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Abstract

With the rapid expansion of smart cyber—physical systems and environ-
ments, users become more and more concerned about their privacy, and ask
for more involvement in the protection of their data. However, users may not
be necessarily aware of the direct and indirect privacy risks they take to prop-
erly protect their privacy. In this paper, we propose a context-aware semantic
reasoning system, denoted as the Privacy Oracle, capable of providing users
with a dynamic overview of the privacy risks taken as their context evolves.
To do so, the system continuously models, according to a proposed Semantic
User Environment Modeling (SUEM) ontology, the knowledge (received by the
system) about the user of interest and his surrounding cyber—physical environ-
ment. In parallel, it performs continuous reasoning over modeled information,
by relying on set of privacy rules, in order to dynamically infer the privacy risks
taken by the user. To validate our approach, we developed a prototype based
on the semantic web tools such as OWL API, SWRL API and the inference
engine Pellet. We evaluated the system performance by considering multiple
use cases. Our experimental results show that the Privacy Oracle can assist
users by dynamically detecting their incurred privacy risks, and by tracking, in
real-time, the evolution of those risks as user context changes.
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1. Introduction

Advances in mobile and ubiquitous computing, such as the Internet of Things
(IoT), have reshaped the lives of people over the last few years. Current appli-
cations of smart IoT-enabled cyber—physical systems touch almost all aspects of
our daily life including healthcare (e.g., patient and elderly monitoring), enter-
tainment and leisure (e.g., cyber—physical games, smart entertainment spaces,
social events), transportation (e.g., vehicle networks, smart highways), work
(smart manufacturing and work environments), etc.

While such systems promise to ease our lives, they raise major privacy con-
cerns for their users, as the data they collect is often privacy-sensitive, such
as location of individuals, patients’ vital signs, etc. In fact, collected data
could be misused by the providers of such systems or even sold to interested
third parties and exploited for various purposes. Privacy has received exten-
sive attention over the last decade. Existing solutions for privacy protection
vary from data anonymization, (e.g., k-Anonymity [I], 1-Diversity [2]), data
perturbation (e.g., differential privacy [3]), privacy-aware access control [4, 5] to
encryption [6]. However, those solutions have, by and large, not been designed
with the objective of involving data owners (i.e., the system users whose data
is collected) in the protection of their data in mind. On the other hand, several
studies (e.g., [7, [§]) showed that users are becoming more and more conscious
about their privacy and willing to play an active role in controlling their data.
This fact was also backed by the newly released General Data Protection Reg-
ulation (GDPR) [9], which calls for more involvement of users in the protection
of their data by enabling them to control what is collected, when, by whom,
and for what purposes.

Some works, e.g., [10, [IT], tried to deal with this requirement by providing
users with the capability to specify their privacy preferences and to accept pri-
vacy policies that enforce these preferences. Even though such works empower
users by giving them an active role in specifying their preferences, they still
present important limitations. First, the user may not be aware of the direct
and indirect privacy risks associated with sharing his data with a consumer to
correctly specify his preferences in the first place. He may simply not know
what can be inferred from his data, when data bits and pieces are analyzed
in isolation or combined with each other or/and with side information about
the user or his surroundings (e.g., information acquired from external sources
such as social networks). Second, privacy preferences are often defined in a
static way, i.e., they remain unchanged no matters how user’s context changes.
That is, as data sensitivity changes from a context to another, static preferences
fluctuate between being overprotective and under-protective leading to privacy
violations.

The aim of this paper is to address the first limitation, by providing users
with a global overview on the privacy risks they are taking according to their
relevant contexts. This overview can raise the awareness of users, and give
them the ability to make informed and meaningful data sharing decisions with



data consumers. Our work is motivated by the observation that existing legal
frameworks for data protection (e.g., GDPR) might not necessarily deter data
consumers from (intentionally or unintentionally) abusing the data of users.
The Facebook-Cambridge Analytica scandal [I2] is just one episode of a long
series of data abuse scandals that happened despite the existence of binding
data protection laws. Therefore, the users should be involved in controlling
their data, by providing them, at the data sharing decision time, with relevant
information such as the privacy risks involved in sharing their data.

In this paper, we propose a context-aware semantic reasoning system, de-
noted as the Privacy Oracle, capable of inferring the privacy risks that are
relevant in a user’s context, and providing the user with a dynamic overview
of those risks as context changes. Our solution covers the privacy risks that
arise when a user explicitly shares his data with data consumers (e.g., by us-
ing some smart services or apps) as well as those imposed by the surrounding
cyber—physical environment and on which the user has no control such as be-
ing under a CCTV surveillance in a monitored area (e.g., airport, mall, etc.).
To do so, the Privacy Oracle continuously models, using a proposed Semantic
User Environment Modeling (SUEM) ontology, the knowledge (received by the
system) about the user of interest and his surroundings. In parallel, it performs
continuous reasoning over modeled information, by relying on set of privacy
rules, in order to dynamically infer the privacy risks taken by the user. To
validate our approach, we developed a prototype based on semantic web tools
such as OWL API, SWRL API and the inference engine Pellet. The prototype
can be easily deployed on the user smart phone. We validated the risk detection
and evolution process by considering several context changes for the user. We
also evaluated the system performance by considering multiple use cases. Our
experimental results show that the Privacy Oracle can assist users in protecting
their privacy by enabling them to infer and identify the privacy risks they incur
in a certain context and by ensuring a real-time monitoring of incurred risks as
context changes.

The remainder of this paper is organized as follows. Section [2defines the key
terms used in the paper. Section [3|represents the motivations, and identifies our
objectives and scientific challenges. Section [4] highlights an overview of the Pri-
vacy Oracle framework, and details its components starting with the proposed
ontology-based model, the privacy rules, and the followed reasoning process to
infer the risks. Section [5| underlines the implementation and evaluation phases.
Section [6] reviews existing ontologies for user, environment, and context model-
ing. Finally, Section [7] concludes and highlights future perspectives.

2. Terminology

In this section, we represent the terminology used throughout the paper to
convey our different concepts. Specifically, we represent the following concepts:
data owner, data consumer, personal information, privacy risk, and privacy-
sensitive information.



Data Owner: any person whose data is collected, held and processed (e.g., oc-
cupants of smart homes, monitored patients, users of social networks, etc.). This
entity is known also as “Data Subject” (GDPR) [9].

Data Consumer: any stakeholder interested in collecting and/or exploiting
owners’ data. Consumers are classified within two categories based on their role:

e Service Provider: generally known as a service seller, a service provider
is a first-party responsible for collecting data items from owners for well-
specified purposes. A provider can exploit collected data, however, as
stated by the California Consumer Privacy Act (CCPA) [13], they must
be contractually prohibited from disclosing personal information about the
owner for any purpose other than the purpose of performing the services
specified in the contract. As examples of potential providers, we can
cite electricity companies in smart grids, healthcare providers in e-health,
mobile application service providers, etc.

e Third Party: external entity interested in buying owners’ data, or the
corresponding disclosed information (i.e., if owner’s data were exploited
by the provider), from a principally involved party. A third party has
only the rights to exploit the owner’s data for the purpose specified in the
contract. As examples of potential third parties, we can cite government
agencies, market research companies, sales companies, etc. From a legal
perspective, the service provider must notify the data owner in case of
selling their data to a third party [I3]. As well, a third party must not
sell owner’s personal information to another third party unless the owner
has received explicit notice [13].

A Data Owner can be at the same time the Data Consumer and vice versa.

Personal Information (PI): any information relating to an identified or
identifiable data owner (GDPR [9]). According to the US legal fields on data
privacy [14], and inspired from the given NIST definition of PI [I5], a PI can
be classified within two categories:

e Personal Identifiable Information: any information that can be used
to distinguish or trace an owner’s identity, such as name, home or email
address, social security number, biometric records, domain-specific infor-
mation (e.g., patient number in e-health), etc.

e Sensitive Personal Information: any other sensitive information that
is linked or linkable to the owner, such as location, age, marital status,
activity, domain-specific information (e.g., disease, salary, social friends).

Privacy Risk (p.): defined as a risk of disclosing one or many privacy-sensitive
piece of information about a user (i.e., data owner). This disclosure could lead,
in some cases, to a harmful use of the disclosed information against the user.



Privacy-Sensitive Information (p;): defined as a personal information that
could be disclosed about a user (i.e., data owner), in a specific context, when
combining or/and exploiting data related directly or indirectly to the user. A
commonly used classification of privacy-sensitiveness of information relies on
whether the information fulfills the Personal Information definition or not [16].

The NIST guidelines for smart grid cybersecurity [I7] has identified several
potential p; instances, including (1) User-profile information (e.g., age, disease,
salary), (2) habits (e.g., daily activities), behaviors, and preferences patterns,
(3) presence/absence patterns, (4) real-time surveillance, (5) appliances and
medical devices used, (6) fraud detection.

3. Motivations, Objectives and Challenges

In this section, we investigate a real-life scenario to showcase some of the
privacy risks that may be taken by a user when sharing her data with data
consumers. Then, we describe the objective of the paper and the associated
research challenges.

3.1. Running Example

Data Owner Data Consumers
Service Providers Third Parties
Alice buying owners’ data
from providers
o %% e, :
VAJ;' nuq.s Y .ﬁ : Electricity
‘!"——‘ﬁl | Energy Consump Data Provider
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Figure 1: Motivating Scenario

Assume that Alice (cf. Fig. [I) is the owner of a smart home featuring sev-
eral types of intelligent objects such as smart meters for measuring the energy
consumption, smart appliances (e.g., fridge, microwave), etc. Alice is a COPD
(Chronic Obstructive Pulmonary Disease) patient. She pursues her medical
treatment using a deployed NIV (Non-Invasive Ventilation) machine at home.
We consider at this stage the worse case scenario where Alice shares fine-grained
data with the following service providers without applying any protection:



e FElectricity provider: Alice shares the energy consumption of her home
through a deployed smart energy meter. In return, the provider provides
Alice with personalized recommendations to reduce her energy consump-
tion and bills.

e Application provider: Alice shares, through a mobile application, her
current location with an application service provider and gets in return
the list of nearby restaurants that match with her food preferences.

Assume also that the electricity provider has signed contracts with third
parties interested in exploiting the consumption data for different purposes in-
cluding a publicity company and government agencies. The publicity company
could be interested in analyzing the lifestyle of Alice to send her targeted ad-
vertisements (e.g., advertisement about appliances that she owns or does not
own). The government agencies could be interested in identifying users involved
in wrongdoing (e.g., fraud, crimes, etc.).

Alice might not be necessarily aware of the direct and indirect privacy risks
she takes by sharing her data with those consumers. For example, her en-
ergy consumption (see the signature in Fig. can be analyzed to infer var-
ious privacy-sensitive information about her lifestyle such as her home pres-
ence/absence hours, waking/sleeping cycles, some of her habits and activities
at home (e.g., cooking, TV watching, sport activity using a treadmill) [I7].
Moreover, existing works (e.g., [I8]) show that the signatures of electricity con-
sumption can be mined to identify the specific appliances (e.g., medical devices)
used. This could reveal the health condition of Alice, if the usage of her NIV
machine is identified.

The analysis of shared location data involves important privacy risks for
Alice such as becoming under real-time surveillance (i.e., Alice can be located
anytime) and the disclosure of her habits, behavior and health conditions by
analyzing her trajectory patterns (cf. Fig. . For example, if Alice is located
twice per week in a pulmonary rehabilitation center for COPD patients, then
she is very likely to be a COPD patient.
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Moreover, the fact that data consumers might be able to combine multiple
data items with each other or/and with other contextual information acquired
from external data sources, can increase their inference capabilities, thus the
sphere of possible privacy risks. For example, assume that Alice has unlawfully
certified that she is living alone to be eligible for a welfare program when she
submitted her application. Any data consumer (e.g., government agency) that
has access to both her location and electricity consumption data can infer this
fraud (it suffices to identify the usage of some specific devices such as microwaves
and TVs while Alice is located outside her home).

3.2. Objectives and Challenges

The key objective of this paper is to enable the users to protect their privacy
by themselves. To achieve this objective, the paper proposes an inference-based
framework that would provide the users with a dynamic overview of the privacy
risks they take in a given context. Such overview allows non-savvy users, e.g. Al-
ice, to understand the implicit, direct and indirect implications of sharing their
data and to make informed and meaningful data sharing decisions with data
consumers (e.g., electricity company, providers of smart services such as nearby
restaurants and parking spots) based on their interests and involved privacy
risks. To build this dynamic context-dependent overview, we need to address
the following scientific challenges:

1. Holistic (all-data-inclusive) privacy risk reasoning: As discussed
above, collected data can be combined with each other (e.g., electricity
consumption and location metadata) and/or with other side information
acquired from external data sources (e.g., profiles on social networks, pub-
lic databases, etc.) to improve the inference capability of data consumers,
thereby increasing the sphere of possible privacy risks. Therefore, the
proposed inference framework should take into account the different data
bits and pieces that are shared by the user or available to data consumers
from external data sources, and explores how they combine with each
other when it infers the privacy risks.

2. Dynamicity and context dependency of privacy risks : Data sen-
sitivity and associated privacy risks may change from a context to an-
other [I9]. For example, the sensitivity of Alice’s location when she is in
a medical treatment center for COPD patients is higher than that when
she is at home, as location in that case could be exploited to infer the
health conditions of Alice. That is, as context changes, new privacy risks
may emerge, while others may disappear or lose in significance. Therefore,
the proposed inference framework should keep track with context changes,
analyze their impacts on privacy risks and maintain an updated overview
of relevant privacy risks.



3. Information multimodality and rich semantics: In order to build
the overview of privacy risks, the inference framework should reason on
heterogeneous data pieces (i.e., data having different types and formats).
These data could be also acquired from different types of data sources in
the cyber—physical space such as connected IoT objects, social networks,
online public databases, etc. For example, if an information 21 (from a
wearable connected object) indicates that Alice is located in hospital H,
and another information 42 (from a public database) indicates that H is
dedicated to COPD treatments, then by combining 21 and %2, we are
able to infer the presence of Alice in a COPD treatment center, which
means she is likely to have a COPD condition. Therefore, the proposed
inference framework should be capable of handling data pieces that are
heterogeneous in terms of types, formats, origins and semantics.

4. Privacy Oracle: Context-aware System for Dynamic Privacy Risk
Inference

In this section, we discuss the Privacy Oracle framework. First, we provide
an overview of our proposal, followed by a formal definition of context informa-
tion. Finally, we detail the Privacy Oracle modules and their components.

4.1. Approach overview

Inferring context-aware privacy risks requires first to build up a global view
of the user context. This is done by gathering as much information as possible
describing the user of interest, his surrounding cyber—physical environment, etc.
However, collected context information can be heterogeneous (i.e., they have
different data types and formats), and can be collected from different types of
data sources. These data sources could be derived from both Connected en-
vironments (e.g., IoT sensor networks), and Web environments such as social
networks, or any other public data source (e.g., public voting records, medical
records). Moreover, gathered information may have different levels of granu-
larity (i.e., different levels of precision). For example, the system may receive
an information indicating that the user is located in a hospital, as it may re-
ceive a more precise information stating that the user is located in hospital H
(i.e., specific hospital). In addition, performing in a dynamic environment that
we do not control in advance makes the system unable to control or predict the
knowledge to receive. Nonetheless, the system must be always capable of mod-
eling this knowledge, and reasoning over information pieces, and the relations
that exist among them, which helps in better understanding the user context,
and thus the involved risks. Therefore, facing all these constraints, the deci-
sion making process of what can be inferred about the user should go beyond
the classical query/retrieval schema to handle a more comprehensive semantic
reasoning mechanism (e.g., deductive reasoning).



In that respect, we propose in the following a context-aware semantic reason-
ing system (cf. Fig. [d), denoted as the Privacy Oracle, capable of (i) analyzing
the user context and dynamically inferring the involved privacy risks, and (ii)
tracking, in real-time, the evolution of risks with respect to the context evo-
lution. To do so, the Privacy Oracle continuously collects context information
from the user’s Connected and Web environments, models the received knowl-
edge, and performs rule-based semantic reasoning on modeled information, while
relying on a defined list of privacy rules, in order to infer the risks taken by the
user.

Privacy Oracle
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Figure 4: Privacy Oracle framework

As shown in Fig. [d] the Privacy Oracle relies on a modular framework com-
prised of two main modules. First, the Context Information Modeling module,
responsible for modeling the received knowledge by the system. Then, the Pri-
vacy Risk Inference module, which includes two main components: (1) Privacy
Rules component, provides a list of defined privacy rules indicating the risks to
be detected by the system; (2) Semantic Reasoning of Risks component, pro-
vides a semantic reasoning engine responsible for inferring the user-taken risks.
In regards to the External Functions, it serves as a function resource that can
assist the two components by providing a list of external functions, available
through Web-based applications (i.e., Web services), that can be used when
defining the privacy rules, and during the reasoning process.

Even though we focus in this proposal on inferring the user privacy risks, the
approach is re-usable and extensible. It can be adapted to various risk detection
applications, and that by adapting the system components in order to handle
the particularities of the application domain.



4.2. Context Information: formal definition

Several definitions were proposed in the literature for context information [20].
The mostly adopted definition, provided by Dey et al. [21], states that context
information is any information that can be used to characterize the situation of
the user. However, this definition remains broad, inaccurate, and non-delimited.
Moreover, it does not allow to distinguish between simple information that can
be extracted directly from processing a captured raw data (e.g., user age is
25 captured from his Facebook account, home energy consumption is 2000 kW
captured from deployed smart energy meter at home), and the more complex
information that can be deduced from combining and analyzing several other
information (e.g., user is located in a medical center dedicated to COPD treat-
ments). Therefore, we extended the given definition by proposing a two-level
classification of context information, namely elementary information, and com-
plex information. We introduced in the following a formal definition of both
information levels to better stress their meaning.

Definition 1. An Elementary Context Information, e.;, is an informa-
tion generated directly from processing a captured raw data with its related
metadata. Raw data instances can be captured from both Connected and Web
environments. All raw data instances can be expressed in (1) time (i.e., time
of capture), with each (2) being collected from a specific data source, and (3)
describes a specific entity. The additional metadata elements, that may vary
from a raw data type to another, are regrouped in a set of features associated
directly to the raw data. Therefore, e.; is defined as a 4-tuple gathering the raw
data and its corresponding metadata aspects. It is represented as an instance
of a 4-dimensional E(C1T) graph regrouping all captured e; related directly or
indirectly to a single user of interest (cf. Fig. , such that:

et (do;, t;, ds;, e; ) , where: (1)

— do; is a data object regrouping the captured raw data with its associated
set of features. do; represents an instance of the Do dimension

— t; denotes the time of capture of raw data, representing an instance of the
T dimension

— ds; indicates the corresponding data source from which raw data was
captured, representing an instance of the Dg dimension

— e; denotes the entity described by raw data, representing an instance of
the E dimension

10



Figure 5: 4-Dimensional E(CT) graph for a single user of interest

Definition 1.1. A Data Object instance, do; € D, is defined as a 2-tuple:

do;: (rgq, F ), where: (2)

— rq denotes the captured raw data, an unprocessed value taken directly from

the data source [22].

rq is an instance of a n-dimensional Data Property

(DP) graph, where each dimension of this graph describes a specific raw data
property (e.g., temperature, disease) with its corresponding raw data values

(cf. Fig.[6] (a))-

— F denotes the set of additional features characterizing rq. Each feature value,
fi, is an instance of a n-dimensional Feature Element (FE) graph, where each
dimension of this graph represents a specific feature element (metadata) with
its corresponding feature values (cf. Fig. |§| (b)). Therefore: Vf; € F, f; € FE

Consequently, for each rq4 € D P, we have many associated f; € FE.

Data
Property
v ___ dimensionn

. Disease

Cardiac Activity

» Temperature

(a)

Feature
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A

_ _dimension n

: > Image Type

_ Temp

"~ Unit

Figure 6: n-dimensional DP graph vs. n-dimensional F'E graph

Definition 1.2. A Time instance, t; € T, is defined as a 3-tuple according to
a 3-dimensional Time graph (cf. Fig.[7] (a)), such that:

t;: ( date, time, ref ) , where: (3)

11



— date indicates the date of capture of rq
— time indicates the time of capture of rq4

— ref indicates the associated date/time reference for ¢;

Definition 1.3. A Data Source instance, ds; € Dy, can derive from Con-
nected environments (e.g., sensor network), or Web environments (e.g., social
network, public data source on the Web). ds; is defined as an instance of a
n-dimensional Data Source (DS) graph (cf. Fig. [7| (b)), where each dimension
represents a specific data source type (e.g., sensor network, social network).

Reference Data Source Type

Date S-a
Sensor-Network

» Time

(@ (b)

» Social-Network

Figure 7: 3-dimensional Time graph vs. n-dimensional DS graph

Definition 1.4. An Entity instance, e; € E, can be the user himself, or any
other entity related to the user of interest (e.g., another user, the surrounding
cyber—physical environment). e; is defined as an instance of a n-dimensional
Entity graph (cf. Fig. 7 where each dimension represents a specific entity type
(e.g., user, environment, system).

Entity type
- _ Systems

Environments

» Users

Figure 8: n-dimensional Entity graph

Definition 1.5. The Origine O of the 4-dimensional E(CT) graph is defined
as 4-tuple, such that:

O: (Opo, Or, Ops, O ) , where: (4)

12



— Op, represents do; of the first captured rq
— Or represents the date/time of capture of the first rq4
— Ops represents a null data source instance (i.e., unknown data source)

— Og denotes the user of interest instance

Therefore, O denotes the first raw data, captured from an unknown data
source, and describing the user of interest.

Definition 1.6. The distance between any two instances of a same dimension
is obtained by calling the Distance Function, distF', that takes as parame-
ter the corresponding dimension, d, and instances, ¢; and i3, and returns the
distance according to the given dimension.

distF (d, il,iz) | {1:1, 22} (= d (5)

Definition 2. A Complex Context Information, cc;, is an information
deduced from combining two or many other context information (elementary or
complex). For example, by combining these two information: ‘user is located
in hospital H> AND ‘H is dedicated to COPD treatments’, we can deduce a new
complex information cq;: ‘user is located in a COPD treatment center’ that is
privacy-sensitive for the user. Therefore, c.; is defined as follows:

Let E,; — an ei., AND C. = Zn: cis
i=1 i=1 (6)

Cei € { E.,;UC., |Cci| > 2}

4.3. Context Information Modeling: SUEM ontology for Semantic
User Environment Modeling

Facing the heterogeneity of collected information, the variety of their gran-
ularity levels, and the dynamicity of the environments, adopting a semantic
data model, that maintains a flexible data structure, becomes a fundamental
requirement to handle the information representation with a high-level of ex-
pressiveness. This model must be extensible and adaptable to domain-specific
particularities, which makes it re-usable in many other applications.

In that respect, we propose in this paper a generic and modular ontology for
Semantic User Environment Modeling, entitled SUEMH This approach intro-

LA full documentation of the SUEM ontology can be found at: http://spider.sigappfr.
org/SUEMdoc/index-en.html.
The ontology files are accessible on the following link: http://spider.sigappfr.org/
research-projects/suem/.

13


http://spider.sigappfr.org/SUEMdoc/index-en.html
http://spider.sigappfr.org/SUEMdoc/index-en.html
http://spider.sigappfr.org/research-projects/suem/
http://spider.sigappfr.org/research-projects/suem/

duces concepts and properties to represent the received knowledge about users,
domains of interest, and environments. As shown in Fig [0} SUEM is made of
three main layers. First, the core layer, comprising elements to represent the
generic aspects (i.e., domain-independent aspects) of both users and environ-
ments. Then, the pluggable domain-specific user model layer, responsible for
integrating user data that are related to domain-specific applications (medical
data, social data, financial data, professional data, etc.). Finally, the pluggable
domain-specific environment model layer, that enables the alignment of the core
layer with external ontologies that describe detailed components of particular
environments (e.g., building, home, mall, city).

Domain-Specific Domain-Specific
User Model Environment Model

v
e e
Data l€-cmmmmmme e ™ :

[ e IO ]
Identifiable Data - | Shared Dam 77 J—}
’ B System L "
Static Sensitive H cxecd
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4

Ontologies
y v i
‘ Activity ‘ g ‘ SystemCapability ‘ |
' =
v T
'
! SystemProperty
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nssN

Figure 9: SUEM ontology for Semantic User Environment Modeling

Therefore, the core layer of SUEM ensures its genericity, and the pluggable
layers justify its extensibility, such that it can be adaptable to any domain-
specific knowledge, whether it was a user or an environment knowledge.

In the following, we discuss the core layer of the SUEM ontology. We start by
detailing the proposed user ontology model. Then, we put forward the adopted
environment model to represent the aspects of both static and dynamic envi-
ronments. And finally, we underline the existing inter-entities relationships, and
the characteristics of shared data items with consumers. We only represent the
main ontology concepts and properties due to space limitation.

4.3.1. User model

A user-personal data can be either identifiable or sensitive data (cf. Sec-
tion [2). As illustrated in Fig. [10} each of these two categories (i.e., identifiable
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and sensitive) can regroup Domain-Independent (DI) and Domain-Specific (DS')
data. DI data are generic data, i.e., they are not related to a particular domain
(identifiable data: name, email address, etc.; sensitive data: age, preference,
location, activity etc.). DS data are user data related to particular domains
(e.g., medical data, social data, financial data, professional data). Identifiable
data are almost static (i.e., barely change with time), however, sensitive data
can be either static or dynamic (i.e., frequently change with time, such as cap-
tured sensor data describing the user location). Further examples for each data
category are provided in Fig. [I0]

User-Personal

Data

Identifiable Data Sensitive Data
v ) v +
Domain-Independent Domain-Specific Domain-Independent Domain-Specific
Data Data Data Data
Static Static Static 3 Dynamic Static Dynamic
Name, Email address, Home Medical | Patient number Age, ' Medical | Disease | Heartbeat
address, Phone Number, etc “Social | Account username Marital status, | Location, Social | Likes,
4 » S ocial \ccount username Preference, | Activity Social N 4
o ! friends | Comments
Capability, etc. |

Figure 10: Proposed classification for user-personal data

The user ontology model must cover the following criteria:

1. Generic and Modular ontology, i.e., a DI ontology that can be re-usable in
different application domains, and extensible to support the representation
of the DS user knowledge.

2. Covers the modeling of all DI user data, knowing that DS user data are
covered by the corresponding pluggable layer.

3. Multi-modal, considers multiple information having different data types
and formats, such as scalar information, textual information, time (date-
time), location (GPS coordinates or textual), etc.

4. Multi-source, considers information that could be acquired from different
types of data sources, such as IoT sensor networks, social networks, etc.

We evaluated existing user-profile ontologies in the literature based on the
aforementioned criteria (cf. Section @ The majority of the listed approaches
are domain-oriented, they were proposed for specific and well-defined purposes.
None of them covers the specified needs at this stage. In that respect, we
introduce in the following a generic, modular, multi-modal, and multi-source
user ontology, that covers the representation of all DI user data, and can be
easily extended to consider the corresponding DS data.
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As shown in Fig. Identifiable Data concept represents the user’s iden-
tifiable DI data (e.g., name, home address, email address, etc.). Sensitive DI
data, which could be static or dynamic, are respectively represented as follows:
(1) static sensitive data are expressed through the Static Sensitive Data concept
(e.g., age, marital status, capabilities, preferences); (2) dynamic sensitive data,
i.e., location and activity data, are respectively expressed through hssn:Location
and Activity concepts. A performed Activity by the user (e.g., running, sleeping,
watching TV) has an activity time and location. The activity time can be a
time instant or a time interval (e.g., user is running for 3 h). These aspects were
considered by relying on the most commonly used and recommended time on-
tology, namely OWL-Time ontology [23], which defines a time: TemporalEntity
concept that can be either a time:Instant, or a time:Interval.

Regarding DS user data, both identifiable and sensitive, the proposed model
includes a Domain-Specific Data concept, that enables the alignment of our on-
tology with any other domain-centric user ontology, which justifies its extensi-
bility.

hasldentifiableData User |----rmmmooooomoomooom oo i

hasDomainSpecificData

T
I
\ R | hasActivity )
. |
i hasStaticSensitiveData hasUserLocation i |
. ' |
| | | ' |
¥ ) v v y
N Static Sensitive . . Domain-Specific
Identifiable Data hssn:Location Activity P’
Data Data
L) T
i i ' P
__________________________ | N I
'+ Name i "'+ Date of Birth : i__hasActlocation i pasaceTime
I |
i+ HomeAddress ' 1o Age i i
|+ Email Address ' \*  Marital Status 1
i+ PhoneNumber | i+ Preference | time:TemporalEntity
|+ Socil Secu.Num ! | *  Capability !
[=] cuss

- - - ObjectProperty

-
1 2"+ DataProperty

Figure 11: Proposed User Ontology

4.3.2. Environment Model

The user can be located in both (i) static environments, i.e., composed of
static components (e.g., cyber—physical systems) that do not change positions
with time, and (ii) dynamic environments, i.e., handle both static, and dynamic
components that change positions with time such as mobile sensors and devices.
This highlights the need to consider both static and dynamic aspects of an en-
vironment in the adopted model. Nonetheless, each environment (e.g., home,
mall, city) can have specific aspects that do not necessarily exist for others.
Therefore, we only consider in this model the common aspects between all en-
vironments, and we keep it extensible such that it can be aligned with any
DS environment model providing concepts and properties to represent detailed
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components of a particular environment.

One of the main aspects of an ontology is "Reusability". It is about reusing
existing ontologies in order to avoid re-definition of same concepts. On this
basis, and according to the existing environment ontologies detailed in Sec-
tion[6] we decided to merge the following ontology models in order to define our
environment core model: SOSA/SSN ontology [24], and HSSN ontology [25].
SOSA/SSN is a joint W3C/OGC Standard Ontology, a widely adopted and
recommended ontology for describing the semantics of Sensors, Observations,
Samplers and Actuation. Moreover, SOSA /SSN is a modular ontology, which
respects our objective, and it respects the Ontology Design Pattern (ODP)
which makes it easier to reuse/extend [26]. The HSSN ontology extends the
SOSA/SSN. It extends the description of a sosa:Plateform to distinguish be-
tween an environment (hssn:Infrastructure ) and a device (e.g., mobile phone,
smart-watch, etc.). As well, HSSN integrates new concepts and relations to
handle the dynamicity of the environments. For example, it integrates concepts
to represent static and mobile sensors, the current location of systems, etc. The
global environment model is illustrated in Fig. [[2}

ssn:hasSubSystem

sosaisHostedBy "]
1= sosa:Platform [-mmmmmmmmmmm - m o ssn:System
1
1
1 b ) T
hssn:hosts : | 1s-a isa - - - - : is-a [ - is-a
1 . ! 1 1
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hssn:Infrastructure sosa:Sampler sosa:Sensor sosa:Actuator
T
1 A ?
:_ tls_sn_:iiD_es:ribedBy is-a : | is-a
1 \===== T ==== 1
1
v | h
hssn:LocationMap hssn:StaticSensor hssn:MobileSensor
T
1
1 hssn:isComposedOf
——————
12
hssn:Location
El Class

= = = ObjectProperty

Figure 12: Environment model

4.3.3. Inter-entities relations

We show in this section how both user and environment models are inter-
related in order to build the core layer of the SUEM ontology. According to
Fig. [[3] a System can be hosted by a Platform, which can be either an Enuvi-
ronment (e.g., deployed sensors for measuring the temperature at home), or a
Device (e.g., deployed sensors on a smart-watch). An Environment can host
other platforms, which could be other environments (e.g., a Mall hosts several
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Shops), or devices (e.g., deployed device at home). From its side, a Device can
be attached to the User (i.e., user mobile devices, including wearable devices).
Finally, the User can be located in one or many Environment.

isAttachedToUser
User [=====------7 hssn:Device

isLocatgdlnEnv ssn:hasSubSystem

T
1
1
i
Y eyt A

1

H 2

i is-a sosa:Platform  fa------------+ ssn:System
Environment | _ %2 __ g sosa:isHostedBy 4

hssn:Infrastructure

hssn:hosts

Figure 13: Inter-Entities Relationships

4.3.4. Shared Data Items

At this stage, we describe the characteristics of shared data items with data
consumers. A data item can be related directly or indirectly to the user of
interest. As examples of directly-related data, we can cite the user location, vital
signs (medical data), motion, etc. Indirectly-related data are data describing an
entity that is related directly to the user. Such an entity can be another user,
an environment where the user is located, etc. As examples of indirectly-related
data, we can cite the energy consumption of the user’s smart home, the location
of the user’s wife, etc.

A same data item instance can be shared with several data consumers, where
for each user/consumer connection we have a specific sharing status: (1) specific
data sharing protocol(s) used to transfer data from data sources to consumers
(e.g., HTTPEL MQTTEL COAPEL etc.), (2) protection mechanism(s) that may be
applied on the shared data item (e.g., differential privacy mechanism, path con-
fusion mechanism for location protection), (3) data source (e.g., sensor, social
network) through which the data item is shared with this consumer. Therefore,
a same data item instance can have one or many sharing status instances de-
pending on the number of consumers with whom it is shared. All these aspects
are expressed as concepts and properties in the SUEM core layer (cf. Fig. .

2Hypertext Transfer Protocol (HTTP): a web-based protocol used for transfering data
through the Web.

3Message Queue Telemetry Transport (MQTT): a lightweight protocol for sending simple
data flows from sensors to applications and middleware.

4Constrained Application Protocol (CoAP): a Web transfer standard protocol, intended
for use in resource-constrained internet devices, such as sensor networks’ nodes.
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Figure 14: Shared Data Item properties

4.4. Privacy Risk Inference

In this section, we discuss the main components of the Privacy Risk In-
ference module, namely the Privacy Rules and Semantic Reasoning of Risks
components.

4.4.1. Privacy Rules

Context Information are received and modeled by the system in real-time.
However, the reasoning process requires to rely on a reference schema containing
a list of privacy rules, where each rule represents a privacy risk to be detected
by the system.

A Privacy Rule, PR, is a semantic rule indicating which combination
of context information that, if captured together, could lead to infer privacy-
sensitive information about the user. On this basis, we propose in the following
a generic privacy rule syntax to be used in order to define a rule:

PR: p(e;) — P

p(a) = a1 60a20..0a, | n €N
Where :
P = (p};p?; ..; pF) | k= number of relevant p;

19



The antecedent (e(ee;)) is composed of a sequence of elementary context
information (ec;) interlinked via operators, 8. An e.; instance can be expressed
as:

e Inter-related ontology concepts, expressed here using Description Logics
(DL) [27):

,

RAW-DATA L isCapturedFrom.DataSource

M hasTimeOfCapture. Timelnstant

M isDescribingEntity.(User LI Environment LI System)
M hasFEATURE.VALUE

User C — (Environment LI System)

Environment  — System

Where:

— RAW-DATA is an individual representing a user or an environment-
related data, such that:

~

(User U IdentifiableData LI StaticSensitiveData
LI Location LI Activity LI DomainSpecificData
SharedDataltem LI Environment LI System

SystemProperty LI OperatingRange

LI
LI Device LI LocationMap LI SystemCapability
(]
LI SurvivalRange) (RAW-DATA)

— hasFEATURE.VALUFE denotes a specific feature element character-
izing RAW-DATA (e.g., hasTemperatureUnit, hasImageType), with
its corresponding feature value (cf. Eq.

e An external function call, that takes as parameter many existing informa-
tion, and returns new derived context information that could be related
directly or indirectly to the user of interest. The list of available ex-
ternal functions is provided through the Ezternal Functions component

(cf. Fig. [4).

An operator, 6, can be any operator allowing the inter-linking of two or
many e.; instances. In this study, we focused on using the following operators:

— Semantic operators (e.g., ontology properties)
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— Logical operators (e.g., AND, OR)
— Temporal operators (e.g., before, after, overlaps, during)

— Spatial operators (e.g., inside, outside, intersect, equal)

The consequent (P) is composed of a sequence of atoms indicating the cor-
responding set of privacy-sensitive information (p;) to be disclosed about the
user (cf. Section . Each p; instance is represented through ontology concepts
with respect to the following DL syntax:

PrivacySensitiveInfo = 3 hasDescription. PST

Where:

e PSI is a String value denoting the description of p; (e.g., presence/absence
patterns, real-time surveillance, fraud detection, disease inference).

We provide in the following two examples of potential privacy rules defined
according to the proposed syntax:

— Rule-1: A user is sharing his location data with a data consumer. This
raises the risk of being subject to real-time surveillance:
PR; : User(?u) AND SharedDataltem(LOCATION)
AND hasUserSharedData(?u, LOCATION)
— PrivacySensitiveInfo(PSI-1)
AND hasDescription(PSI-1, "Real-time surveillance")

— Rule-2: A user is sharing the energy consumption data of his smart home.
This raises the risk of disclosing the presence and absence hours of the
user at home by any consumer having access to this data:

PR, : User(?u) AND Environment(?e) AND livesIn(?u, ?e)
AND SharedDataltem(ENERGY-CONSUMP)

AND hasEnvSharedData(?e, ENERGY-CONSUMP)

— PrivacySensitiveInfo(PSI-2)

AND hasDescription(PSI-2, "Presence and absence patterns")

A defined privacy rule can be classified within two categories: (1) domain-
independent rule, i.e., imported independently from the application domain; (2)
domain-specific rule, i.e., imported only if it meets the addressed domain of
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application, such as rules related to the healthcare domain, smart grid domain,
etc. For example, PR, is a domain-independent rule, however, P R5 is related
to the smart home and smart grid domains, so it only exists if one of these do-
mains is considered in the application. Additional examples of potential privacy
rules from both categories are given in Table [T}

Notations:

User(?u) ; Environment (?el) ; Environment (?e2) ; Environment (BEACH) ; ProfessionalData(SICK-LEAVE)
DiseaseData (?dis) ; SharedDataltem(LOCATION) ; SharedDataltem(ENERGY-CONSUMP)
SharedDataltem(CONTACT-SWITCHES) ; System(SURV-CAM) ; System(LIC-PLATE-RECOG)
Activity(HIGH-BATHROOM-ACT) ; TreatmentDevice(?dev)

Domain-independent rules

Rule-3: A user is sharing his location data and he is located in a hospital dedicated to the treatment of a specific disease.
PR3 : hasUserSharedData(?u, LOCATION) AND isLocatedInEnv(?u, ?el) AND isSpecializedInDisease(?el, 7dis)
— PrivacySensitiveInfo(PSI-3) AND hasDescription(PSI-3, "Disease Inference")

Rule-4: A user is sharing his location data.
PRy : hasUserSharedData(?u, LOCATION)

— PrivacySensitiveInfo(PSI-4) AND hasDescription(PSI-4, "Habits, behaviors, and preferences inference")

Rule-5: A user is sharing his location data. He is located at the beach when he is on a sick leave.
PRs : hasUserSharedData(?u, LOCATION) AND (isLocatedInEnv(?u, BEACH)

DURING hasProfessionalData(?u, SICK-LEAVE))

— PrivacySensitiveInfo(PSI-5) AND hasDescription(PSI-5, "Fraud detection")

Rule-6: A user is located in an environment hosting surveillance cameras.
PRg : isLocatedInEnv(?u, ?el) AND hosts(?el, SURV-CAM) OR (hosts(?el, 7e2) AND hosts(?e2, SURV-CAM))

— PrivacySensitivelnfo(PSI-6) AND hasDescription(PSI-6, "Presence inference in current environment")

Rule-7: A user is located in a smart parking hosting a license plate recognition system.

PRy : isLocatedInEnv(Tu, 7el) AND hosts(?el, LIC-PLATE-RECOG) — PrivacySensitivelnfo(PSI-6)

Domain-specific rules

Rule-8: A user is sharing the energy consumption data of his smart home.

| PRg : livesIn(?u, ?el) AND hasEnvSharedData(?el, ENERGY-CONSUMP)
Smart Home/

. — PrivacySensitiveInfo(PSI-7) AND hasDescription(PSI-7, "Inferring appliances and devices used")
Smart Grid

Rule-9: A user is sharing the energy consumption data of his smart home.

PRy : livesIn(?u, ?el) AND hasEnvSharedData(?el, ENERGY-CONSUMP)

domains

— PrivacySensitivelnfo(PSI-8) AND hasDescription(PSI-8, "Waking and sleeping patterns inference")

Rule-10: A user is sharing the energy consumption data of his smart home.
PRy : livesIn(?u, ?el) AND hasEnvSharedData(?el, ENERGY-CONSUMP)

— PrivacySensitivelnfo(PSI-9) AND hasDescription(PSI-9, "Inferring activities in current environment")

Rule-11: A user is sharing the energy consumption data of his smart home,
and has a medical treatment device deployed at home.

PRy : livesIn(?u, 7el) AND hasEnvSharedData(?el, ENERGY-CONSUMP)
AND hasTreatmentDevice(?u, ?dev)

AND isDeployedIn(?dev, ?el) — PrivacySensitivelnfo(PSI-3)

Rule-12: A user is sharing the contact switches data of the bathroom door of his smart home,
and has a high bathroom activity (risk of diabetes disease inference).

PRy, : livesIn(?u, ?el) AND hasEnvSharedData(?el, CONTACT-SWITCHES)

AND hasActivity(?u, HIGH-BAHTROOM-ACT) — PrivacySensitiveInfo(PSI-3)

Smart Home

domain

Table 1: Further examples of potential privacy rules
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In this paper, we focused on providing examples of privacy rules that are
mainly applied in IoT scenarios. Nonetheless, the rule-setting mechanism can
be used as well to define rules that fit in scenarios related to other environments,
such as social media environments. Especially that both IoT and social media
environments share the majority of the user-privacy concerns, including user-
profiling, identification, localization, and so forth.

The more we explore different application domains, the more we discover
new information combinations, that in specific contexts or not, can generate
additional privacy risks. Therefore, enhancing the quality of the detection sys-
tem requires to consider as much information combinations as possible from
different domains. However, discovering such combinations remains a key chal-
lenge to address. As a possible solution, we could think about an outsourcing
approach that enables the collaboration with experts from the privacy commu-
nity, where each group of them is specialized in a specific application domain.
Consequently, the privacy rules are defined and updated by the experts, and
imported by the Privacy Oracle system. Nonetheless, the challenges regarding
how to manage the outsourcing solution with the privacy experts, and how to
manage the rules conflicts and dependencies are explored in a future work. In
this paper, we only focus on how imported privacy rules could be used by the
reasoning system in order to infer the involved risks.

4.4.2. Semantic Reasoning of Risks

We discuss in this section the core of the Privacy Oracle framework, the
semantic reasoning of risks component. Our goal is to devise a Semantic Web
based reasoning system, that supports rule-based continuous reasoning over
context information.

Context Information are continuously received by the user’s system, nonethe-
less, they are permanently or temporarily stored depending on the category
to which they belong. First category regroups permanently-stored informa-
tion, which are (1) user-profile static information that barely change with time
(i.e., identifiable and sensitive static information), (2) information describing
user-daily environments and their components (e.g., home, office), and (3) in-
formation about shared data items with consumers and their corresponding
sharing statuses. The second category describes temporarily-stored informa-
tion, which are (i) user-profile dynamic information that frequently change with
time (e.g., user locations and activities), and (ii) information about public en-
vironments where the user is temporarily located (e.g., user is located in mall
M). However, the information that describe public environments (e.g., malls,
hospitals, cities) are permanently stored in a side database shared between all
the Privacy Oracle users, and the information relating to a specific environment
are imported by the user’s system only when he is located in it.

During the reasoning process, the reasoning engine should always consider
both existing information that are locally stored, and the new information that
are continuously received depending on the evolution of the user context. For
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example, an information indicating that the user is sharing his location data is
locally-stored, and must be always considered when reasoning about potential
privacy risks since it can generate new risks in specific contexts, when combined
with other newly-received information by the system. Therefore, as shown in
Fig. [I5] the semantic reasoning engine takes as input modeled context infor-
mation (i.e., locally-stored and newly-received information), and the imported
privacy rules. Then, it applies a rule-based continuous reasoning over modeled
information in order to infer the privacy risks. Finally, it generates as output
the inferred risks, and sends them as real-time notifications to the user.
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Figure 15: Semantic Reasoning of Risks

The reasoning engine reasons on modeled linked data in order to infer the
user-risks. Therefore, we focus at this stage on using a semantic reasoner
that supports rule-based reasoning over modeled data (e.g., Pellet OWIE rea-
soner [29]). We adapt this engine to perform a continuous reasoning, and man-
age the continuous data acquisition. We detail in Algorithm [I] the process
followed to dynamically detect the user-taken risks.

Algorithm 1 Continuous Reasoning for Dynamic Risk Inference

Create Ontology instance, onto, mapped to ontology.owl file
Create Rule Engine instance, ruleE, and map it to onto
Import defined privacy rules using ruleE
Create OWL Reasoner instance, reasoner, and map it to onto
Execute newlInformationArrival() function in parallel
while (true) do

Launch reasoner and infer the user-taken risks

Refresh reasoner to consider the ontology updates

Get the inferred risks’ individuals from onto

Notify the user about inferred Privacy Risks

Save inferred updates in ontology.owl
: end while

===
Mo

50WL [28]: W3C semantic Web Ontology Language to represent rich and complex knowl-
edge about things, groups of things, and relations between things.
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To handle the acquisition of context information in real-time, the system
supports multithreading features. It executes a second procedure, denoted as
newInformationArrival(), in parallel with the reasoning process. This proce-
dure is responsible for modeling the newly-arrived data according to the defined
classes and properties in the ontology model. This makes the engine able to
reason at the same time on both existing and newly-arrived data, and thus to
analyze the user-context changes and detect the relevant risks in real-time.

5. Implementation & Evaluation

5.1. Implementation

In order to validate our approach, we implemented the Privacy Oracle through-
out a Java-based prototype using OWL API, SWRL API and Pellet inference
engine. The source code is available on the following link: http://spider.
sigappfr.org/research-projects/privacy-oracle/. The objective of this
experimentation is to show how the proposed system is able to dynamically infer
the user privacy risks, and how it can monitor, in real-time, the evolution of
those risks with respect to the evolution of the user’s context.

As shown in Fig. we implemented the Privacy Oracle application on the
device of Alice. We considered the given context of Alice in the motivating
scenario (cf. Section as a basic context, and then we defined four consecutive
context changes in order to monitor the evolution of the risks.

Privacy
Oracle

Edge

Provider
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Ras

. -7 Electricity

Provider
a8
8 ) .
PO ) . %
. - -

Location Data

o

Energy
Consumption Data

\
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Figure 16: Privacy Oracle implementation

Context-1: Alice lives in Home, shares her Location data with an Application-
Provider via a GPSsensor deployed on her SmartPhone device, shares also the
EnergyConsumption data of her Home with an FElectricityProvider through a
deployed EnergyMeter sensor, and has an NVI device deployed at Home. We
modeled these context information according to the defined SUEM concepts as
shown in Fig. Regarding the medical information (i.e., disease, treatment
device), we extended the user model by defining new concepts representing the
user’s medical data, which are related to the domain-specific data concept as

shown in Fig.
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Context-2: Alice visits a shopping mall that hosts surveillance cameras.
Context-3: Alice leaves the shopping mall.
Context-4: Alice is located in a COPD treatment center.

Context-5: Alice leaves the treatment center.
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Figure 17: Context-1 related individuals
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In addition, we defined the following nine privacy rules using SWRL [30]
language: PRl, PRg, PR3, PR4, PRG, PRS, PRg, PRl(), and PR11.
SWRL language is a W3c recommendation that provides the ability to write
Horn-like semantic rules expressed in terms of OWL concepts, in order to reason
about OWL individuals [30]. Therefore, SWRL represents the inferred privacy
risks as OWL individuals, which requires to define their corresponding concepts
and properties in the ontology model. According to Fig. [I9] a PrivacyRisk has
one or many related PrivacySensitivelnfo, and can have related SharedDataltem
in case the risk was related to a shared data with a consumer. In the following,
we provide an example of a defined privacy rule using the SWRL language.
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PR, using SWRL language

suem:User (7u)

~ suem:hasUserSharedData(?u, suem:LOCATION)
~ swrlx:createOWLThing(7prisk, 1)

~ swrlx:createOWLThing(?sens, 1)
->

suem:PrivacyRisk(7prisk)

~ suem:PrivacySensitiveInfo(?7sens)
~ suem:hasDescription(?sens, "Real-time surveillance")
suem:hasRelatedSensitiveInfo(7prisk, 7sens)

~ suem:hasRelatedSharedData(?prisk, suem:LOCATION)

When mapping the defined rules to the specified context changes for Alice,
we notice that seven of the nine rules are always satisfied since they are related to
the basic context of Alice (i.e., Context-1). However, the eighth rule (i.e., PRyg)
is only satisfied in Context-2, and the ninth rule (i.e., PRg) is only satisfied in
Context-4. Therefore, the system will detect seven risks for Alice in all contexts,
and will monitor the evolution of the risks generated from rules PR3 and PRg.

According to the proposed reasoning algorithm (cf. Algorithm , the de-
veloped prototype is composed of two classes, (1) Reasoning class, executes a
continuous reasoning process on modeled data and send as output the number
of detected privacy risks with their related description (i.e., privacy-sensitive
information to be disclosed) in a simple and understandable way ; (2) newlnfor-
mationArrival class, launched in parallel with the reasoning process, it models
the newly-arrived data according to the ontology model and add them in the
ontology document file. On this basis, we defined in the newlInformationArrival
class the OWL individuals and properties that express the new context informa-
tion to be collected by the system. These information are injected successively
in the ontology file, at different time-stamps, marking the transition from a
context to another. Finally, we launched the prototype, the output results are

illustrated in Figs. 20H24]

Results discussion: The results show that the Privacy Oracle is able to con-
tinuously infer the involved privacy risks in the user’s context, monitor their
evolution, and notify the user about them in real-time. This raises the aware-
ness of the user and enables him to take on-time precautions to protect his
privacy (e.g., update his data sharing decisions depending on his context, stay-
ing/leaving decisions in case of risks raised from his surrounding environment).
For example, once the system has received information indicating that Alice is
in a Mall hosting surveillance cameras (Fig. , it has raised dynamically, and
with a quasi-negligible delay of 1s, the risk of inferring her presence in the mall;
this can help Alice to decide whether to stay or not in the mall, depending on
if she accepts or not to take this risk.
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Context 1

Date: mai 26,2019 20:30:28 ms

Number of detected privacy risks is: 7 Risks

Risk 1:Risk of inferring Appliances and Devices used in the living environment
Risk 2:Risk of real-time remote surveillance

Risk 3:Risk of inferring Waking and Sleeping patterns

Risk 4:Risk of inferring Performed Activities in the living environment

Risk 5:Risk of inferring habits, behaviors, and preferences

Risk 6:Risk of Disease Inference from shared Energy Consumption

Risk 7:Risk of inferring presence/absence hours

Figure 20: Context 1 - Inferred Privacy Risks

Date: mai 26,2019 20:30:32 ms

Context 2: Alice is Located in a Mall hosting Surveillance Cameras
Date: mai 26,2019 20:30:33 ms

Number of detected privacy risks is: 8 Risks

Risk 1:Risk of inferring Waking and Sleeping patterns

Risk 2:Risk of inferring Appliances and Devices used in the living environment
Risk 3:Risk of inferring habits, behaviors, and preferences

Risk 4:Risk of Disease Inference from shared Energy Consumption
Risk 5:Risk of inferring presence/absence hours

Risk 6:Risk of real-time remote surveillance

Risk 7:Risk of inferring Performed Activities in the living environment
Risk 8:Risk of inferring User Presence in current environment

Figure 21: Context 2 - Inferred Privacy Risks

Date: mai 26,2019 20:30:37 ms

Context 3: Alice leaves the mall

Date: mai 26,2019 20:30:39 ms

Number of detected privacy risks is: 7 Risks

Risk 1:Risk of Disease Inference from shared Energy Consumption
Risk 2:Risk of real-time remote surveillance

Risk 3:Risk of inferring Performed Activities in the living environment
Risk 4:Risk of inferring Waking and Sleeping patterns

Risk 5:Risk of inferring Appliances and Devices used in the living environment
Risk 6:Risk of inferring presence/absence hours

Risk 7:Risk of inferring habits, behaviors, and preferences

Figure 22: Context 3 - Inferred Privacy Risks

Date: mai 26,2019 20:30:43 ms

Context 4: Alice is Located in a COPD treatment center

Date: mai 26,2019 20:30:44 ms

Number of detected privacy risks is: 8 Risks

Risk 1:Risk of Disease Inference from shared Energy Consumption
Risk 2:Risk of inferring habits, behaviors, and preferences

Risk 3:Risk of Disease Inference from shared Location

Risk 4:Risk of inferring Performed Activities in the living environment
Risk 5:Risk of inferring Appliances and Devices used in the living environment
Risk 6:Risk of inferring presence/absence hours

Risk 7:Risk of inferring Waking and Sleeping patterns

Risk 8:Risk of real-time remote surveillance

Figure 23: Context 4 - Inferred Privacy Risks
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Date: mai 26,2019 20:30:47 ms
Context 5: Alice leaves the COPD treatment center

Date: mai 26,2019 20:30:48 ms
Number of detected privacy risks is: 7 Risks

Risk 1:Risk of inferring habits, behaviors, and preferences

Risk 2:Risk of Disease Inference from shared Energy Consumption

Risk 3:Risk of inferring Appliances and Devices used in the living environment
Risk 4:Risk of inferring Waking and Sleeping patterns

Risk 5:Risk of inferring presence/absence hours

Risk 6:Risk of inferring Performed Activities in the living environment

Risk 7:Risk of real-time remote surveillance

Figure 24: Context 5 - Inferred Privacy Risks

5.2. Performance Evaluation

The objective at this level is to evaluate the performance of the reasoning
process. This is done by considering three use cases to study the impact factor
of the following three metrics on the system’s performance: (i) the number of
imported privacy rules, (ii) the number of detected risks in one context, and (iii)
the number of individuals over which the system reasons in order to detect the
risks. The system’s performance is evaluated by measuring the total execution
time of one reasoning iteration. The tests were conducted on a machine equipped
with an Intel i7 2.80 GHz processor and 16 GB of RAM. The chosen execution
time value for each scenario is an average of 10 sequenced values.

Case 1: We focused in this use case on varying the number of imported privacy
rules by the system. We fixed the number of privacy risks to detect at 100
(i-e., only 100 rules are satisfied regardless of the number of imported rules),
and we ran the reasoning process five times such that: the first run scans 100
rules, the second 500, the third 1000, the fourth 5000, and the last one scans
10000 rules . Fig. shows the impact of increasing the number of imported
rules on the algorithm’s execution time. During each iteration, the reasoning
process scans the full list of imported rules, which makes the rules number
critical. Up to 1000 rules, the system is able to handle a real-time reasoning
with an average execution time of 18 s per iteration, nonetheless, the execution
time tends to be exponential when the rules number exceeds this threshold
(e.g., 144 s in case of 5000 rules, and 405 s in case of 10000 rules). This calls for
more focus on managing the rules’ import, which may vary depending on several
metrics including (i) the domains of application (this justifies the proposed rules’
classification in Section, (ii) the corresponding user of interest (i.e., a user
can associate personalized weight values to the p; elements indicating their
sensitivity degree, therefore only rules leading to disclose sensitive p; for the
user are considered), and so on.
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Case 1: Varying the number of imported Privacy Rules
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Figure 25: Case 1: varying the number of imported Rules

Case 2: We focused here on varying the number of risks to detect by the sys-
tem in a single user context. We fixed the number of imported rules at 1000
(agreed threshold), and we ran the reasoning process five times such that: the
first run detects 10 risks, the second 50, the third 100, then we considered 500
in the fourth run, and finally 1000 in the last one. According to Fig. 26] the
total execution time remains quasi-constant for all five scenarios regardless of
the number of detected risks. This is logical in view of the reasoning mecha-
nism’s operation, where imported rules are scanned one by one before generating
the inferences. Therefore, the number of detected risks has no impact on the
system’s performance.

Case 2: Varying the number of Privacy Risks
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Figure 26: Case 2: varying the number of Risks to detect

Case 3: We focused here on varying the number of individuals over which the
system reasons, in one iteration, to infer the risks. We fixed the number of rules
at 1000, and the number of risks at 100, and we ran the reasoning process five
times such that: in the first run, the system reasons over 50 individuals, 100
in the second run, 1000 in the third, 5000 in the fourth, and 10000 in the last
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one. As show in Fig. the execution time remains quasi-constant until the
number of individuals exceeds 1000, where the execution time becomes quasi-
linear. Therefore, the individuals’ number may have an impact on the system’s
performance when exceeding 1000, which justifies the need to classify stored
data according to the proposed classification in Section m (i.e., permanently
and temporarily-stored data).

Case 3: Varying the number of Individuals
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Figure 27: Case 3: varying the number of Individuals to reason on

6. Related Work: Ontology-based Models

6.1. User Modeling

A user profile is defined as a digital representation of the unique data con-
cerning a particular user. Each of the existing ontology-based models describes
the user profile in a different manner depending on the usage purpose. One
of the most widely used ontologies to model people is FOAF [3I]. The FOAF
model is highly used in the social network field. It specifies a vocabulary that
can be used to define, exchange and search for social information that describes
people, their attributes and their social connections with others. Skillen et
al. [32] proposed an ontological user profile modeling for context-aware appli-
cation personalization within mobile environments. They described the user
profile by putting forward dynamic and static aspects like health, education,
capabilities, interests, preferences, and activities. Sutterer et al. [33] introduced
the notion of personalized user profiles with the creation of the User Profile
Ontology with Situation-Dependent Preferences Support (UPOS). The aim of
this ontology was to support the situation-dependent personalization of services
within changing environments by splitting the user profile into several profile
subsets where each is defined in response to a specific service. Stan et al. [34]
proposed an extension of UPOS ontology for situation-aware social network-
ing, where they kept the dynamic aspects of user profiles, and considered the
conjunction of context dimensions in order to better identify in real-time the
situation of users. The CC/PP (Composite Capabilities/Preference Profile)
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model [35], a W3C initiative, suggests an infrastructure to describe device ca-
pabilities and user preferences. CC/PP is developed specifically to facilitate
the decision making process of a server, on how to customize and transfer web
content to a client device in a suitable format. Skillen et al. introduced in [36]
a user profile ontology based approach that provides context-aware personal-
ized services for assisting People with Dementia (PwD) in mobile environments.
They defined concepts to represent the user generic data such as personal infor-
mation, location, activity, context, etc., and some of the domain-specific data
such as education profile, health profile, social context, etc.

Table [2] shows a comparative study on existing user-profile ontologies with
respect to our defined criteria in Section [4.3]

Criterion Skillen et al. [32] | UPOS [33] | CC/PP [33] | Skillen et al. [36] | FOAF [31] | Stan et al. [34]
Generic : :
No Yes No No No No
(domain-independent aspects)
Modular / Extensible Yes Yes No Yes No No
Multi-modality Yes Yes No Yes Yes Yes
Connected . .
. Yes Yes No Yes No No
Multi-source | Environments
Web . . .
No No No Yes Yes Yes
Environments
. Identifiable . . . . .
User-Generic Yes Partially * No Yes Partially Partially
Data
Data
Sensitive
Partially Partially Partially Partially Partially Partially
Data

2 Partially states that the related approach do not cover all user-generic identifiable
or sensitive data.

Table 2: Comparative study on existing user ontology models

6.2. Environment Modeling

Domain-centric ontologies that describes specific domains impacted by IoT
(domotics, agriculture, cities, etc.) are out of scope for this study since our
objective is to have a generic ontology that can be re-usable in different applica-
tion domains. In 2017, W3C published a new version of the most foundational
ontology for sensors, the Semantic Sensor Network (SSN) Ontology [24]. The
main innovation of this SSN new generation has been the introduction of the
Sensor, Observation, Sample, and Actuator (SOSA) ontology, which provides
a lightweight core for SSN. Thus, SOSA/SSN ontologies describe systems of
sensors and actuators, samples and the process of sampling, observations, in-
volved procedures, studied features of interest, and observed properties. Other
approaches in the literature have extended the SSN ontology. However, all these
works were contributed before the newly-released SSN version, so they tried to
deal with the limitations of the old SSN such as the lack of description of essen-
tial IoT elements (object, actuator, service, etc.). IoT-O ontology [26] expands
from old SSN with descriptions of sensors, services, units, nodes, things and ac-
tuators. It covers the following modules while applying alignments with existing
ontologies: sensing (SSN), acting (SAN), life-cycle (Life-cycle), service (hRest,

32



MSM, wsmo-lite) and energy (PowerOnt). IoT-Lite Ontology [37] is also an in-
stantiation of the old SSN ontology. It is a lightweight ontology that represents
IoT resources, entities and services. It allows the discovery and interoperability
of ToT resources in heterogeneous platforms using a common vocabulary. IoT
Ontology [38] is also an expansion of the old SSN. It integrates new concepts
such as PhysicalEntity and SmartEntity to support semantic expressions for
interconnected, aligned and clustered entities.

6.3. Context Modeling

Various context modeling techniques exist in the literature: key—value, markup
scheme, object oriented, graphical, logic based and ontology based. According
to many surveys and comparative studies [20} [39], ontology-based techniques
are the preferred mechanism for context modeling and reasoning in pervasive
computing environments. A broad variety of ontologies and vocabularies ex-
ist to model context in smart environments. These latter are classified into
two categories: (i) user-centered approaches to model human activities such
as CoBrA-ont, CoDAMoS, CONCON, PiVOn, Delivery Context Ontology, and
many others; (ii) domain-oriented approaches to describe the context and the
environment where human activities occur like Location & Time ontologies
(WGS84 Geo Positioning, Time Ontology, etc.), user profile and preferences
ontologies (FOAF, CC/PP model, etc.), and so forth. In [40], Rodriguez et al.
provided a detailed study on ontologies of both categories in terms of concepts
to model and their purposes.

The main elements of the context remain neither well defined nor delim-
ited. This led to have various dimensions of context modeling, depending on
the perspectives in the field. In [41][42], the authors have focused on the context
acquired through sensors and identified four categories of context information:
location, time, identity, and activity. In [43], location, time, identity and envi-
ronment were considered when defining context. In [44], the authors set three
main elements: user, platform and environment. CONCON (CONtext ON-
tology) [45] considered that location, user, activity and computational entity
(e.g., device) are the fundamental concepts for capturing the context informa-
tion. In [46], the perspective was domain-centric, the authors wanted to model
healthcare context information, so they specified seven dimensions: location,
individual, activity, environment, device, medical and auxiliary.

Other approaches have provided a structural representation of contexts in
order to facilitate context reasoning. Schilit [47] classified the context into three
categories: user contexts (user profile, location, social situation, etc.), compu-
tational contexts (network connectivity, communication costs and bandwidth,
etc.), and physical contexts (lighting, noise levels, etc.). In [48|, the authors
underlined eight computing entity classes: user contexts (identity, preference,
activity, location, etc.), device contexts (processor speed, location, etc.), applica-
tion contexts (version, availability, etc.), physical environment contexts (illumi-
nation, humidity, etc.), resource contexts (availability, size, type, etc.), network
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contexts (speed level, etc.), location contexts (contents, where it is subsumed,
etc.), and activity contexts (start time, end time, actor, etc.).

7. Conclusion & Future Work

In this paper, we introduce a context-aware semantic reasoning approach,
dubbed as the Privacy Oracle, that helps users in protecting their privacy by
themselves, and that by providing them with a dynamic overview of the pri-
vacy risks they take as their context evolves. To do so, the system continuously
models, according to a proposed Semantic User Environment Modeling (SUEM)
ontology, the received knowledge about the user of interest and his surrounding
cyber—physical environment. In parallel, it applies a holistic privacy reasoning
on modeled information, by relying on set of privacy rules, in order to dynami-
cally infer the involved privacy risks. To validate our approach, we developed a
prototype based on the semantic web tools such as OWL API, SWRL API and
the inference engine Pellet. We evaluated the system’s performance by consid-
ering multiple use cases. Our experimental results show that the Privacy Oracle
can assist users by dynamically detecting their incurred privacy risks, and by
tracking, in real-time, the evolution of those risks as user context changes.

A privacy risk has an associated probabilistic risk value indicating its level of
importance. The quantification of such value requires relying on several privacy
metrics including (i) the uncertainty of the combined information pieces, (ii)
the sensitivity degree of the disclosed p; for the user, (iii) the level of trust
associated by the user to the corresponding data consumer, etc. Therefore, as
future work, we are investigating the quantification of privacy risks. In addition,
we would like to address the challenges regarding the handling of the rules
conflicts and dependencies. Finally, we aim at providing users with a dynamic
list of recommended privacy protection measures to apply in order to decrease
the impact of their taken privacy risks.
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