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ABSTRACT: Critical analysis of the data reported by Zhong
et al. (J. Am. Chem. Soc. 2013, 135 (22), 8350−8356) is
carried out. In particular, one of the main results of Zhong et
al. concerning the formation of photoluminescent silicon
nanoparticles (Si NPs) in an aqueous solution of (3-
aminopropyl)trimethoxysilane (APTMS) and trisodium cit-
rate dihydrate (Na3Cit) under microwave heating is
impugned. These results are reconsidered here because of
what appear to be significant inaccuracies and misinter-
pretations that have been spread through a wide number of
other subsequent publications.

Being stable, environmentally benign, and inexpensively
synthesized, silicon-based nanomaterials have versatile

and wide-ranging optical, electronic, and biocompatible/
biodegradable properties.2−4 In particular, due to their unique
optical characteristics, silicon-based colloidal nanoparticles
(NPs) are well-known to be extremely promising for various
multidisciplinary applications, such as bioimaging,5,6 drug
delivery,7 photoinduced therapy,8 and many others.9−12 A
variety of physical, chemical, physicochemical, and electro-
chemical techniques have been developed to produce
dispersions of luminescent nanometer sized silicon crystal-
lites.13,14

In 2013, a new aqueous synthetic approach based on one-
pot synthesis of fluorescent Si NPs, using of (3-aminopropyl)-
trimethoxysilane (APTMS) as the silicon source and trisodium
citrate dihydrate (Na3Cit), was reported by Zhong et al.1 This
work has attracted a great deal of attention from the scientific
community since 2013 and has accumulated 227 citations
according to Google Scholar (June 6, 2019), 203 citations
according to Scopus (May 18, 2019), and 191 citations
according to SciFinder (June 6, 2019). Among all these papers,
special attention should be paid to those that specifically
mention use of the approach described in this paper for the
basis of or jumping off point for their own work.15−51 At first
inspection, the proposed technique seems to have many
advantages in comparison with most other approaches
reported earlier. Of these advantages, one can emphasize in
particular the following: (i) water is used as a solvent, (ii) short
reaction times are sufficient (15 min), (iii) low temperatures
are needed (160 °C), and (iv) inexpensive precursors work
well. However, taking into account common accepted

knowledge in the field of silicon chemistry,52−54 low
temperature formation of crystalline Si0 nanoparticles (as
reported by Zhong et al.) from the water solutions of
alkoxysilanes seems very doubtful. Indeed, it remains entirely
unclear which reactants in the reaction mixture are remotely
capable of reducing a silicon atom bound to oxygen. Moreover,
silicon nanoparticles of the claimed size are extremely difficult
to passivate and would be very rapidly oxidized to SiO2 under
the action of water.5 If the reported reduction of the Si−O
bonds by citrate were reproducible by other groups, the impact
of this discovery would be much more important than just an
easy and scalable method for preparation of Si NPs for
biological applications. It would represent a new page of silicon
chemistry that opens the door to the preparation of
inexpensive silicon and silicon-based materials manufacturing.
Thus, it deserves to be further investigated to avoid any
incorrect speculation on that theme.
First of all, the TEM micrographs presented by Zhong et al.

(Figure 1a) as well as a similar image from ref 17 show (i) a
number of spherical particles without any evidence of
crystallinity at a 5 nm scale and (ii) a single obviously
crystalline particle at a 1 nm scale. However, if the lattice
fringes are clearly visible at a 1 nm scale, they should be also
visible at a 5 nm scale at least for a few particles having the
correct orientation with respect to the incident electron beam
(e.g., see Figure 1b). Furthermore, taking into account the
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scale bar (1 nm) in Figure 1a, the lattice spacing cannot
correspond to 0.19 nm as is indicated, but rather to 0.057 nm,
which seems doubtful for Si NPs.
An XRD pattern of the particles prepared by Zhong et al.

(Figure 1c) differs significantly from typical XRD patterns of Si
NPs (Figure 1d). Indeed, no characteristic broad peaks
inherent to the nanoscale crystallites55 can be seen on Figure
1c. The narrow and barely visible peaks at 2θ = 28 and 47° in
Figure 1c can be related rather to traces of some crystalline
admixtures (inorganic salts, for example), residual peaks from
the “zero-background sample holder made of monocrystalline
silicon plate”1 or other artifacts. Furthermore, no data
regarding the X-ray source is given in the original paper.
Thus, the XRD data does not provide solid evidence of the
formation of the 204 nm crystalline Si NPs.
Finally, according to the best practices of NP character-

ization,58 provision of XPS data is absolutely necessary. Indeed,
it could shed light on the oxidation state of silicon atoms in the
particles. However, no thorough XPS analysis was provided in
this publication, and thus, the compositional identity of the
NPs is still questionable.
In order to check the assumption expressed by Zhong et al.

regarding the formation of Si NPs, the following control
reactions between sodium citrate and organic amine (one
containing silicon, APTMS, and one without silicon, n-
propylamine) have been carried out.
The reaction conditions were chosen to be the closest to

those by Zhong et al., as described here. In particular, 5 mmol
of amine was added to 10 mL of deionized water. Then, 5

mmol of trisodium citrate was added. In the case of n-
C3H7NH2, 15 mmol of methanol was added to simulate the
same conditions as in the case of APTMS, which hydrolyzes in
water to produce methanol. At this point, the solutions were
transferred into 25 mL PTFE-lined stainless steel autoclaves.
The sealed autoclaves were heated to 180 °C in an electric
oven and left for an additional 5 h at this temperature. The
final solutions were centrifuged at 10 000 rpm for 5 min, but
no precipitate was observed to form, as had been reported.
Products of the reactions of Na3Cit with both Si-containing

APTMS and Si-free n-C3H7NH2 appeared as yellowish
(colorless upon dilution) clear solutions with bright blue
photoluminescence (PL) under UV excitation (Figure 2a).
Steady-state PL and absorption spectra were collected using an
Edinburgh Instruments Ltd. FLS920 spectrometer with a Xe
lamp (150W, Hamamatsu) as the excitation source. The PL,
PL excitation, and optical absorbance spectra were found to be
identical (Figure 2b,c), independent of the presence or absence
of silicon in the organic amine. Furthermore, the general
appearance and the spectral properties of the “Si NPs sol”
described by Zhong et al. are also identical to those shown
here in Figure 2.
In addition, to further confirm the similarity of the reaction

products, time-resolved PL and PL photostability experiments
were carried out. A picosecond pulsed laser EPL-375 (λem =
377.2 nm, 76.4 ps pulse width) was used as an excitation
source for the time-resolved PL measurements. Figure 3a
shows time-resolved PL of the both samples. The degree of the
similarity between the two samples is obvious, and indeed

Figure 1. (a) HRTEM images of the Na3Cit + APTMS reaction product. Reprinted with permission from ref 1. Copyright 2013 American
Chemical Society. (b) HRTEM images of plasma synthesis Si NPs. Reprinted with permission from ref 56. Copyright 2009 American Chemical
Society. (c) Powder XRD patterns of the Na3Cit + APTMS reaction product. Reprinted with permission from ref 1. Copyright 2013 American
Chemical Society. (d) Powder XRD patterns of crystalline Si and H-terminated Si NPs of different sizes. Reprinted with permission from ref 57.
Copyright 2019 American Chemical Society.
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fitting with a single exponent (y = y0 + Ae−x/τ) yields close PL
lifetimes: 7 and 8 ns for n-C3H7NH2 and APTMS derived
samples, respectively. Such low and similar PL lifetimes
suggests a common molecular nature of the luminescent
species.
A 100 W Hg lamp (UVP, Blak-Ray B-100AP, 21,700 μW/

cm2 at 2 in.) with a 365 nm bandpass filter was used for
illumination of the samples to study their PL photostability.
Aqueous solutions (15 mL) of both samples with similar PL
intensities were mounted in the center of the lamp beam, with
a distance of 5 cm from the lamp filter (effective radiated cross-
sections of the tubes were ∼15 cm2). Samples were collected,
and their PL spectra were measured at certain time moments.
As one can see in Figure 3b, the observed photobleaching
dynamics are identical for both samples. The results of
comparative analysis of time-resolved PL and photobleaching
behavior are in good agreement with the other optical
properties described above. All these experimental data
strongly emphasize the similarity of the products obtained
during the reactions between sodium citrate and organic
amines, which of course includes the sample containing
APTMS (the Si-containing amine) and the silicon-free sample
that only has n-propylamine.
Thus, we can conclude with some certainty that silicon is

not responsible for the optical properties of the obtained
reaction products. Of course, Si atoms could be introduced
into the structure of the (Na3Cit + APTMS) reaction product,
but their impact on the resulting optical properties is
negligible. Considering the experiments described earlier, as
well as taking into account the general chemical properties of
silicon, it seems reasonable to assume that the formation of Si
NPs (with a Si0 crystalline core) under the hydrothermal
conditions of ref 1 seems rather doubtful and improbable.
As for the data of Zhong et al. as it pertains to the optical

properties, the observations may be simply attributed to
organic carbon-containing particles and/or molecular fluo-
rophores formed as a result of multiple chemical trans-
formations (predominantly, condensation reactions). Indeed,
the PL properties reported by Zhong et al. are similar to those
of different carbon nanoparticles and organic dyes. Further-
more, numerous papers devoted to the synthesis of photo-
luminescent carbon nanoparticles from different amino-
containing silanes (e.g., APTMS, APTES, etc.) and miscella-
neous organic compounds (e.g., polybasic carboxylic acids,
carbohydrates, etc.) have been published.59−61 According to
the described findings, the aminosilane serves as the nitrogen
source and as the surface modifier. Thus, the obtained carbon
nanoparticles have alkoxysilane-covered surfaces and could be
involved in further transformations.
Finally, according to the literature, citrate or citric acid reacts

with amine-containing compounds under elevated temperature
with formation of brightly luminescent products.60−72 Their
chemical structures are very diverse, changing dramatically
upon synthesis conditions. Particularly, the reaction of citric
acid with ethanolamine72 or ethylenediamine73 under hydro-
thermal treatment results in the formation of either brightly
luminescent molecular compounds of well-defined structure or
small noncrystalline carbon-based nanoparticles. The particles
of this type could be prepared from different molecular
precursors using thermal, hydrothermal, or solvothermal routes
(see comprehensive reviews74,75). Thus, the most acceptable
statement is that the reaction of citrate with APTMS and n-

Figure 2. (a) Appearance of the reaction products under ambient
light (left) and 365 nm irradiation (right). PL, PL excitation, and
absorbance spectra of (b) Na3Cit + n-C3H7NH2 and (c) Na3Cit +
APTMS reaction products (λexcitation = 365 nm and λemission = 450 nm).

Figure 3. (a) Time-resolved fluorescence and (b) PL photostability of
Si-containing (APTMS) and Si-free (n-C3H7NH2) reaction products.
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C3H7NH2 under hydrothermal conditions leads to formation
of carbon-based nanoparticles and/or molecular fluorophores.
In conclusion, the perfect similarity of the optical properties

of the chemical products obtained in the reactions between
sodium citrate and organic amines (Si-containing APTMS and
Si-free n-propylamine) ferments doubt that the results can be
attributed to Si NPs. Proof of Si NPs formation, delivered by
Zhong et al., is insufficient for them to be confident in their
conclusions. Indeed, formation of Si nanocrystallites in the
hydrothermal conditions used by Zhong et al. (especially with
the relatively low energy budget) is rather improbable from all
viewpoints, including a chemical standpoint. One of the most
important goals of this article is to prevent a huge wave of
misinterpretations caused by the article of Zhong et al.
However, the remarkable photoluminescent properties of the
synthesized chemical species may provide access to useful
organic carbon-containing particles that can be successfully
used for numerous interdisciplinary applications.
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