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Atom interferometry using stimulated Raman transitions in a retroreflected configuration is the
first choice in high precision measurements because it provides low phase noise, high quality Raman
wavefront and simple experimental setup. However, it cannot be used for atoms at zero velocity
because two pairs of Raman lasers are simultaneously resonant. Here we report a method which
allows to lift this degeneracy by using a frequency chirp on the Raman lasers. Using this technique,
we realize a Mach-Zehnder atom interferometer hybridized with a force balanced accelerometer
which provides horizontal acceleration measurements with a short-term sensitivity of 3.2 × 10−5

m.s−2/
√
Hz. This technique could be used for multiaxis inertial sensors, tiltmeters or atom inter-

ferometry in a microgravity environment.

I. INTRODUCTION

Since their inception, light-pulse atom interferome-
ters (AIs) have proven to be extremely sensitive gravito-
inertial sensors measuring gravity [1–5], gravity gradients
[6–8], rotations [9–12], appearing as promising candidates
to compete with traditional sensors used for geodesy, geo-
physics, exploration or inertial navigation [13]. More-
over, they have demonstrated to be an invaluable tool
in fundamental physics where they are used for measur-
ing physical constants [14–17], testing Einstein equiva-
lence principle [18–22], searching for dark sector particles
[23], and even proposed for gravitational-wave detection
[24, 25] or for measuring free-fall of anti-matter [26]. The
principle of a light-pulse AI relies on the use of recoils
from photon-atom interactions to coherently split, de-
flect and interfere matter-waves. Most light-pulse AIs use
stimulated two-photon process (Raman or Bragg transi-
tions) to realize the beamsplitters and mirrors required
for the interferometer sequence [27]. In this process, the
atom coherently absorbs and then emits a photon from a
pair of counterpropagating laser beams with different fre-
quencies, resulting in a net momentum transfer of h̄keff
at each interaction, where keff is the effective wave vec-
tor. To perform Bragg-based or Raman-based AIs at
their best level of performance, it is beneficial to address
the two-photon transitions in a retroreflected geometry
where a single laser beam with two laser frequencies is
retroreflected off a mirror. This allows first to reduce
the effect of wavefront distortions which affect the sen-
sor’s accuracy [28]. This is beacause the wavefront dis-
tortion of the incoming beam cancels out in a retrore-
flected configuration and only optical elements behind
the atoms have to be considered for wavefront distor-
tions (mirror, wave plate, vacuum window). Secondly, it
is an efficient way to implement the keff reversal tech-
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nique [29] to eliminate some systematics, as well as to
reduce interferometer phase noise as most vibration ef-
fects on the laser phases are common to the two lasers
and cancel out in the two-photon process, apart from
vibrations of the mirror. However, the use of retrore-
flection for zero velocity atoms along the Raman beam
naturally leads to a double diffraction scheme where two
stimulated Raman transitions with opposite momentum
transfer ±h̄keff are simultaneously resonant. This double
diffraction scheme has been first implemented using Ra-
man transitions to realize an AI for which the separation
between the two arms is 2h̄keff both in the case of atoms
at rest [30], as well as for nonvanishing initial velocities in
the case of a gravimeter [31]. For the latter, three laser
frequencies were mandatory to account for the chang-
ing Doppler shift induced by gravity acceleration, hence
leading to a more complex setup. However, for onboard
applications, where shot-to-shot acceleration variations
leads to uncontrolled velocity variations of the atomic
sample, even though close to zero velocity, it becomes
challenging to address this double diffraction scheme with
high efficiency as the two transitions become partly de-
generated. Moreover, the experimental realization of a
double diffraction AI geometry is much more demanding
than that of a single diffraction as it requires longer Ra-
man pulse duration, colder atomic source and additional
blow away beams to get rid of parasitic interferometers.
Moreover, the gain in scale factor obtained by increas-
ing the arm separation in a double diffraction scheme
is not of interest when the sensitivity of the interferom-
eter is limited by vibrations unless used in differential
mode accelerometer for applications in gradiometry [32]
or for testing the Weak Equivalence Principle (WEP)
[22]. Therefore, in certain situations, single diffraction
may be preferable to double diffraction. In this work,
we experimentally demonstrate a technique enabling the
use of single diffraction two-photon Raman transitions
despite zero Doppler shift in the commonly-used retrore-
flected geometry. By employing a laser frequency chirp,
we lift the degeneracy between the two simultaneous res-
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onance transitions. We then apply our technique to the
measurement of the horizontal component of accelera-
tion using a Mach-Zehnder style atom interferometer. We
achieve a sensitivity of 3.2× 10−5 m.s−2/

√
Hz and show

that no bias is induced by this method.

II. METHOD

We present here a general method which can be ap-
plied to any two-photon process such as Raman transi-
tion or Bragg diffraction. For example, we demonstrate
our technique by performing stimulated two-photon Ra-
man transitions between the two hyperfine ground states
of 87Rb (labelled |g〉 and |e〉) via an intermediate state
(labelled |i〉) using two lasers of frequencies ω1 and ω2

detuned to the red of the D2 line by ∆i. The Raman
beams are brought to the vacuum chamber via a polar-
ization maintening optical fiber. After passing through
the chamber, the laser beams are retroreflected through a
quarter-wave plate to rotate the initial polarization into
its orthogonal polarization creating two pairs of counter-
propagating beams in the horizontal x-direction in a lin
⊥ lin configuration (see Figure 1 (a)). Consequently two
pairs of beams can drive the two-photon transition be-
tween |F = 1,mF = 0〉 ≡ |g〉 → |F = 2,mF = 0〉 ≡ |e〉.
With this polarization configuration, the co-propagating
Raman transitions are forbidden. The detuning δ from

FIG. 1. (a) Schematic setup of two-photon Raman transitions
in the commonly-used retroreflecting geometry. A two-level
atom is interacting with two pairs of counterpropagating light
fields (pair 1 and pair 2) in lin ⊥ lin configuration. Apply-
ing a frequency chirp β on the lasers, changes the incident
laser frequency by δω = 2πβtd. ∆i is the one photon detun-
ing. (b) Left: Scheme of the Raman transition between the
two hyperfine ground states of an alkaline atom in absence of
Doppler shift (ωD = 0) and without frequency chirp (β = 0).
Both pairs are simultaneously resonant. Right: Applying a
frequency chirp β on the Raman laser frequencies, lifts the de-
generacy between the two resonant conditions by an amount

2δω. After the chirp, the one photon detuning is ∆
′

i.

the two-photon resonance is given by:

δ = ω1 − ω2 − (ω0 + ωD + ωR) (1)

where ω0 is the frequency of the hyperfine transition,

ωD = ±~keff .~v is the Doppler shift due to the atomic
velocity ~v in the reference frame of the apparatus, and

ωR =
h̄k2

eff

2m the recoil frequency shift. Thus, in absence
of Doppler shift, both pairs are simultaneously resonant

and couple |g, ~p〉 →
∣

∣

∣
e, ~p± h̄~keff

〉

. In order to circum-

vent this problem and lift the degeneracy between the
two resonance conditions, we apply a frequency chirp
β = 1

2π
dω1

dt = 1
2π

dω2

dt on the Raman lasers. As the re-
flected beams are delayed with respect to the incom-
ing ones by td = 2L

c (where L is the distance atom-
mirror), the incoming laser frequencies will be shifted
by δω = 2πβtd at the position of the atoms, allowing to
detune one transition with respect to the other by 2δω.
This allows to selectively adress Raman pair 1 or pair
2. This effect can be understood as mimiking an effec-
tive atomic velocity in the reference frame of the lasers
leading to an equivalent Doppler shift ωD = 2πβtd.

A. Experimental setup and lasers

The experiment was carried out in the atom interfer-
ometer setup described in [33]. Atom interferometers
usually consist in three-steps: preparation, interferom-
etry and population detection. To perform these func-
tions we use the laser system described in detail in [34],
based on a frequency doubled fiber bench using two inde-
pendent lasers sharing the same 5 Watts Erbium-doped
fiber amplifier. The laser used to cool and detect the
atoms is an erbium DFB fiber laser at 1.5 µm (output
power 20 mW, linewidth 2 kHz) locked relative to the
Rubidium transitions using a saturated absorption lock
[35]. The atom interferometry (AI) laser source is a DFB
laser diode at 1.5 µm (output power: 10 mW, linewidth
1 MHz). The detuning ∆ of the AI laser from the one
photon resonance is controlled using a beat-note between
the two lasers at 1.5 µm . Finally the two lasers are com-
bined at 1.5 µm by an electro-optical modulator which
acts like a continuous optical switch between each laser
before seeding the EDFA. The output of the EDFA is
sent to the dual-wavelength second harmonic generation
bench. In our experiment, the two Raman beam frequen-
cies are generated thanks to a fiber phase modulator [36].
The chirp β is obtained by directly modulating the input
current of the laser diode using a low frequency arbitrary
waveform generator (AWG). We display on Figure 2 the
laser setup and the optical bench of the experiment.

B. Raman spectroscopy experiment

To investigate our method we first started by imple-
menting Raman spectroscopy. A cold 87Rb atom sam-
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FIG. 2. Scheme of the laser system and the experimental setup (top view) allowing to perform Raman transitions in the
horizontal scheme. SAL, Saturated absorption lock; L, lens; M, mirror; PM, phase modulator; AOM, acousto-optic modulator;
S, shutter; PBS, Polarizing beam-splitter; OS, optical switch; BS, beam splitter; AWG, Arbitrary waveform generator; SHG,
second harmonic generation; Acc, accelerometer; c, coupler; PD, Photodetector; Cam, camera.

ple is produced in a 3 dimensional magneto-optical trap
(MOT) loaded from a background vapor pressure in 340
ms. Atoms are further cooled to 2 µK by means of po-
larization gradient in 8 ms. The cooling beams are then
turned off, and as the atoms freely fall, a microwave π-
pulse followed by a blow-away beam allows to select the
atoms in the insensitive ground state |F = 1,mF = 0〉
with a horizontal bias magnetic-field of 100 mG. Then,
a horizontal Raman laser pulse of duration τ = 10µs is
applied to the atoms 18 ms after their release from the
trap. The proportion of atoms in each hyperfine state
F = 1 and F = 2 is then measured using a state se-
lective vertical light-induced fluorescence detection. The
cycling time of the experiment is Tcycle = 500 ms. In
practice, the AWG generates a triangle-wave modulation
signal in burst mode, directly applied to the modulation
input of the laser diode current controller. The voltage
command signal is triggered to the Raman pulse and the
chirp duration is fixed to 40 µs. Consequently, the single-
photon frequency excursion is controlled by adjusting the
peak-to-peak voltage amplitude denoted A. We exper-
imentally measure the frequency response of the laser
diode as a function of the voltage amplitude by monitor-
ing the beat-note signal between the laser diode and the
fiber laser using the Fast Fourier Transform (FFT) math
function of an oscilloscope. Figure 3 displays the fre-
quency response of the laser diode when applying A = 6
V peak-to-peak amplitude command. For clarity sake,
the frequency response is plotted as the frequency differ-
ence beween the Raman laser frequency νRaman = ω1/2π
and the 5S1/2, F = 2 → 5P3/2, F

′ = 1 transition. In this

case, one finds a chirp β = −210 MHz.µs−1. The delay
between the command and the Raman laser pulse is ad-
justed to ensure a linear frequency response of the laser
diode during the Raman pulse.
Figure 4 diplays the measured transition probabil-

ity as a function of the Raman frequency difference
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FIG. 3. Frequency response of the Raman laser νRaman = ω1

2π
to the voltage command applied to the current modulation in-
put. Voltage command (blue line). Measurement of the laser
diode frequency response (black dots and line). Raman laser
pulse (red line). The measured chirp is β = −210 MHz.µs−1,
leading to a frequency excursion of 2100 MHz during the Ra-
man pulse.

(ω1 − ω2)/2π for different chirp values β applied to the
laser diode. The Raman laser intensity is adjusted to
maximize the transfer efficiency at resonance for a pulse
duration of τ = 10 µs. When no chirp is applied (β = 0),
only a single peak is observed due to the simultaneous
resonant condition. Increasing slightly β starts lifting
the degeneracy between the two resonant conditions. For
β = −35 MHz.µs−1, the chirp is not important enough
to lift the degeneracy between the two transitions. How-
ever, for greater values of the chirp two resonance spectra
are clearly observed with a frequency separation which
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increases linearly with the amplitude of the voltage com-
mand. Measuring the frequency separation between the
two resonance spectra (2δω/2π) allows to estimate the
atom-mirror distance L = cδω/4πβ ≃ 24 cm in agree-
ment with the expected distance from the trap center to
the mirror of the setup.
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FIG. 4. Raman resonance spectra obtained by scanning the
Raman frequency difference (ω1 − ω2)/2π, across the reso-
nance for five different frequency chirps applied on the laser
diode. A is the peak-to-peak amplitude voltage of the signal
command. (a) For β = 0 a single peak is observed due to
the simultaneous resonant conditions. (b),(c),(d),(e): When
applying a frequency chirp two peaks are observed allowing to
lift the degeneracy between the two Raman transitions. The
two Raman resonances are separated by 2δω/2π.

III. ATOM INTERFEROMETER

To further investigate our technique we performed a
Mach-Zehnder style AI in a horizontal configuration us-
ing a π/2−π−π/2 chirped-Raman pulse sequence, with
each pulse separated by an interrogation time T . With

this geometry, the atomic phase shift at the ouput of the
interferometer is sensitive to the horizontal acceleration
~a of the atoms relative to the reference mirror. In the
limit of short, resonant pulses, the phase shift is then

given by: ∆φ = φ1 − 2φ2 + φ3 = ~keff .~a T
2, where φi is

the phase difference between the two counterpropagating
Raman lasers at the position of the atoms at the i-th Ra-
man pulse. The delay between the release of the atoms
from the trap and the first Raman pulse is t0 = 3 ms.
The Raman beams have a waist of 5.5 mm (1/e2 radius).
Thus, due to the free fall of the atoms across the laser
beam, our interrogation time is limited and the inten-
sity seen by the atoms for the three laser pulses will be
different. Consequently, we adjust the timing of our ex-
periment and the position of the laser beam in order to
have the same intensity seen by the atoms for the first
and the last Raman pulses. This leads to an interroga-
tion time 2T = 31.7 ms. This configuration enables to
minimize light-shift effects. As the intensity is higher for
the middle pulse (π), this configuration allows also to
apply the same pulse duration (τ = 10µs) for the three
Raman laser pulses without losing too much contrast.
Consequently, we ensure the frequency chirp to be the

same for each Raman pulse, β = −210 MHz.µs−1 in our
experiment. Figure 5 is a sketch of the interferometer
setup. After the interferometer sequence we measure the

FIG. 5. (a) Sketch of the horizontal atomic accelerometer.
The atoms fall under gravity in the retroreflected Raman
beam. By measuring the transition probability P as a func-
tion of free-fall time of the atoms we adjust the timing of our
experiment and the position of the Raman laser beam. The
pulse duration is equal for the three Raman light-pulses. The
center of the classical accelerometer (Acc.) matches the po-
sition of the cold atom cloud at the π pulse. L = 24 cm:
atom-mirror distance. (b) Raman frequency ω1(t) during the
interferometer sequence. The same linear chirp is applied for
the three Raman pulses.

proportion of atoms in each ouput port of the AI by
fluorescence. The normalized proportion of atoms in the
hyperfine state |F = 2,mF = 0〉 after the final π/2 pulse
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is a sinusoidal function of the acceleration :

P = Pm − C

2
cos

(

~keff .~a T
2
)

(2)

where Pm is the fringe offset and C the fringe contrast.
In a retroreflected geometry, the phase is sensitive to the
acceleration of the atom compared to the mirror. Thus,
in absence of vibration isolation, fluctuations of the mir-
ror position can induce fluctuations of the interferome-
ter phase wich wash out the fringe visibilty, even in the
laboratory environment. To observe interference fringes,
we perform a correlation-based technique [37] combining
the simultaneous measurements of the output signal P
of our interferometer with the one from a classical ac-
celerometer rigidely fixed to the Raman mirror. This
allows to recover the interference fringes, although the
fringes are randomly scanned by vibrations. Figure 6 dis-
plays retrieval of the fringe pattern obtained by plotting
the probability transition of the AI output versus the ac-
celeration measured by the classical accelerometer. The
fringe contrast obtained from the sinusoidal least-squares
fit of the data is C = 40%.
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FIG. 6. Horizontal atom interferometer fringe pattern. The
total interferometer time is 2T = 31.7 ms and the frequency
chirp applied during each Raman pulse is set to β = −210
MHz.µs−1. The solid line is a sinusoidal least-squares fit using
Eq.2. The estimated fringe contrast is C ∼ 40%.

In order to work at best sensitivity we studied the con-
trast of the interferometer as a function of the frequency
chirp β applied on the Raman lasers. Results are dis-
played on Figure 7. The contrast is an increasing func-
tion of the frequency chirp β until it reaches an optimum
of C = 40% for β = −200 MHz.µs−1. Increasing further
the chirp value does not improve the interferometer’s con-
trast.

A. Atom accelerometer sensitivity

To analyze the sensitivity and the stability of the hori-
zontal atom accelerometer, we performed a hybridization
of the classical accelerometer with the atom interferom-
eter. We use the hybridization procedure described in
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FIG. 7. Contrast as a function of the frequency chirp.

[4]. We have operated the atomic sensor continuously
during one night. Figure 8 displays the Allan standard
deviation (ADEV) of the hybridized atomic accelerome-
ter signal. The sign of the effective Raman wave vector
~keff is reversed every measurement cycle. We achieve a
short-term sensitivity of 3.2 × 10−5 m.s−2/

√
Hz which

is comparable to state-of-the-art for horizontal configu-
rations [38] (1 × 10−5 m.s−2/

√
Hz) despite the use of a

shorter interrogation time (31.7 ms versus 226 ms). The
ADEV of the horizontal acceleration measurement scales
as τ−1/2 and reaches 0.2×10−5 m.s−2 at 500 s integration
time. For longer integration times, the acceleration mea-
surement drifts as illustrated by the typical linear depen-
dence in the averaging time τ . The observed drift could
be caused by an angular variation of the Raman mirror.
The atom interferometer is measuring the projection of
the gravity along the normal of the mirror. An angular
drift of the mirror of 10 µrad, which seems reasonable on
our experimental setup, could explain the observed drift.
Thus, one cannot conclude on the long term stability of
the atom accelerometer unless using an auxilliary tilt sen-
sor to monitor the angle between the Raman beam and
the horizontal plane during the measurement.

B. Bias arising from the frequency chirp

To conclude our study, we investigated a possible bias
induced by the frequency chirp β on the acceleration mea-
surement. The phase added by the frequency ramps adds
an additional non-inertial contribution to the atomic
phase shift (see Appendix A). Assuming that the fre-
quency ramps applied to the Raman lasers are perfectly
equal for the three Raman light-pulses, and that the laser
intensities are the same for the first and last laser pulse
its contribution vanish in the interferometer phase. How-
ever, technical imperfections leads to a bias phase pro-
portional to β. We thus measured the acceleration as
a function of the frequency chirp β. Figure 9 displays
the acceleration signal measured by the hybridized atom



6

1 10 100 1000 10000

0,1

1

10

 Atomic acc.

 

 

3.2 10-5 m s-2/Hz1/2

AD
EV

 (1
0-5

 m
 s

-2
/H

z1/
2 )

Integration time (s)

FIG. 8. Allan standard deviation (ADEV) of the atomic ac-

celerometer (blue line). The dash line illustrates the τ−1/2

scaling. The green line illustrates the τ scaling.

accelerometer as a function of the chirp β. Each data
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FIG. 9. Acceleration as a function of the chirp β applied on
the Raman lasers. The line (in red) is a linear fit to the data
points. The slope is 0.3 ± 2× 10−7 m.s−2/MHz.µs−1.

point is obtained after an averaging time τ = 500 s. The
data are linear fitted and no significant slope is obtained.
From the fit uncertainty on the slope, one can estimate a
maximum bias of 4.6× 10−5 m.s−2 for a frequency chirp
β = −210 MHz.µs−1.

IV. CONCLUSION

We have presented here an experimental demonstra-
tion of a method to adress a single counterpropagating
Raman transition in a retroreflected configuration de-
spite zero Doppler shift. Using this method we have
achieved an horizontal acceleration sensitivity of 3.2 ×
10−5 m.s−2/

√
Hz with a falling distance of 5.9 mm,

which is competitive with state-of-the-art [38]. Improv-
ing the atom accelerometer sensitivity could be simply

achieved by using larger laser beam radius combined
with higher optical power, and a faster cycling rate. We
have shown that the acceleration bias introduced by this
method was constrained at the level 4×10−5 m.s−2 even-
though modulating the laser diode current for frequency
chirp is not the optimal way to achieve the best level of
reproducibility. Thus, further work would be required
to assess both long term stability of the atomic sensor
and absence of bias introduced by the frequency ramp.
This method can easilly be extended to other AI con-
figurations involving four or more pulses [39, 40], as for
example in a double-loop geometry with pulse sequence
(π/2− π− π − π/2) for rotation measurements indepen-
dant of acceleration [12]. Finally,this method appears
suited for multiaxis inertial sensing using cold atoms
without need for tilted laser beams [41–43], as well as
for compact tiltmeters or for experiments in micrograv-
ity environment using atom interferometers based on a
single diffraction process [44, 45].
.
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Appendix A: Frequency chirp induced bias

1. Origin of the bias phase

In this appendix we investigate the effect of chirping
the Raman laser during the light-pulses of the Mach-
Zehnder atom interferometer. To calculate this effect,
we express the interferometer phase shift as:

∆Φ = φ1 − 2φ2 + φ3 (A1)

where φi = ϕi
1−ϕi

2, is the phase difference imprinted onto
the atoms by the two counterpropagating Raman beams
of frequencies ω1 and ω2 at the i-th Raman pulse. Fig-
ure 10 is a schematic describing the interaction between
atoms and Raman pulses. Considering the retroreflec-
tion delay td = 2L/c, where L is the distance from the
atoms to the mirror, one finds the laser phase difference
imprinted onto the atoms at the i-th pulse is (see Fig.10):

φi(t) = ϕ1(t)− ϕ2(t− td) (A2)

= ω
(i)
1 t− ω

(i)
2 (t− td) (A3)

where ω
(i)
1,2 is the Raman frequency at the i-th laser pulse.

Therefore, it turns out that if the Raman laser frequency
is not perfectly the same for the three Raman laser pulses,
it leads to a bias phase [4]:

∆ϕbias =
(

ω
(1)
1 + ω

(3)
1 − 2ω

(2)
1

)

× td (A4)
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Thus, in our experiment, the reproduciblity of the Raman
laser frequency chirp within the interferometer interroga-
tion time is crucial.

FIG. 10. Scheme of the cold atom interferometer. The
resonant counter-propagating beams are obtained by retro-
reflecting the lasers on the mirror. Due to the retroreflection
delay, if the Raman frequency is not perfectly the same at
each Raman pulse, a bias phase arise.

2. Calculations

To compute the bias phase induced by the frequency
chirp on the Raman laser, we use the response function
formalism. Thus, one can write the bias phase for the
Mach-Zehnder type AI of section III as :

∆ϕbias =

∫ T+ 3τ

2

−T−
3τ

2

φi(t)f
(i)(t) dt (A5)

where f (i)(t) is the response function of the atom inter-
ferometer at the i-th pulse given by :

f(t) =















































Ω1 cos
(

Ω1(t+ T + 3τ
2 )

)

sin(Ω1τ)
t ∈ [−T − 3τ

2
,−T − τ

2
]

−Ω2 cos(Ω2t)

sin(Ω2τ/2)
t ∈ [

−τ

2
,
τ

2
]

Ω3 cos(Ω1(t− T − 3τ/2))

sin(Ω3τ)
t ∈ [T +

τ

2
, T +

3τ

2
]

0 otherwise
(A6)

where Ωi is the Rabi frequency of the i-th laser pulse.
The response function is displayed on figure 11 consider-
ing (Ω1 = Ω3 and Ω2 = 2Ω1). For the calculations, we
consider the possibility of both a frequency offset change
δω1 of the Raman laser, and a change in slope β of the
frequency ramp from pulse to pulse. These effects are
illustrated on figure (11). After some algebra, the laser
phase at the i-th Raman pulse can be written:

φi = Ai + 2πβitd(t− ti) (A7)

where βi is the frequency chirp slope at the i-th Raman
pulse, ti the time at the middle of the Raman pulse and
with

Ai = (ω1 + δω
(i)
1 )td (A8)

where δω
(i)
1 is the laser frequency offset at the i-th Raman

pulse.
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FIG. 11. Response function (in red) of the Mach-Zehnder
AI for equal pulses of duration τ , and considering that the
π-pulse occurs at t = 0. Here T = 3 ms and τ = 1 ms for
clarity sake. The intensity of the laser is the same for the
first and last laser-pulse (e.g. Ω1 = Ω3,Ω2 = 2Ω1,3). The
green dash-line symbolises the Raman pulse and the black
line represents the Raman frequency ramp characterized with

parameters ω
(i)
1 , Ai, βi.

The bias phase is obtained by analytically computing
equation A5 which leads to:

∆ϕbias = A1 − 2A2 +A3

+ 2πtd
τ

2
(β3 − β1)

+ 2πtd

(

β3
cos(Ω3τ)− 1

Ω1 sin(Ω3τ)
− β1

cos(Ω1τ)− 1

Ω1 sin(Ω1τ)

)

(A9)

The bias phase comprises three contributions. The first
one corresponds to a change in the frequency offset of the
ramp, the second one arise from a change of the chirp
slope, and finally the last contribution, is a combination
of the chirp slope variation and intensity change between
the first and last Raman laser pulse. This result confirms
that for perfectly reproducible frequency ramps, and as-
suming equal laser intensities (Ω1 = Ω3), the bias phase
vanish.
However, experimental imperfections lead to a measure-
ment bias. In order to derive realistic constraints on
our experimental parameters one can approximate equa-
tion A9 to the first order in ∆Ω/Ω1 and ∆β/β (e.g.
Ωτ ∼ π/2).
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Then it comes:

∆ϕbias ≃ A1 − 2A2 +A3 + 2π∆βtdτ(
1

2
− 2

π
)

+ 2πβtdτ(
2

π
− 1)

∆Ω

Ω1
(A10)

where ∆β = β3 − β1 and ∆Ω = Ω3 − Ω1.
In our experimental scheme, one can assume that Ai and

∆β are proportional to β, leading to an overall bias phase
proportional to β. Thus, measuring the acceleration as a
function of the frequency chirp allows to confine our ex-
perimental parameters. A measured acceleration bias at
the level of 4×10−5 m.s−2, requires a control of the exper-
imental parameters at the level of δω1 ≈ 2π × 10MHz,
∆β
β ≈ 10−2 and ∆Ω

Ω1
≈ 2 × 10−2 respectively. Finally,

increasing the sensitivity would require to check the re-
producibility of the frequency ramp with a much higher
precision, which was out of the scope of this work.
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