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Multi-fidelity efficient global optimization: Methodology and application to airfoil shape design

Predictions and design engineering decisions can be made using a variety of information sources that range from experimental data to computer models. These information sources could consist of different mathematical formulations, different grid resolutions, different physics, or different modeling assumptions that simplify the problem. This leads to information sources with varying degrees of fidelity, each with an associated accuracy and querying cost. In this paper, we propose a novel and flexible way to use multi-fidelity information sources optimally in the context of airfoil shape optimization using both Xfoil and ADflow. The new developments are based on Bayesian optimization and kriging metamodeling and allow the aerodynamic optimization to be sped up. In a constrained optimization example with 15-design variables problem, the proposed approach reduces the total cost by a factor of two compared to a single Bayesian based fidelity optimization and by a factor of 1.5 compared to sequential quadratic programming. 

Nomenclature

I. Introduction

T e use of multiple fidelities is particularly interesting for aircraft design decisions where the high-dimensionality of the design space and the cost of the high fidelity analyses make global optimization near impossible. Many efforts have used multiple information sources for surrogate modeling (different accuracies for the same quantity of interest) [START_REF] Winkler | Combining Probability Distributions from Dependent Information Sources[END_REF] or optimization [START_REF] Lam | Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources[END_REF][START_REF] Poloczek | Multi-Information Source Optimization[END_REF]. There have also been efforts in modeling the differences in fidelity in an additive way [START_REF] Lewis | A multigrid approach to the optimization of systems governed by differential equations[END_REF][START_REF] Huang | Sequential kriging optimization using multiple-fidelity evaluations[END_REF]. However these approaches fail to work in the general case where different assumptions about the physics of the problem exist between fidelity levels. In this context, the work of Kennedy and O'Hagan [START_REF] Kennedy | Bayesian calibration of computer models[END_REF] provided powerful tools for multi-fidelity surrogate modeling which Forrester et al. [START_REF] Forrester | Multi-fidelity optimization via surrogate modelling[END_REF] used for a multi-fidelity extension of the Efficient Global Optimization algorithm (EGO) [START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF] for unconstrained problems. In 2013, Le Gratiet [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF] proposed an alternative formulation of multi-fidelity co-kriging with explicit contributions of each fidelity level to the overall model. In 2002, EGO was extended to constrained problems with the development of SEGO [START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[END_REF]). More recently SEGO was coupled to MOE (mixture of experts) methodology in order to solve high dimensional variables and constrained optimization problems such as wing shape aerodynamic optimization in the SEGOMOE framework [START_REF] Bartoli | Improvement of efficient global optimization with mixture of experts: methodology developments and preliminary results in aircraft wing design[END_REF][START_REF] Bartoli | An adaptive optimization strategy based on mixture of experts for wing aerodynamic design optimization[END_REF][START_REF] Bartoli | Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design[END_REF]. SEGOMOE will be used in this work as a reference for surrogate based constrained optimizer with a single high fidelity (HF). Of course, we will also compare to the standard gradient-based optimizer SNOPT [START_REF] Gill | SNOPT: An SQP algorithm for large-scale constrained optimization[END_REF]. In practice, the SEGOMOE framework is able to treat either unconstrained and constrained problem with or without MOE for black box optimization problems.

In this paper these works are used to improve the efficiency of global optimization algorithms which suffer from the curse of dimensionality. We demonstrate that the use of multiple fidelities helps alleviate this curse and show that we can perform high-dimensional Bayesian optimization. We begin by reviewing kriging and multi-fidelity co-kriging formulations; we then present the multi-fidelity extension of EGO called MFEGO. We provide an analysis of the properties of the proposed algorithm including its global convergence. Finally, we present two kinds of results on both unconstrained and constrained optimizations of a subsonic airfoil with 9 and 15 design variables and compare the performance of MFEGO to standard methodologies such as EGO and SNOPT. The constrained version of the algorithms will be later referred to as SEGO and MFSEGO.

II. Kriging and multi-fidelity co-kriging description

There are multiple ways to build an approximation of a function, such as artificial neural networks (ANN), radial basis functions (RBF) or support vector regressions (SVR) [START_REF] Forrester | Multi-fidelity optimization via surrogate modelling[END_REF]. In all these metamodels (or surrogate models), a fundamental assumption is that the quantity of interest y(x) can be written y(x) = ŷ(x) + , where , the residuals, are independent identically distributed normal random variables, so that fitting the model ŷ(x) is performed by minimizing a measure over .

Following the same assumptions, the specificity of kriging is that the 'errors'-or more accurately, the deviations from the base model-in the predicted values ŷ, are not independent. Rather, we take the view that the errors are a systematic function of the locations of the samples. The kriging surrogate model ŷ(x) = m(x) + Z(x), is comprised of two parts: 'regression' term m(x) and a functional departure from that regression: Z(x) [START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[END_REF]. We can write the regression term for the universal kriging as the following:

m(x) = k j=1 β j f j , (1) 
where { f 1 , . . . , f k } are basis functions of m(x) and β j are coefficients weighting these basis functions. Ordinary kriging denotes the special case where k = 1 and f 1 = 1, meaning the regression function takes the form of a constant, leaving most of the prediction work to Z(x). Z(x) on the other hand is a Gaussian process with a covariance function:

cov(Z(w), Z(x)) = σ 2 R(w, x), (2) 
where σ 2 is a scaling factor known as the process variance, w and x are two design points in R d and R(w, x) is the spatial correlation function of the process also known as the kernel of the process. The choice of the kernel influences greatly the way data is fitted. The kernel quantifies how quickly and smoothly the function changes from point x to point w.

One of the most commonly used kernels in kriging is the squared exponential correlation kernel:

R(z, x) = exp - d k=1 θ (k) (z (k) -x (k) ) 2 (3) 
where x ∈ R d , z ∈ R d and θ ∈ R d is a vector of hyperparameters of the kriging model, denoting the correlation along the different axes of space. This Kernel has the particularity that it only depends on the weighted distance between points x and z and not their actual positions. It is called a stationary Kernel. Once we have defined the Kernel, and "fitted" the vector of hyperparameters θ using the vector X T = {x 1 , . . . , x n } (with x i ∈ R d ) yielding the responses Y T = {y 1 , . . . , y n } (with y i ∈ R), we can express the mean and covariance of the Gaussian Process Z(x):

µ Z (x) = r(x, X T ) R -1 (X T , X T )Y T (4) σ 2 Z (x) = σ 2 (1 -r(x, X T ) R -1 (X T , X T )r(x, X T )) (5) 
where x ∈ R d is the prediction point, and X T is the locations of training set. R(X T , X T ) is the matrix of correlations among the training points. r(x, X T ), on the other hand, denotes the correlation between the prediction point and the training points. Note that Eq. ( 4) ensures the interpolation of the training points. In fact, if we make a prediction at training point x i , the vector r(x i , X T ) will correspond to the i th line of R(X T , X T ), so that (r(x i , X T ) R -1 (X T , X T )) will give the i th unit vector and so µ Z (x i ) = y i .

If we take into account the 'regression' term m(x) the prediction becomes:

µ(x) = m(x) + r(x) R -1 (Y T -m(x))
which we can also express using the basis introduced in Eq. (1):

µ(x) = f (x) β + r(x) R -1 (Y T -F β) (6) 
σ 2 (x) = σ 2 1 -r(x) R -1 r(x) + f (x) -r(x) R -1 F F R -1 F f (x) -r(x) R -1 F ( 7 
)
where β is the vector of coefficients β j introduced in Eq. ( 1). F is the matrix of the values of the regression basis function at the positions of the training points, whereas f (x) is the vector of values of these functions at the prediction point.

In the case of multi-fidelity surrogate models, we can make assumptions to simplify the problem and inform our model (which results in a decrease of the data needed to learn the model). Lewis and Nash [START_REF] Lewis | A multigrid approach to the optimization of systems governed by differential equations[END_REF] proposed an additive bridge to link the high and low fidelity of a multigrid approach:

f H F (x) = f LF (x) + γ(x). (8) 
When using different grids for a partial differential equation, it is expected that the low and high fidelity would have the same scale and a very high correlation. The coarse and finer meshes are expected to capture the same low frequencies, the coarser mesh, however, would fail to capture high-frequency phenomena. γ(x) ∈ R can then be used to capture the difference. However, in general when modeling multiple fidelities that involve different assumptions on the physics of the problem (e.g., viscosity, compressibility, or turbulence in aerodynamics models), chances are that the low and high fidelities will have different scales and sometimes (in rare cases) poor correlations. Kennedy and O'Hagan [START_REF] Kennedy | Bayesian calibration of computer models[END_REF] proposed a new formulation that takes the correlation and scaling into account by introducing a factor ρ ∈ R in the formulation above:

f H F (x) = ρ f LF (x) + δ(x) with f LF (•) ⊥ δ(•) (9) 
where δ(•) is the discrepancy function tasked with capturing the differences between the low-and high-fidelity functions beyond scaling. The addition of the term ρ increases the robustness of the model. Le Gratiet [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF] proposed an implementation using the regression term expression of universal kriging introduced in Eq. ( 1) and extends it to take the lower fidelity model as a basis function such that the regression term becomes:

m(x) = k j=1 β j f j + β ρ f LF ,
where β ρ is an estimation of ρ performed by a classic parameter estimation such as the likelihood maximization [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF][START_REF] Rasmussen | Gaussian processes for machine learning[END_REF].

Assuming the independence of the high and low-fidelity models (two levels here), the mean and variance of the high-fidelity model are expressed:

µ H F = ρ µ LF + µ δ ( 10 
)
σ 2 H F = ρ 2 σ 2 LF + σ 2 δ ( 11 
)
The approach can be extended to l levels of fidelity. To make this explicit, let us denote f 0 , . . . , f l the hierarchically ranked fidelity codes (from lowest f 0 = f LF to highest f l = f H F ). Using the recursive formulation, we write:

µ k = ρ k-1 µ k-1 + µ δ k (12) σ 2 k = ρ 2 k-1 σ 2 k-1 + σ 2 δ k . (13) 
The formulation by Le Gratiet [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF], if satisfying the nested DOE requirement, offers explicit expressions of the contribution of fidelity levels to the uncertainty of the model. The nested DOE requirement states that X l ⊆ X l-1 . . . ⊆ X 0 where X i is the vector of training points of the fidelity i and l is the highest fidelity. With this assumption, a point computed at the highest fidelity has to be also computed at the lowest fidelities.

We introduce the following notation in Eq. ( 13):

σ 2 δ,k = σ 2 δ k for k ∈ {1, . . . , l} (14) 
σ 2 δ,0 = σ 2 0 for k = 0.
We express the uncertainty contribution of the fidelity level k at design point x (corrected from page 163, [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF]) as:

σ 2 cont (k, x) = σ 2 δ,k (x) l-1 j=k ρ 2 j , (15) 
which means that the variance contribution of the fidelity level k: (σ 2 δ,k ) is scaled using the recursive values of ρ j until we get to the highest fidelity l. These contributions are essential to build Sequential Design or Optimization strategies.

Recent works on linear regression multi-fidelity surrogates have been proposed in [START_REF] Zhang | Multifidelity Surrogate Based on Single Linear Regression[END_REF] where the accuracy is proved to be better than co-kriging [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF] but in the context of this research where we extend design optimization to multi-fidelity information sources, the access to an estimation of the variance is essential as it gives us an estimation of the error at each point of the design space. It thus helps us balance exploration/exploitation in the context of global optimization as explained in the following section.

A Python implementation of multi-fidelity co-kriging based on Le Gratiet's work can be found in the open source Surrogate Modeling Toolbox [START_REF] Bouhlel | A Python surrogate modeling framework with derivatives[END_REF] (SMT). *

III. MFEGO methodology

Bayesian optimization is defined by Močkus [START_REF] Močkus | On Bayesian Methods for Seeking the Extremum[END_REF] as an optimization technique based upon the minimization of the expected deviation from the exteremum of the studied function. The objective function is treated as a black-box function. A Bayesian strategy sees the objective as a random function and places a prior over it. The prior captures our beliefs about the behavior of the function. After gathering the function evaluations, which are treated as data, the prior is updated to form the posterior distribution over the objective function. The posterior distribution, in turn, is used to construct an acquisition function (often also referred to as infill sampling criterion) that determines what the next query point should be.

A. Efficient Global Optimization: EGO

We describe here the expected improvement as well as the EGO algorithm based on Jones et al. [START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF]. Let F be an expensive black-box function to be minimized. We sample F at the different locations X = {x 1 , x 2 , . . . , x n } yielding the responses Y = {y 1 , y 2 , . . . , y n }. We build a kriging model (also called Gaussian process) with a mean function µ and a variance function σ 2 as presented in Section II. The next step is to compute the expected improvement (EI) criterion. To do this, let us denote:

f min = min{y 1 , y 2 , . . . , y n },
the expected improvement function (EI) can be expressed:

E[I(x)] = E[max( f min -Y, 0)] ( 16 
) * https://www.github.com/SMTorg/smt
where Y is the random variable following the distribution N (µ(x), σ 2 (x)). By expressing the right-hand side of Eq. ( 16) as an integral, and applying some tedious integration by parts, one can express the expected improvement in closed form:

E[I(x)] = ( f min -µ(x))Φ f mi n -µ(x) σ(x) + σ(x)φ f mi n -µ(x) σ(x) , if σ > 0 0, if σ = 0 , (17) 
where Φ(•) and φ(•) are respectively the cumulative and probability density functions of N (0, 1). Next, we determine our next sampling point as:

x n+1 = argmax x (E[I(x)]) . ( 18 
)
We then test the response y n+1 of our black-box function F at x n+1 , rebuild the model taking into account the new information gained, and research the point of maximum expected improvement again. We summarize here the EGO strategy in Algorithm 1.

Algorithm 1 EGO Algorithm 

f min ← min Y 5:
x i+1 ← argmax EI(mod, f min ) Choose x that maximizes EI 6:

y i+1 ← F(x i+1 )
Probe the function at most promising point x i+1 7:

X ← X ∪ {x i+1 } 8:
Y ← Y ∪ {y i+1 } Update the samples vectors 9:

i ← i + 1 10: f min ← min Y 11:
return f min This is the best known solution after n iter iterations

B. EGO extension to multi-fidelity: MFEGO

We extend the EGO algorithm to work with multiple fidelities. In practice as the SEGOMOE framework proposed by Bartoli et al. [11,[START_REF] Bartoli | An adaptive optimization strategy based on mixture of experts for wing aerodynamic design optimization[END_REF][START_REF] Bartoli | Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design[END_REF] is capable of handling both unconstrained and constrained problems and this with or without MOE, we choose to note in this paper the unconstrained version of SEGOMOE without MOE as EGO. The multi-fidelity is defined as MFEGO. Finally for constrained problems, we will use the notation SEGO for SEGOMOE without MOE and MFSEGO for its multi-fidelity adaptation.

The main idea of the proposed algorithm is that the search for the most promising sample and the choice of level of enrichment can be seen as problems to be tackled sequentially. Indeed, we can consider that given a Gaussian process (GP) or kriging model (m k GP(µ, σ 2 )) and a current best ( f min ), EI (or another infill sampling criterion) can be trusted to find the next most promising point. The choice of the fidelity level of enrichment is a different question that can be formulated thus: given the uncertainty at a chosen point, is it more interesting to query it at the highest-fidelity level or at lower ones? This choice of a two-stage decision process (fix most promising point then fidelity level of enrichment) offers the advantage of greatly reducing the time of infill sampling criterion optimization without being restrictive in any way. The choice of the fidelity level of enrichment translates an idea stating that one should favor the use of low-fidelity samples for exploration, and high-fidelity ones for exploitation, while making sure that there is no resampling at the same location.

Let f 0 , . . . , f l be the lowest-to highest-fidelity of a quantity of interest, with querying costs c 0 , . . . , c l . Using the recursive formulation [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF] with a constant ρ, we know that:

f k = ρ k-1 f k-1 + δ k for k ∈ {1, . . . , l} (19) 
ρ k-1 = corr( f k , f k-1 ) std( f k ) std( f k-1 ) (20) 
σ 2 k = ρ 2 k-1 σ 2 k-1 + σ 2 δ k (21) 
where the notations are std(•) for the standard deviation and corr(•, •) for the correlation. Using the notations introduced in Eq. ( 14), the variance contribution of the fidelity level k at design point x * defined by Eq. ( 15) is recalled here:

σ 2 cont (k, x * ) = σ 2 δ,k (x * ) l-1 j=k ρ 2 j
Due to the necessity of nested DOEs, all lower fidelities are enriched at the same time, the uncertainty reduction becomes:

σ 2 red (k, x * ) = k i=0 σ 2 δ,i (x * ) l-1 j=i ρ 2 j
The corresponding cost to the enrichment of level of fidelities 0 through k is:

cost total (k) = k i=0 c i
We propose the level of enrichment criterion as follows:

t = argmax k ∈(0,...,l) σ 2 red (k, x * ) cost total (k) 2
where t is the highest fidelity level to be added (the nested DOE imposed to enrich all lower fidelities). It is questionable whether it is possible to always find a common unit of measurement for the cost of an observation and the variance reduction, but as the variance scales with the square of the correlation (Eqs. ( 20) and ( 21)), it is reasonable to penalize the uncertainty reduction by the square of the cost. The correlation translates the quantity of information shared between multiple functions. Note that Le Gratiet [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF] introduces a sequential design strategy where the uncertainty is simply penalized by the cost. Tests were realized with both approaches (penalization with simply the cost, or the square of the cost), the penalization with the square of the cost constantly gave better results.

C. Algorithm

The choice of level heuristic having been presented, we summarize the proposed strategy in Algorithm 2. We note {X 0 , . . . , X l } the DOEs of the fidelity levels 0 through l. {Y 0 , . . . , Y l } are the corresponding responses. 

Algorithm 2 MFEGO Algorithm

crit k ← σ 2 r ed,k (x * , model)/( k i=0 costs[i]) 2 9: if crit k ≥ crit k-1 or σ 2 r ed,
f min ← min Y l 20:
x i+1 ← argmax EI(mod, f min ) Choose x that maximizes EI 21:

ENRICH_LEVEL(mod, x i+1 , costs)

22: i ← i + 1 23: f min ← min Y l 24:
return f min This is the best known HF solution after n iter iterations Note that the algorithm above does not take into account the constant cost of an iteration (surrogate model creation and maximization of EI). This can cause the optimization to last longer. A quick fix to take into account the constant cost of an iteration is to measure and to add that cost as an offset. This translates the idea that when we perform one iteration of the algorithm, the cost of an update is not only the querying time of the high-or low-fidelity code, but also the time needed to build the surrogate model and maximize the infill sampling criterion.

As can be seen in line 19 of the MFEGO algorithm, the value of f min is only updated by the best HF value. That is because other fidelity codes and datasets are only considered to help MFEGO and are not the objective of optimization. By only updating the best solution when a high fidelity sample is requested, the optimization is made more robust. Indeed, low fidelity can only be used to reduce some amount of the expected improvement, which is an amount due to uncertainty (exploration), rather than knowledge (exploitation). This property ensures that MFEGO converges to the global optimum of the high-fidelity function (in the same sense that EGO converges to the global optimum of a function). Note that the criterion integrates the correlation of the fidelity levels and thus makes the algorithm more robust to cases where there is a poor correlation between fidelity levels. Indeed, when ρ k → 0,

σ 2 red (k,x * )
cost total (k) 2 → 0, prompting the algorithm to move to the higher fidelities.

It is important that the algorithm will not resample high-fidelity points as the EI at these points is zero. It will also not resample low-fidelity points as the choice of level criterion will become zero for the low fidelity points, pushing the algorithm to query the high fidelity ones, thus enhancing the model and solution.

D. Illustration on 1-D analytic problem

The proposed strategy is illustrated on the following 1-D analytic problem [START_REF] Forrester | Multi-fidelity optimization via surrogate modelling[END_REF]:

f H F (x) = (6x -2) 2 sin(2(6x -2)) f LF (x) = 0.5 f H F + 10(x -0.5) -5
In Figure 1 we represent graphically these two fidelity levels. f H F is the expensive function and f LF is the cheap one. We make the assumption that the cost ratio between the fidelity levels is 1/1000. We start the optimization with 3 HF samples and 6 LF ones. We define the low-and high-fidelity datasets as:

X 0 = {x LF 1 , x LF 2 , x LF 3 , x LF 4 , x LF 5 , x LF 6 } and X 1 = {x H F 1 , x H F 2 , x H F 3 }.
The corresponding responses are Y 0 and Y 1 where

Y 0 = f LF (X 0 ) and Y 1 = f H F (X 1 )
. MFEGO algorithm is used to sequentially search through the space to minimize the maximum of EI. The algorithm has at each step two choices: 1) query once the low fidelity only, 2) query once the low fidelity and once the high fidelity if the EI cannot be reasonably reduced by a low-fidelity query. Figure 2 shows the reduction of EI resulting from cheap exploration, high-fidelity exploitation and model enhancement. After adding 4 LF points to explore the space and reduce EI (some low-fidelity points can be indistinguishable due to their proximity in the images above), the image (c) shows the local exploitation and enhancement of the model by querying the high-fidelity code once. The next HF sample finds the global optimum of the function. To summarize, we find the optimum after 7 iterations: 7 LF samples and 2 HF samples have been added, whereas the initial DOE was 6 LF points and 3 HF points (summary in Table 1). The classical mono-fidelity EGO approach with an initial DOE of 4 HF points required 11 additional HF points to find the global optimum, with a total cost three times higher than the MFEGO cost (15 compared To finish, we highlight that the choice of level criterion can be used with any exploration-versus-exploitation algorithm as the same idea can be applied. We use the low fidelity to reduce the uncertainty of the model and thus reduce the Exploration contribution to the infill sampling criterion. The highest fidelities are then used for the exploitation and effectively minimize the objective.

IV. Airfoil shape optimization

To validate MFEGO (resp. MFSEGO) and compare it to EGO (resp. SEGO) and later gradient-based approaches, three optimization problems have been considered: 1) 9-D unconstrained airfoil shape optimization 2) 15-D unconstrained airfoil shape optimization 3) 15-D airfoil shape optimization with 2 equality constraints A supervised (analytic) test case is also provided in Appendix (2-D Rosenbrock function).

A. Test case description

For the airfoil shape optimization test case, we used a parametrization based on a mode decomposition proposed by Li et al. [START_REF] Li | Data-based Approach for Fast Airfoil Analysis and Optimization[END_REF]. This decomposition is a Singular Value Decomposition (SVD) on the camber and thickness of an airfoil database. We use this parametrization to define an airfoil geometry for which we can compute characteristics such as the Lift Coefficient C l , Drag Coefficient C d , and Pitching Moment C m . The goal is to find the global optimal geometry of the airfoil as computed by the high-fidelity code ADflow. † ADflow has a Reynolds Averaged Navier-Stokes (RANS) multi-block flow solver developed in the MDO Lab (University of Michigan) that has been successfully applied to a variety of aerodynamic shape optimization problems [START_REF] Lyu | Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft[END_REF][START_REF] Lyu | Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark[END_REF][START_REF] Yu | On the Influence of Optimization Algorithm and Starting Design on Wing Aerodynamic Shape Optimization[END_REF][START_REF] Bons | Multimodality in Aerodynamic Wing Design Optimization[END_REF].

To help MFEGO find the optimum at the lowest cost possible, we use a low-fidelity code Xfoil [START_REF] Drela | XFOIL: An analysis and design system for low Reynolds number airfoils[END_REF], which takes a fraction (1/200) of the HF code time to give an approximation of the result using hypotheses simplifying the problem (linearization, ignoring shocks, compression corrections...). Although Xfoil gives results that are different from ADflow, it has a strong correlation with the RANS solver. As they both represent the same physical problem, the same trends can be observed (Lift and Drag tend to increase when we increase the Angle of Attack for example). We use the correlation between the low and high fidelities to improve the accuracy of the model and perform faster optimizations.

ADflow compute derivatives efficiently thanks to a discrete adjoint method implementation [START_REF] Kenway | Effective Adjoint Approaches for Computational Fluid Dynamics[END_REF]. This has allowed us to have a gradient-based optimization reference to compare the Bayesian optimization approaches with, especially considering that 2D airfoil optimizations are unimodal [START_REF] Yu | On the Influence of Optimization Algorithm and Starting Design on Wing Aerodynamic Shape Optimization[END_REF].

To solve such optimization problems, work has been done on the noise estimation and regression/re-interpolation of the multi-fidelity surrogate model based on the work of Forrester et al. [START_REF] Forrester | Multi-fidelity optimization via surrogate modelling[END_REF]; when using multi-fidelity analyses, we can modify the interpolating co-kriging formulation in Eq. ( 4) such that each analysis can be regressed appropriately to filter any noise present in the data [START_REF] Forrester | Multi-fidelity optimization via surrogate modelling[END_REF]. In practice, this is done by adding a noise term λ to the diagonal of the covariance matrix and estimating it by maximum of likelihood [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF][START_REF] Rasmussen | Gaussian processes for machine learning[END_REF].

B. 9-D unconstrained optimization

The main characteristics of the first airfoil shape optimization problem are summarized in Table 2. The modes design variables have been normalized to fit the segment [0, 1]. The SVD gives as output basis vectors that can be scaled so that the design variable associated to a particular mode has a range of [0, 1]. In practice the scaled basis vectors were chosen not only to allow the reconstruction of the airfoil database used by Li et al. [START_REF] Li | Data-based Approach for Fast Airfoil Analysis and Optimization[END_REF], but also an additional margin was added to allow further exploration of new geometries. The Mach number (set to 0.25) and Reynolds number (set to 6 × 10 6 ) remain constant. With a cost ratio of 1/200, we obtain the results presented in Figure 3 and Table 3. The columns HF DOE and LF DOE in Table 3 denote the number of samples of each fidelity used to build the initial design of experiment (DOE). The columns HF Opt and LF Opt are respectively the number of high-fidelity (HF) and low-fidelity (LF) calls that the optimization routine used after that. The cost is a cost normalized by the HF cost, so that HF calls contribute 1 to the total cost, and LF calls contribute 1/200. It can be directly interpreted as the CPU time needed to reach the solution. We should note that EGO and MFEGO were stopped before 'convergence' (Bayesian optimization doesn't have a characterization of optimum, a budget of iterations is generally imposed as stopping criterion) and that at 'convergence', EGO and MFEGO should give the same optimum. But we can see from Table 3 that with lesser calls we are able to obtain a better best known solution. To understand the reason MFEGO performs better than EGO, let us define the series 'Gain' of a Bayesian optimization at iteration i as:

Gain i = |sol i -sol DOE |
where sol i is the best known solution after the i th iteration and sol doe is the best known solution resulting from the random sampling of the initial DOE. We use the Gain to compare the efficiency of the EGO and MFEGO algorithms. Figure 4 shows the Gain (improvement of the objective function compared to the start of the optimization) as a function of the cost. We see that EGO tends to have long plateaus where the objective does not improve, whereas MFEGO tends to improve at (almost) every HF call. This is due to the fact that EGO is an exploitation/exploration compromise. By using the lower-fidelity, MFEGO can explore the design space more cheaply, leaving HF calls for effective improvement of the objective. This is particularly important when increasing the dimension of the problem. As we increase the number of design variables, the space to explore becomes bigger. Using multiple fidelities allows MFEGO to scale better than EGO w.r.t the number of design variables.

C. 15-D unconstrained optimization

We showcase the better scaling by solving the same shape optimization problem with more design variables are described in Table 4 The Mach number (set to 0.25) and Reynolds number (set to 6 × 10 6 ) remain constant. As this particular problem is convex and unimodal, the local optimum found by SNOPT is also the global optimum of the function (red dotted line in Figure 5). We use this optimum as a reference to show the distance between the true optimum and the current solution of EGO and MFEGO. We can see from Figure 5 that the additional dimensions result in EGO spending a lot of time on the exploration of the space of the design variables. MFEGO is more immune to this trend as it can use the lower fidelity to explore the space before committing a HF computation. This observation is consistent across multiple runs. One way to make further use of the multi-fidelity kriging is to reduce the cost of the initial DOE. For example, instead of using 40 HF (for a total cost of 40), we use 16 HF and (approximately) 800 LF (for a total equivalent cost of (approximately) 20). We see in Figure 6 that by doing so, the space is better mapped, and that this improves greatly the speed of convergence at a much lower cost. For this problem we had access to the gradient-based optimum using SNOPT [START_REF] Gill | SNOPT: An SQP algorithm for large-scale constrained optimization[END_REF]. The dashed vertical blue line in Figure 6 separates the initial DOE building phase and the optimization driven by the Bayesian algorithm phase that comes after that. Figure 6 shows that MFEGO gives better results than EGO even with a less expensive initial DOE. The low fidelity, much cheaper, contributes some information to the surrogate model. MFEGO searched through the design space using 437 LF points and probed 8 HF points to attain the SNOPT solution (110.7 for SNOPT against 110.5 for MFEGO). We summarize the results in 

D. Constrained optimization

We have shown that for unconstrained optimizations, MFEGO gives superior results to EGO due to the availability of cheap exploration of the design space. We show in what follows the advantages of multi-fidelity surrogate modeling for constrained optimization in an approach called MFSEGO. Not only the lower fidelities give access to cheaper exploration, but the overall model is more accurate resulting in a smaller constraints violation. First, let us introduce the measure root mean squared constraint violation (RMSCV) for an equality constraint as:

RMSCV = 1 N N j=1 val j -target 2
where N is the number of iterations of the algorithm, val j the value of the constraint function at iteration j and target is the target value of the constraint. A smaller RMSCV means that, on average, the algorithm respects the constraints more. We compare MFSEGO with SEGO and SNOPT through the following constrained optimization problem given in Table 6. The Mach number (set to 0.25) and Reynolds number (set to 6 × 10 6 ) remain constant. To test the robustness of the algorithm we add a Pitching Moment (C m ) constraint. Note that the AIAA Aerodynamic Design Optimization Discussion Group [START_REF]Aerodynamic Design Optimization Discussion Group Website[END_REF] proposes a pitching moment inequality constraint for the RAE2822 airfoil test case. We transformed this constraint into an equality constraint to make sure it is active on our problem. For a design to be accepted, we require that the constraint violation must be below 10 -3 for the absolute value of each of the two constraints.

In Table 7, the cost of SNOPT optimizations combines the number of direct problems solved [START_REF] Yu | On the Influence of Optimization Algorithm and Starting Design on Wing Aerodynamic Shape Optimization[END_REF], and the number of adjoint problems solved to compute derivatives ( Table 7 shows that MFSEGO is more robust to the addition of new constraints. This is due to the fact that the low fidelity helps in the surrogate modeling of the C m constraint as well. As a result, MFSEGO shows a 10 times lower constraint violation (RMSCV of 4.9e-3 for MFSEGO against 8.8e-2 for EGO). We should note that the small difference between SNOPT and MFSEGO in the objective should be attributed to the constraints tolerance. We should also point out that the first feasible solution found by EGO was after 52 HF iterations, whereas MFSEGO only needed 11 HF samples before finding its first feasible solution as shown in Figure 7 (vertical green dashed line). MFSEGO performed better than EGO and SNOPT in terms of cost. SNOPT needed 23 direct problems resolutions and 69 adjoint problems to find its optimal solution. In Figure 7 we show the evolution of the objective and constraint throughout the iterations of EGO and MFSEGO. The blue dashed line separates the initial DOE phase (random sampling) and the optimization phase. We show that MFSEGO has less constraints violations (less variations around the green dashed line denoting less constraint violations).

These three airfoil shape optimization problems demonstrated the good behaviour of the proposed multi-fidelity approach compared to classical Bayesian algorithms. Nevertheless, investigations will be carried on to increase both the Mach number, and the dimension of the design space. 

V. Conclusion

In this paper, we formulate an extension of Bayesian optimization algorithms to work with multi-fidelity information sources. This approach is successfully coupled to EGO and SEGO to solve both unconstrained and constrained problems. In this approach, the number of high-fidelity calls is limited as the low fidelity is used to favor the exploration phase and thus costly high-fidelity simulation is only dedicated to the exploitation phase. We demonstrate the efficiency of Bayesian optimization in several test cases by enhancing the design space exploration part. For both the unconstrained or constrained optimization problems, MFEGO and MFSEGO found better results at a 50% lower computational cost compared to EGO. All problems have been treated within the SEGOMOE framework that is now extended with this new capability to handle multi-fidelity.

Future work will integrate the gradient information in the surrogate model and possibly in the devising of new criteria to allow for faster optimization. The extension to MDO workflow is also a target with studies on multi-fidelity coupling between two disciplines.
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 5 Fig. 5 Comparison of 'Gain' of EGO and MFEGO for unconstrained L/D maximization (15 Design Variables). The red dashed line is the optimum found by SNOPT.
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 6 Fig. 6 Comparison of evolution of objective as function of iterations for EGO and MFEGO for unconstrained L/D maximization with 15 design variables.
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 7 Fig. 7 Comparison of objective and constraints function of iterations for SEGO (a) and MFSEGO (b) for optimization of C d subject to C l and C m constraints with 15 design variables.

  

Table 1 Analytic problem optimization summary.

 1 to 5.013).

		HF DOE LF DOE HF Opt LF Opt Cost
	MFEGO	3	6	2	7	5.013
	EGO	4	-	11	-	15

  .

		Function/variable Description	Quantity	Range
	maximize	L/D	Lift-to-Drag ratio	1
	with respect to	α	Angle of attack	1 [0.0, 8.0] ( • )
		θ	Thickness modes	7	[0, 1]
		δ	Camber modes	7	[0, 1]
			Total variables	15

Table 4 Definition of the 15-D unconstrained optimization problem.
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Table 5 .

 5 HF DOE LF DOE HF Opt LF Opt Cost

	Obj

Table 5 L

 5 /D maximization

: Comparison of cost and objective for EGO and MFEGO unconstrained optimiza- tion with 15 design variables. The reference value is obtained by SNOPT.

  

Table 6 Definition of the 15-D constrained optimization problem.
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		Function/variable Description	Quantity	Range
	minimize	C d	Drag Coefficient	1
	with respect to	α	Angle of attack	1 [0.0, 8.0] ( • )
		θ	Thickness modes	7	[0, 1]
		δ	Camber modes	7	[0, 1]
			Total variables	15
	subject to	C L = 0.5	Lift coefficient	1
		C m = 0	Pitching moment	1
			Total constraints	2

Table 7 .

 7 23 × 3 = 69). The overall cost is then calculated as: cost SNOPT = time Direct + time Adjoint time Direct × N iter where time Direct is the time needed for solving the N iter direct problems, and time Adjoint is the time needed to solve N iter × N f uncs adjoint problems. N f uncs is the number of functions evaluated, here 3: C l for the objective, and C d and C m for the constraints. N iter was 23 in this case. This SNOPT cost is compared to the cost of SEGO and MFSEGO in HF DOE LF DOE HF Opt LF Opt

	Cost	Obj	Feasible RMSCV

Table 7 Comparison of SEGO and MFSEGO for constrained optimization with 15 design variables. The reference value is obtained by SNOPT.
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† https://github.com/mdolab/adflow
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Appendix A. Rosenbrock optimization

We present here the results for the Rosenbrock function (See Figure 8) as it is a particularly challenging function to optimize (the function is extremely flat around the optimum). This optimization problem also allows us to compare MFEGO algorithm to some of the literature's state-of-the-art multiple information source optimization algorithms (not presented here, refer to [START_REF] Poloczek | Multi-Information Source Optimization[END_REF]). We set up the optimization to match the one presented in [START_REF] Poloczek | Multi-Information Source Optimization[END_REF] to have results that can be compared and to have a first order appreciation of the quality of the algorithm:

we assume a cost of 1000 for f H F and 1 for f LF .

The algorithm is started with a budget of 5 high-fidelity samples and 10 low-fidelity samples. Figure 9 shows MFEGO using the low fidelity to explore the space and more intensely the valley where the optimum is. It finally places a high-fidelity sample near the theoretical optimum of the function. It only needed one HF sample to do that.

This first result on a problem clearly cut for multiple information sources (assumption that only small variations exist between low and high fidelities) rather than multi-fidelities, was encouraging to carry on working on the algorithm and apply it to the aerodynamic shape optimization of an airfoil.