduling Strategies for Parallel Processing, N. Desai and
W. Cirne, Eds. Cham: Springer International Publishing, 2017, pp.
178–197.

[30] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available:
http://hal.inria.fr/hal-01017319

[31] D. G. Feitelson, “Resampling with feedback — a new paradigm of using
workload data for performance evaluation,” in European Conference on
Parallel Processing. Springer, 2016, pp. 3–21.

[32] “Parallel Workloads Archive: Logs,”
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html, 2018, online;
last access 30 november 2018.


