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Abstract. Several solutions for multimodal vibration damping of thin mechanical structures based on
piezoelectric coupling have been developed over the years. Among them, piezoelectric network damping
consists in using piezoelectric transducers to couple a structure to an electrical network, where the
transferred electrical energy can be dissipated. In particular, the effectiveness of coupling rods, beams
and plates to networks which are their electrical analogues has been proven. This work is the first step
going towards more complex structures. After defining and experimentally validating a new electrical
analogue of a simply-supported plate, the study is extended to the damping of a non-periodic plate.
Experiments show that in this case, a broadband damping is achieved once the piezoelectric transducers
are coupled to an adequate analogous network. A finite element model of the structure coupled to its
analogous network is concurrently developed and validated.

1 INTRODUCTION

Singlemode damping ofmechanical vibrations using the piezoelectric coupling goes back to the 1990s,
when the resonant shunt was described by Hagood and Von Flotow [1]. The concept of piezoelectric
damping has then been extended to multimodal damping. Some passive solutions consider connecting a
multi-branch shunt to a piezoelectric transducer [2, 3]. While adding only one piezoelectric transducer
to the structure is barely intrusive, its position and dimensions cannot simultaneously maximize the
electromechanical coupling for all modes [4]. For these reasons, the damping performance might be
limited. Other solutions include several independent piezoelectric transducers, each one being shunted in
order to damp one mode of the structure. However, the resulting electromechanical coupling coefficients
are inferior to the ones that would be induced by interconnecting all piezoelectric transducers.

In the early 2000s, the idea of interconnecting piezoelectric transducers with electrical components
emerged. The concept of achieving broadband damping by coupling a structure to an electrical network
was first proposed by Vidoli and dell’Isola [5]. Meanwhile, the electrical analogues of mechanical
structures, as defined by MacNeal and Benscoter [6, 7] in the early 1950s, have been revived for
multimodal vibration attenuation purposes [8]. As a consequence, piezoelectric network damping of
plates has been studied [9, 10], and implemented recently [11, 12]. The next objective is to study the
multimodal damping of complex structures coupled to their electrical analogues. To study the case of a
non-periodic plate is considered as the first step towards this goal.
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Moreover, a predictive model of the dynamics of the coupled system would be helpful to investigate
the limits of the analogy between the structure and its electrical analogue. It could also be used to find
the resistive components to add to the network to get an optimized damping performance. To develop
such a model, the work of Thomas et al. [13] concerning a structure covered by thin piezoelectric patches
is taken as the starting point.

Section 2 explains how to define a plate electrical analogue. It is applied to a practical setup of
a simply-supported plate, and validated by comparing mechanical and electrical measurements. In
section 3, we develop a finite element model of the plate coupled to its electrical analogue. The model
is validated by comparing simulated and experimental results. Finally, the case of a non-periodic plate
is addressed in section 4. A mass is added on the plate to break its symmetry. The designed electrical
analogue is experimentally validated and passive broadband damping is still achieved.

2 PLATE ELECTRICAL ANALOGUE

In this first section, the direct electromechanical analogy is applied to a finite difference model of
a square plate. The resulting set of equations can be represented by an electrical circuit with lumped
elements. The electrical analogue of a square plate is then assembled to produce a plate electrical
analogue, which is implemented and validated. The validation is conducted by comparing the operational
shapes of the plate and of its electrical analogue.

2.1 Finite difference model of a square plate

The motion of a plate of thickness h, mass density ρ and bending stiffness D is described by the
Kirchhoff-Love plate theory, so that

−D
(
∂4w

∂x4 +2
∂4w
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∂4w

∂y4

)
= ρh Üw. (1)
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With these notations, w is the displacement in the direction normal to the plate, a is the side of the square
plate, m = ρha2 is its mass, Qx and Qy are the shear forces in the plate, θx and θy are the angles along the
principal directions, and M is a linear combination of the bending moments along the x and y directions
defined by Timoshenko in [14]. A finite difference pattern, as represented in Figure 1, is then applied to
the plate model. The resulting system of equations obtained from Eqs. (2) is expressed by{
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2.2 Design of the plate electrical analogue

The direct electromechanical analogy, such as presented by Bloch in [15], allows the representation
of mechanical structures with passive electrical components. In the case here studied, this means that the
electrical analogue of a square plate is defined by replacing mechanical quantities in Eqs. (3) by electrical
quantities, according to the analogy in Table 1. The first two equations in the system of Eqs. (3) can
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Figure 1: Discretization grid, where I, B, L,
R, T refer to the central, bottom, left, right

and top positions, respectively

Mechanical quantities Electrical quantities
Force Q Voltage Vw

Moment M Voltage Vθ
Linear velocity Ûw Electrical current Ûqw
Angular velocity Ûθ ⇐⇒ Electrical current Ûqθ
Compliance 1/D Capacitance C

Mass m Inductance L
Lever arm a/2 Transformer ratio â/2

Table 1: Direct electromechanical analogy
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â/
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L

C
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Figure 2: Scheme and picture of the electrical analogue of a square plate, which highlight the central
transformer in red, a side transformer in blue, the inductance in green, and the capacitance

connection in yellow

be understood as constitutive equations of an ideal inductor of inductance m and an ideal capacitor of
capacitance 1/D. The remaining equations can be interpreted as constitutive equations of transformers
of ratio a/2. Hence, the Figure 2 represents the unit cell of the plate electrical analogue. The electrical
analogue of a rectangle plate can then be defined by assembling this unit cell along the x and y directions.

Moreover, the boundary conditions of the plate should be reproduced in the electrical network. In
particular, the simply-supported and clamped edges have direct equivalent electrical connections. Indeed,
if for example the left edge of the unit cell is a boundary, then the simply-supported condition is equivalent
to command that VθL = 0 and ÛqwL = 0, while the clamped condition is equivalent to command ÛqθL = 0
and ÛqwL = 0 [12].

Finally, the electrical components should be tuned so that the natural frequencies of the network
are equal to the natural frequencies of the plate [11]. This ensures identical bending wave propagation
properties in the two media. In this case, the modal coupling condition is

1
a2

D
m
=

1
â2

1
LC

. (4)
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(a) Shape
at 102 Hz

(b) Shape
at 223 Hz

(c) Shape
at 268 Hz

(d) Shape
at 389 Hz

(e) Shape
at 543 Hz

Figure 3: Measurement of five operational deflection shapes of the plate

(a) Shape
at 101 Hz

(b) Shape
at 218 Hz

(c) Shape
at 250 Hz

(d) Shape
at 376 Hz

(e) Shape
at 468 Hz

Figure 4: Measurement of five operational electrical current shapes in the network

2.3 Validation of the plate electrical analogue

The considered setup is a simply-supported aluminium plate of dimensions 420×360×3 mm3. It is
periodically covered with 42 square piezoelectric patches of dimensions 50×50×0.5mm3. The objective
is to develop the electrical analogue of this structure. Hence, a network made of 42 identical unit cells
has been assembled. The structure and its analogous network are shown in Figure 7, while one unit cell is
shown in Figure 2. A way to validate the plate electrical analogue is to compare its operational electrical
current shapes to the deflection shapes of the plate.

Since the network should be tested alone for validation, the piezoelectric patches are replaced by
ceramic capacitors which have a nominal capacitance of 145 nF. Then, following the method described
in [16], the inductors are made by winding conductive wire around a RM10 core of N48 ferrite material
fromEpcos TDK. The nominal inductance and series resistance of the produced inductors are L = 244mH
and RsL = 13.7 Ω. Finally, the ratio of the transformers is â = 4, and their nominal series resistance is
16.8 Ω when used with a 1:1 ratio. An inductor and several transformers are pictured in Figure 2.

By analogy with an exciting external force, an external voltage is applied between two unit cells of the
network. The voltage Vex is applied through an isolation transformer of ratio k, such as represented in
Figure 5. At the same time, the voltage dropVL across each inductor of the network is measured. Dividing
VL by the impedance RsL + jLΩ leads to the electrical current ÛqwI flowing through each inductor. As a
consequence, plotting the shapes of ÛqwI/kVex is equivalent to plotting the operational deflection shapes
of a plate excited by a point load. Several operational deflection shapes of the plate have been measured
using a laser vibrometer and are represented in Figure 3. These can be compared to the operational
current shapes in Figure 4. Plotted shapes look alike, even though some shapes are slightly different, such
as in Figure 3c and Figure 4c. This can be explained by the heavy damping due to resistive components
in the electrical network. Hence, operational electrical current shapes may spill over onto each other.
It is the case in Figure 4c, where the measured current distribution looks like a combination of modes
(1,2) and (2,1). For this reason, further investigations could include the experimental modal analysis to
separate the contributions of modes. Anyway, comparing operational shapes offers a first validation of
the plate electrical analogue.
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Vex

kVex

1:
k

Figure 5: Schematic representation
of the excitation setup for the

measurement of network modes

Figure 6: Experimental and simulated FRFs, with VL measured
across the inductor of the unit cell highlighted in blue in Figure 5

Furthermore, we developed a lumped model of the entire network. The unit cells, as schematised in
Figure 2, are put together following an assembly process. The boundary conditions are then set such
as described in section 2.2. The numerical Frequency Response Functions (FRFs) VL/kVex can thus
be compared to measurements. As an example, a comparison is plotted in Figure 6 for VL measured
in the unit cell highlighted in blue in Figure 5. The simulated FRFs fit with the the measured ones.
The remaining differences can be reduced by taking other parasitic elements of the transformers into
account, such as the magnetizing branch and the winding capacitance. These kinds of refined models are
not presented for the sake of conciseness, and because the correlation between the proposed model and
experiments is considered good enough to validate the concept of the plate electrical analogue.

3 FINITE ELEMENT MODEL OF A STRUCTURE COUPLED TO ITS ELECTRICAL ANA-
LOGUE

The main steps to model the dynamics of a mechanical structure covered by piezoelectric patches are
recalled. Then, the effect of the interconnections between patches via an electrical network is accounted
for. The simulated results are finally compared to experiments in order to validate the approach.

3.1 Finite element formulation

To model the vibrations of a continuous medium covered with piezoelectric patches, we follow the
method described by Thomas et al. in [13]. Though all equations are not detailed in this paper, the main
steps to develop a finite element model of the structure are recalled.

The electric field is denoted E. The electric displacement is denoted D. Using the Voigt notation, the
linearized stress and strain vectors are respectively denoted σ and ε. The electro-mechanical constitutive
equations linking these quantities are

σ = CEε− eTE,
D = eε+ εεεεεεE, (5)

where CE is the matrix of elastic coefficients at constant electric field, e is the matrix of piezoelectric
coefficients, and εεεεεε is the matrix of dielectric permittivities at constant strain. The structure is modelled
as an isotropic homogeneous linear elastic medium in which e = 0. Furthermore, the piezoelectric
transducers exhibit transverse isotropic properties and are polarized in their transverse directions n(j). The
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patches thickness’s, denoted h(j), are considered small when compared to their longitudinal dimensions.
Hence, the electrical field E(j) in the j-th piezoelectric patch is supposed uniform and normal to the
electrodes. It can be expressed as a function of the potential difference V (j) between electrodes of each
patch:

E(j) = −
V (j)

h(j)
n(j). (6)

To derive the mechanical equation of the variational formulation, the elastodynamic equation, in which
prescribed body forces are neglected, is considered. To derive the electrical equation, it is Gauss’s law
involving no free charges which is considered. These equations are then multiplied by test functions
and integrated over the entire volume of the structure. The prescribed surface forces and free charge
densities are taken into account as boundary conditions. Then, the constitutive equations of the medium
are applied to get the variational formulation in terms of displacement u and electric potential V (j).

The equations of the variational formulation are then discretized. Following an assembly process, we
obtain a finite element formulation of the coupled problem:(

Mm 0
0 0

) (
ÜU
ÜV

)
+

(
Km Kc
−Kc

T Ke
−1

) (
U
V

)
=

(
F
Q

)
, (7)

where U contains the nodal values of the displacement field u and V contains the voltage values
(V (1), ... ,V (P)) on the upper electrodes of the piezoelectric patches. F represents the external me-
chanical forces applied to the structure, while Q are the electrical charges on the upper electrodes of the
piezoelectric patches. Kc is the coupling matrix, and Mm and Km are the mass and mechanical stiffness
matrices. Ke is a diagonal matrix in which the j-th term is the inverse of the blocked piezoelectric
capacitance C(j) of the j-th patch, which is

C(j) =
ε33

εS(j)

h(j)
, (8)

where S(j) is the j-th patch surface and εε33 is the transverse permittivity of a piezoelectric medium with
no strain. In the case of plate bending, this quantity can be estimated with materials constants. More
details are available in [11].

3.2 Coupling of a structure to its electrical analogue

The piezoelectric patches bound to the structure are interconnected via the plate electrical analogue.
Hence, using the notations in Figure 2, V contains in fact the voltage values (V (1)

θI , ... ,V
(P)
θI ), while the

j-th element of Q is equal to the charge q(j)
θB − q(j)

θT + q(j)
θL − q(j)

θR flowing through the capacitance C(j). As
a consequence, the network is a passive electrical controller that commands a relationship between V
and Q. We choose to express these vectors in terms of the 42 electrical charges qwI flowing through
the inductors of the network, whose values are contained in the vector Qw. Using a symbolic solver, we
obtained these relations:

V = −

(
Me ÜQw +De ÛQw

)
, (9)

Q = PQw,

which leads to the finite element formulation of themechanical structure coupled to its electrical analogue:(
Mm 0
0 Me

) (
ÜU
ÜQw

)
+

(
0 0
0 De

) (
ÛU
ÛQw

)
+

(
Km+KcKeKc

T KcKeP
KeKc

T KeP

) (
U

Qw

)
=

(
F
0

)
. (10)

6



R. Darleux, B. Lossouarn and J.-F. Deü

Figure 7: Setup including the plate covered with
piezoelectric transducers, a shaker, a laser
vibrometer and the plate electrical analogue
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Figure 8: Meshing of the mechanical structure
and location (in red) of both the excitation and

the velocity measurement

The expressions of the electrical "mass" matrix Me, the electrical damping matrix De, and the transfer
matrix P are not detailed in this work for the sake of conciseness. We just precise these three matrices
depend on the transformer ratio â. Moreover, Me is a function of the inductance value L, while De is a
function of the series resistance of the inductors RsL and the series resistance of the transformers.

3.3 Validation of the finite element model

Numerical simulations are compared to practical measurements to validate the finite element model
developed in the previous sections. The experimental setup is presented in Figure 7. The simply-supported
plate periodically covered with piezoelectric patches is suspended. A shaker applies a point load and a
force transducer measures it. A laser vibrometer measures the velocity on the other side of the plate.
The red marker in Figure 8 represents the location of both the excitation and the velocity measurement.
Moreover, the upper electrodes of the patches are either connected to the ground or to the network thanks
to switches, which can be spotted in Figure 2.

The structure is modelled with 20-node hexahedral elements. Both the plate and the piezoelectric
patches are meshed with one element in depth. In the other directions, the piezoelectric patches as well as
the plate beneath them are meshed with nx ×ny elements. Taking nx = ny = 3 leads to converged values
for natural frequencies of the undamped structure up to 1 kHz. As a consequence, the Figure 8 represents
the mesh used to obtain all the following numerical results.

The plate is made of duralumin. Its Poisson’s ratio and density are respectively set at 0.346 and
2800 kg/m3. Its Young’s modulus is set at 68.8 GPa to adjust the eleventh natural frequency of the plate
calculated with short-circuited piezoelectric patches to the corresponding resonances in the experimental
measurement. This corresponds to the last peak before 900 Hz as plotted in Figure 9. The piezoelectric
patches are made of the PIC 153 PZT material. The coefficients of matrices in Eq. (5) are either taken
from manufacturer’s data when available, or extrapolated from datasheets of other PZT materials.

The case of short-circuited patches is simulated by imposing all voltage values inV to ground potential
in Eq. (7). The plotted results in Figure 9 show that the numerical simulation forecasts the dynamics
of the structure up to 900 Hz rather well. Moreover, the remaining differences between numerical and
experimental results could be reduced. First of all, the plate is linked to a rigid frame via thin supports.
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Figure 9: Experimental and simulated FRFs with short-circuited piezoelectric patches

Figure 10: Experimental and simulated FRFs when the plate is coupled to its electrical analogue

The plate is the only part of the assembly that is modelled. Since the peak at 687 Hz is a frame mode,
it can not be predicted. Furthermore, the gaps between the first simulated and measured peaks can be
attributed to the non-ideal experimental boundary conditions. This has been explained by Robin et al.,
who designed a first version of the setup in [17]. Finally, the structural damping has been neglected,
which explains the amplitude differences at resonances.

The case of the structure being coupled to its passive electrical analogue is then considered. As seen
in Figure 10, a broadband vibration damping is achieved. Meanwhile, the frame mode at 687 Hz is
barely affected by the connection to the network, which was expected. Besides, the model in Eq. (10)
is able to predict the dynamics of the structure coupled to its electrical analogue. The modelling limits
highlighted in Figure 9 remain true in this case. Hence, this model could be used to find the optimal
resistive components to be added to the network in order to optimize the damping performance.
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Figure 11: Experimental and simulated FRFs with short-circuited piezoelectric patches and an added
mass

4 BROADBAND VIBRATION DAMPING OF A NON-PERIODIC PLATE

In this section, the broadband damping achieved by coupling a structure to its electrical analogue is
extended to the case of a non-periodic plate. A mass is locally added on the plate, and its influence on
the dynamics of the system is modelled. We then define the non-periodic plate electrical analogue and
verify that the first few modes of the structure are significantly damped.

4.1 Non-periodic plate electrical analogue and validation

Designing the electrical analogue of a non-periodic plate is the first step towards more complex
structures. As a consequence, we decided to add a mass which is a 22 mm thick, 40 mm diameter
cylindrical rod of 207 g. This mass is added on the side of the plate which is not covered by piezoelectric
patches, on the hatched position in Figure 8.

The mass is added in the finite element model as well, in the form of a 22 mm thick patch covering
the same surface as a piezoelectric patch. Its Young modulus is set at 325 MPa. This way, the seventh
simulated natural frequency of the plate with short-circuited patches is adjusted to the seventh peak on
the measured FRF. The correlation between numerical and experimental results in this case is shown in
Figure 11. When compared to the results in Figure 9, one can notice that the natural frequencies of the
plate have been lowered, that the contact with the added mass induces damping in the measured FRF, and
that a frame mode at 203 Hz is now excited. Since the structural damping and the frame are not taken into
account, their effects are not foreseen by our model. The simulated FRF fits quite well with the measured
one nonetheless.

The non-periodic plate here considered is obtained by locally adding some mass and some stiffness
to the structure. To get its electrical analogue, the first natural frequency of the electrical network should
be adjusted to the first natural frequency of the non-periodic plate. The first simulated resonance in
Figure 11 is used as a reference value for the structure. In other words, Eq. (4) should remain true, while
a and â have set values and D and m are locally modified. Thus, one should modify the product of the
capacitance C by the inductance L of the corresponding unit cell of the network. Not to deteriorate the
electromechanical coupling [18], only L is modified to adjust the first natural frequency of the electrical
network. The calculations, which are not detailed here, show in this case that the initial inductance of
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(a) Shape
at 93 Hz

(b) Shape
at 199 Hz

(c) Shape
at 244 Hz

(d) Shape
at 361 Hz

(e) Shape
at 417 Hz

Figure 12: Measurement of five operational deflection shapes of the plate when a 207 g mass (in black)
is added

(a) Shape
at 92 Hz

(b) Shape
at 193 Hz

(c) Shape
at 230 Hz

(d) Shape
at 341 Hz

(e) Shape
at 384 Hz

Figure 13: Measurement of five operational electrical current shapes in the network when a 1.34 H
inductance (in black) replaces a 244 mH inductance of the network

244 mH should be replaced by an inductance of 1.34 H.
As previously explained in section 2.3, one way to validate the non-periodic plate electrical analogue

is to compare the mechanical and electrical operational shapes. The measurements are still made with
the setups presented in Figures 7 and 5. The results are shown in Figures 12 and 13. Since the plotted
shapes look alike, we consider that the non-periodic network is the electrical analogue of the modified
structure.

4.2 Multimodal vibration damping

The non-periodic plate is now coupled to its passive electrical analogue. The FRF measurement is
made with the same setup as described in section 3.3. As seen in Figure 10, broadband damping is
achieved in this case as well. This result validates the approach of coupling a non-periodic structure to
its fully passive electrical analogue for multimodal damping purposes.

Moreover, the simulated results fit rather well with the measured ones. The remaining differences
are due to the differences already spotted in Figure 11, and hence could be reduced by modelling the
structural damping. As it is, it seems that the finite element model developed in this work can be used to
predict the dynamics of a complex structure coupled to its electrical analogue. It could also be used to
forecast where resistive components could be added in the network to improve the damping performance.

5 CONCLUSION

The first objective of this work is to develop a finite elementmodel of a structure coupled to an electrical
network interconnecting piezoelectric transducers. A structure covered with thin piezoelectric patches
is considered. The electrical network is viewed as a passive controller that commands a relationship
between the voltages and the charges on the upper electrodes of the piezoelectric transducers. The
numerical results show a good agreement with measurements, even though the model could be improved.
In the case here studied, the possible improvements include taking into account the structural damping
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Figure 14: Experimental and simulated FRFs when the non-periodic plate is coupled to its electrical
analogue

of the plate and the non-ideal boundary conditions of the setup. Anyway, the actual model can predict
the dynamics of the coupled system. It could also be used to validate the analogy between a mechanical
structure and its electrical analogue.

The other objective of this work is to extend to non-periodic structures the concept of coupling to an
electrical analogue for passive multimodal damping purposes. To do that, the electrical analogue of a
simply-supported plate is designed and its dynamics is experimentally validated. Finally, we measure the
damping performance that is attainable by connecting the plate electrical analogue to the structure. These
steps are repeated in the case of a plate on which a mass has been added in order to make it non-periodic.
The final measurements highlight the achievable damping performance with a fully passive electrical
network connected to the non-periodic structure. It is a first step towards trying to couple a complex
structure to its electrical analogue for multimodal damping purposes.
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