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I. INTRODUCTION

Since their inception, light-pulse atom interferometers (AIs) have proven to be extremely sensitive gravitoinertial sensors measuring gravity [1][2][3][4][5], gravity gradients [6][7][8], rotations [9][10][11][12], appearing as promising candidates to compete with traditional sensors used for geodesy, geophysics, exploration or inertial navigation [13]. Moreover, they have demonstrated to be an invaluable tool in fundamental physics where they are used for measuring physical constants [14][15][16][17], testing Einstein equivalence principle [18][19][20][21][22], searching for dark sector particles [23], and even proposed for gravitational-wave detection [24,25] or for measuring free-fall of anti-matter [26]. The principle of a light-pulse AI relies on the use of recoils from photon-atom interactions to coherently split, deflect and interfere matter-waves. Most light-pulse AIs use stimulated two-photon process (Raman or Bragg transitions) to realize the beamsplitters and mirrors required for the interferometer sequence [27]. In this process, the atom coherently absorbs and then emits a photon from a pair of counterpropagating laser beams with different frequencies, resulting in a net momentum transfer of hk eff at each interaction, where k eff is the effective wave vector. To perform Bragg-based or Raman-based AIs at their best level of performance, it is beneficial to address the two-photon transitions in a retroreflected geometry where a single laser beam with two laser frequencies is retroreflected off a mirror. This allows first to reduce the effect of wavefront distortions which affect the sensor's accuracy [28]. This is beacause the wavefront distortion of the incoming beam cancels out in a retroreflected configuration and only optical elements behind the atoms have to be considered for wavefront distortions (mirror, wave plate, vacuum window). Secondly, it is an efficient way to implement the k eff reversal tech- * malo.cadoret@lecnam.net nique [29] to eliminate some systematics, as well as to reduce interferometer phase noise as most vibration effects on the laser phases are common to the two lasers and cancel out in the two-photon process, apart from vibrations of the mirror. However, the use of retroreflection for zero velocity atoms along the Raman beam naturally leads to a double diffraction scheme where two stimulated Raman transitions with opposite momentum transfer ±hk eff are simultaneously resonant. This double diffraction scheme has been first implemented using Raman transitions to realize an AI for which the separation between the two arms is 2hk eff both in the case of atoms at rest [30], as well as for nonvanishing initial velocities in the case of a gravimeter [31]. For the latter, three laser frequencies were mandatory to account for the changing Doppler shift induced by gravity acceleration, hence leading to a more complex setup. However, for onboard applications, where shot-to-shot acceleration variations leads to uncontrolled velocity variations of the atomic sample, even though close to zero velocity, it becomes challenging to address this double diffraction scheme with high efficiency as the two transitions become partly degenerated. Moreover, the experimental realization of a double diffraction AI geometry is much more demanding than that of a single diffraction as it requires longer Raman pulse duration, colder atomic source and additional blow away beams to get rid of parasitic interferometers. Moreover, the gain in scale factor obtained by increasing the arm separation in a double diffraction scheme is not of interest when the sensitivity of the interferometer is limited by vibrations unless used in differential mode accelerometer for applications in gradiometry [32] or for testing the Weak Equivalence Principle (WEP) [22]. Therefore, in certain situations, single diffraction may be preferable to double diffraction. In this work, we experimentally demonstrate a technique enabling the use of single diffraction two-photon Raman transitions despite zero Doppler shift in the commonly-used retroreflected geometry. By employing a laser frequency chirp, we lift the degeneracy between the two simultaneous res-onance transitions. We then apply our technique to the measurement of the horizontal component of acceleration using a Mach-Zehnder style atom interferometer. We achieve a sensitivity of 3.2 × 10 -5 m.s -2 / √ Hz and show that no bias is induced by this method.

II. METHOD

We present here a general method which can be applied to any two-photon process such as Raman transition or Bragg diffraction. For example, we demonstrate our technique by performing stimulated two-photon Raman transitions between the two hyperfine ground states of 87 Rb (labelled |g and |e ) via an intermediate state (labelled |i ) using two lasers of frequencies ω 1 and ω 2 detuned to the red of the D 2 line by ∆ i . The Raman beams are brought to the vacuum chamber via a polarization maintening optical fiber. After passing through the chamber, the laser beams are retroreflected through a quarter-wave plate to rotate the initial polarization into its orthogonal polarization creating two pairs of counterpropagating beams in the horizontal x-direction in a lin ⊥ lin configuration (see Figure 1 the two-photon resonance is given by:

δ = ω 1 -ω 2 -(ω 0 + ω D + ω R ) (1)
where ω 0 is the frequency of the hyperfine transition, ω D = ± k eff . v is the Doppler shift due to the atomic velocity v in the reference frame of the apparatus, and ω R = c (where L is the distance atommirror), the incoming laser frequencies will be shifted by δω = 2πβt d at the position of the atoms, allowing to detune one transition with respect to the other by 2δω. This allows to selectively adress Raman pair 1 or pair 2. This effect can be understood as mimiking an effective atomic velocity in the reference frame of the lasers leading to an equivalent Doppler shift ω D = 2πβt d .

A. Experimental setup and lasers

The experiment was carried out in the atom interferometer setup described in [33]. Atom interferometers usually consist in three-steps: preparation, interferometry and population detection. To perform these functions we use the laser system described in detail in [34], based on a frequency doubled fiber bench using two independent lasers sharing the same 5 Watts Erbium-doped fiber amplifier. The laser used to cool and detect the atoms is an erbium DFB fiber laser at 1.5 µm (output power 20 mW, linewidth 2 kHz) locked relative to the Rubidium transitions using a saturated absorption lock [35]. The atom interferometry (AI) laser source is a DFB laser diode at 1.5 µm (output power: 10 mW, linewidth 1 MHz). The detuning ∆ of the AI laser from the one photon resonance is controlled using a beat-note between the two lasers at 1.5 µm . Finally the two lasers are combined at 1.5 µm by an electro-optical modulator which acts like a continuous optical switch between each laser before seeding the EDFA. The output of the EDFA is sent to the dual-wavelength second harmonic generation bench. In our experiment, the two Raman beam frequencies are generated thanks to a fiber phase modulator [36]. The chirp β is obtained by directly modulating the input current of the laser diode using a low frequency arbitrary waveform generator (AWG). We display on Figure 2 the laser setup and the optical bench of the experiment.

B. Raman spectroscopy experiment

To investigate our method we first started by implementing Raman spectroscopy. A cold 87 Rb atom sam- ple is produced in a 3 dimensional magneto-optical trap (MOT) loaded from a background vapor pressure in 340 ms. Atoms are further cooled to 2 µK by means of polarization gradient in 8 ms. The cooling beams are then turned off, and as the atoms freely fall, a microwave πpulse followed by a blow-away beam allows to select the atoms in the insensitive ground state |F = 1, m F = 0 with a horizontal bias magnetic-field of 100 mG. Then, a horizontal Raman laser pulse of duration τ = 10 µs is applied to the atoms 18 ms after their release from the trap. The proportion of atoms in each hyperfine state F = 1 and F = 2 is then measured using a state selective vertical light-induced fluorescence detection. The cycling time of the experiment is T cycle = 500 ms. In practice, the AWG generates a triangle-wave modulation signal in burst mode, directly applied to the modulation input of the laser diode current controller. The voltage command signal is triggered to the Raman pulse and the chirp duration is fixed to 40 µs. Consequently, the singlephoton frequency excursion is controlled by adjusting the peak-to-peak voltage amplitude denoted A. We experimentally measure the frequency response of the laser diode as a function of the voltage amplitude by monitoring the beat-note signal between the laser diode and the fiber laser using the Fast Fourier Transform (FFT) math function of an oscilloscope. Figure 3 displays the frequency response of the laser diode when applying A = 6 V peak-to-peak amplitude command. For clarity sake, the frequency response is plotted as the frequency difference beween the Raman laser frequency ν Raman = ω 1 /2π and the 5S 1/2 , F = 2 → 5P 3/2 , F ′ = 1 transition. In this case, one finds a chirp β = -210 MHz.µs -1 . The delay between the command and the Raman laser pulse is adjusted to ensure a linear frequency response of the laser diode during the Raman pulse. (ω 1 -ω 2 )/2π for different chirp values β applied to the laser diode. The Raman laser intensity is adjusted to maximize the transfer efficiency at resonance for a pulse duration of τ = 10 µs. When no chirp is applied (β = 0), only a single peak is observed due to the simultaneous resonant condition. Increasing slightly β starts lifting the degeneracy between the two resonant conditions. For β = -35 MHz.µs -1 , the chirp is not important enough to lift the degeneracy between the two transitions. However, for greater values of the chirp two resonance spectra are clearly observed with a frequency separation which increases linearly with the amplitude of the voltage command. Measuring the frequency separation between the two resonance spectra (2δω/2π) allows to estimate the atom-mirror distance L = cδω/4πβ ≃ 24 cm in agreement with the expected distance from the trap center to the mirror of the setup. 

III. ATOM INTERFEROMETER

To further investigate our technique we performed a Mach-Zehnder style AI in a horizontal configuration using a π/2 -π -π/2 chirped-Raman pulse sequence, with each pulse separated by an interrogation time T . With this geometry, the atomic phase shift at the ouput of the is sensitive to the horizontal acceleration a of the atoms relative to the reference mirror. In the limit of short, resonant pulses, the phase shift is then given by: ∆φ = φ 1 -2φ 2 + φ 3 = k eff . a T 2 , where φ i is the phase difference between the two counterpropagating Raman lasers at the position of the atoms at the i-th Raman pulse. The delay between the release of the atoms from the trap and the first Raman pulse is t 0 = 3 ms. The Raman beams have a waist of 5.5 mm (1/e 2 radius). Thus, due to the free fall of the atoms across the laser beam, our interrogation time is limited and the intensity seen by the atoms for the three laser pulses will be different. Consequently, we adjust the timing of our experiment and the position of the laser beam in order to have the same intensity seen by the atoms for the first and the last Raman pulses. This leads to an interrogation time 2T = 31.7 ms. This configuration enables to minimize light-shift effects. As the intensity is higher for the middle pulse (π), this configuration allows also to apply the same pulse duration (τ = 10 µs) for the three Raman laser pulses without losing too much contrast.

Consequently, we ensure the frequency chirp to be the same for each Raman pulse, β = -210 MHz.µs -1 in our experiment. Figure 5 is a sketch of the interferometer setup. After the interferometer sequence we measure the 

P = P m - C 2 cos k eff . a T 2 (2) 
where P m is the fringe offset and C the fringe contrast. In a retroreflected geometry, the phase is sensitive to the acceleration of the atom compared to the mirror. Thus, in absence of vibration isolation, fluctuations of the mirror position can induce fluctuations of the interferometer phase wich wash out the fringe visibilty, even in the laboratory environment. To observe interference fringes, we perform a correlation-based technique [37] combining the simultaneous measurements of the output signal P of our interferometer with the one from a classical accelerometer rigidely fixed to the Raman mirror. This allows to recover the interference fringes, although the fringes are randomly scanned by vibrations. Figure 6 displays retrieval of the fringe pattern obtained by plotting the probability transition of the AI output versus the acceleration measured by the classical accelerometer. The fringe contrast obtained from the sinusoidal least-squares fit of the data is C = 40%. FIG. 6. Horizontal atom interferometer fringe pattern. The total interferometer time is 2T = 31.7 ms and the frequency chirp applied during each Raman pulse is set to β = -210 MHz.µs -1 . The solid line is a sinusoidal least-squares fit using Eq.2. The estimated fringe contrast is C ∼ 40%.

In order to work at best sensitivity we studied the contrast of the interferometer as a function of the frequency chirp β applied on the Raman lasers. Results are displayed on Figure 7. The contrast is an increasing function of the frequency chirp β until it reaches an optimum of C = 40% for β = -200 MHz.µs -1 . Increasing further the chirp value does not improve the interferometer's contrast.

A. Atom accelerometer sensitivity

To analyze the sensitivity and the stability of the horizontal atom accelerometer, we performed a hybridization of the classical accelerometer with the atom interferometer. We use the hybridization procedure described in [4]. We have operated the atomic sensor continuously during one night. Figure 8 displays the Allan standard deviation (ADEV) of the hybridized atomic accelerometer signal. The sign of the effective Raman wave vector k eff is reversed every measurement cycle. We achieve a short-term sensitivity of 3.2 × 10 -5 m.s -2 / √ Hz which is comparable to state-of-the-art for horizontal configurations [38] (1 × 10 -5 m.s -2 / √ Hz) despite the use of a shorter interrogation time (31.7 ms versus 226 ms). The ADEV of the horizontal acceleration measurement scales as τ -1/2 and reaches 0.2×10 -5 m.s -2 at 500 s integration time. For longer integration times, the acceleration measurement drifts as illustrated by the typical linear dependence in the averaging time τ . The observed drift could be caused by an angular variation of the Raman mirror. The atom interferometer is measuring the projection of the gravity along the normal of the mirror. An angular drift of the mirror of 10 µrad, which seems reasonable on our experimental setup, could explain the observed drift. Thus, one cannot conclude on the long term stability of the atom accelerometer unless using an auxilliary tilt sensor to monitor the angle between the Raman beam and the horizontal plane during the measurement.

B. Bias arising from the frequency chirp

To conclude our study, we investigated a possible bias induced by the frequency chirp β on the acceleration measurement. The phase added by the frequency ramps adds an additional non-inertial contribution to the atomic phase shift (see Appendix A). Assuming that the frequency ramps applied to the Raman lasers are perfectly equal for the three Raman light-pulses, and that the laser intensities are the same for the first and last laser pulse its contribution vanish in the interferometer phase. However, technical imperfections leads to a bias phase proportional to β. We thus measured the acceleration as a function of the frequency chirp β. Figure 9 displays the acceleration signal measured by the hybridized atom point is obtained after an averaging time τ = 500 s. The data are linear fitted and no significant slope is obtained. From the fit uncertainty on the slope, one can estimate a maximum bias of 4.6 × 10 -5 m.s -2 for a frequency chirp β = -210 MHz.µs -1 .

IV. CONCLUSION

We have presented here an experimental demonstration of a method to adress a single counterpropagating Raman transition in a retroreflected configuration despite zero Doppler shift. Using this method we have achieved an horizontal acceleration sensitivity of 3.2 × 10 -5 m.s -2 / √ Hz with a falling distance of 5.9 mm, which is competitive with state-of-the-art [38]. Improving the atom accelerometer sensitivity could be simply achieved by using larger laser beam radius combined with higher optical power, and a faster cycling rate. We have shown that the acceleration bias introduced by this method was constrained at the level 4×10 -5 m.s -2 eventhough modulating the laser diode current for frequency chirp is not the optimal way to achieve the best level of reproducibility. Thus, further work would be required to assess both long term stability of the atomic sensor and absence of bias introduced by the frequency ramp. This method can easilly be extended to other AI configurations involving four or more pulses [39,40], as for example in a double-loop geometry with pulse sequence (π/2 -π -π -π/2) for rotation measurements independant of acceleration [12]. Finally,this method appears suited for multiaxis inertial sensing using cold atoms without need for tilted laser beams [41][42][43], as well as for compact tiltmeters or for experiments in microgravity environment using atom interferometers based on a single diffraction process [44,45]. . Thus, in our experiment, the reproduciblity of the Raman laser frequency chirp within the interferometer interrogation time is crucial.

FIG. 10. Scheme of the cold atom interferometer. The resonant counter-propagating beams are obtained by retroreflecting the lasers on the mirror. Due to the retroreflection delay, if the Raman frequency is not perfectly the same at each Raman pulse, a bias phase arise.

Calculations

To compute the bias phase induced by the frequency chirp on the Raman laser, we use the response function formalism. Thus, one can write the bias phase for the Mach-Zehnder type AI of section III as :

∆ϕ bias = T + 3τ 2 -T -3τ 2 φ i (t)f (i) (t) dt (A5)
where f (i) (t) is the response function of the atom interferometer at the i-th pulse given by :

f (t) =                        Ω 1 cos Ω 1 (t + T + 3τ 2 ) sin(Ω 1 τ ) t ∈ [-T - 3τ 2 , -T - τ 2 ] - Ω 2 cos(Ω 2 t) sin(Ω 2 τ /2) t ∈ [ -τ 2 , τ 2 ] Ω 3 cos(Ω 1 (t -T -3τ /2)) sin(Ω 3 τ ) t ∈ [T + τ 2 , T + 3τ 2 ]
0 otherwise (A6) where Ω i is the Rabi frequency of the i-th laser pulse. The response function is displayed on figure 11 considering (Ω 1 = Ω 3 and Ω 2 = 2Ω 1 ). For the calculations, we consider the possibility of both a frequency offset change δω 1 of the Raman laser, and a change in slope β of the frequency ramp from pulse to pulse. These effects are illustrated on figure (11). After some algebra, the laser phase at the i-th Raman pulse can be written:

φ i = A i + 2πβ i t d (t -t i ) (A7)
where β i is the frequency chirp slope at the i-th Raman pulse, t i the time at the middle of the Raman pulse and with

A i = (ω 1 + δω (i) 1 )t d (A8)
where δω (i)

1 is the laser frequency offset at the i-th Raman pulse. The bias phase is obtained by analytically computing equation A5 which leads to:

∆ϕ bias = A 1 -2A 2 + A 3 + 2πt d τ 2 (β 3 -β 1 ) + 2πt d β 3 cos(Ω 3 τ ) -1 Ω 1 sin(Ω 3 τ ) -β 1 cos(Ω 1 τ ) -1 Ω 1 sin(Ω 1 τ ) (A9)
The bias phase comprises three contributions. The first one corresponds to a change in the frequency offset of the ramp, the second one arise from a change of the chirp slope, and finally the last contribution, is a combination of the chirp slope variation and intensity change between the first and last Raman laser pulse. This result confirms that for perfectly reproducible frequency ramps, and assuming equal laser intensities (Ω 1 = Ω 3 ), the bias phase vanish. However, experimental imperfections lead to a measurement bias. In order to derive realistic constraints on our experimental parameters one can approximate equation A9 to the first order in ∆Ω/Ω 1 and ∆β/β (e.g. Ωτ ∼ π/2).

Then it comes:

∆ϕ bias ≃ A 1 -2A 2 + A 3 + 2π∆βt d τ ( 1 2 - 2 π ) + 2πβt d τ ( 2 π -1) ∆Ω Ω 1 (A10)
where ∆β = β 3 -β 1 and ∆Ω = Ω 3 -Ω 1 .

In our experimental scheme, one can assume that A i and ∆β are proportional to β, leading to an overall bias phase proportional to β. Thus, measuring the acceleration as a function of the frequency chirp allows to confine our experimental parameters. A measured acceleration bias at the level of 4×10 -5 m.s -2 , requires a control of the experimental parameters at the level of δω 1 ≈ 2π × 10 MHz, ∆β β ≈ 10 -2 and ∆Ω Ω1 ≈ 2 × 10 -2 respectively. Finally, increasing the sensitivity would require to check the reproducibility of the frequency ramp with a much higher precision, which was out of the scope of this work.

  (a)). Consequently two pairs of beams can drive the two-photon transition between |F = 1, m F = 0 ≡ |g → |F = 2, m F = 0 ≡ |e . With this polarization configuration, the co-propagating Raman transitions are forbidden. The detuning δ from
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 1 FIG. 1. (a) Schematic setup of two-photon Raman transitions in the commonly-used retroreflecting geometry. A two-level atom is interacting with two pairs of counterpropagating light fields (pair 1 and pair 2) in lin ⊥ lin configuration. Applying a frequency chirp β on the lasers, changes the incident laser frequency by δω = 2πβt d . ∆i is the one photon detuning. (b) Left: Scheme of the Raman transition between the two hyperfine ground states of an alkaline atom in absence of Doppler shift (ωD = 0) and without frequency chirp (β = 0). Both pairs are simultaneously resonant. Right: Applying a frequency chirp β on the Raman laser frequencies, lifts the degeneracy between the two resonant conditions by an amount 2δω. After the chirp, the one photon detuning is ∆ ′ i .

hk 2 eff

 2 2m the recoil frequency shift. Thus, in absence of Doppler shift, both pairs are simultaneously resonant and couple |g, p → e, p ± h k eff . In order to circumvent this problem and lift the degeneracy between the two resonance conditions, we apply a frequency chirp β Raman lasers. As the reflected beams are delayed with respect to the incoming ones by t d = 2L

FIG. 2 .

 2 FIG.2. Scheme of the laser system and the experimental setup (top view) allowing to perform Raman transitions in the horizontal scheme. SAL, Saturated absorption lock; L, lens; M, mirror; PM, phase modulator; AOM, acousto-optic modulator; S, shutter; PBS, Polarizing beam-splitter; OS, optical switch; BS, beam splitter; AWG, Arbitrary waveform generator; SHG, second harmonic generation; Acc, accelerometer; c, coupler; PD, Photodetector; Cam, camera.
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 43 FIG. 3. Frequency response of the Raman laser νRaman= ω 1 2πto the voltage command applied to the current modulation input. Voltage command (blue line). Measurement of the laser diode frequency response (black dots and line). Raman laser pulse (red line). The measured chirp is β = -210 MHz.µs -1 , leading to a frequency excursion of 2100 MHz during the Raman pulse.
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 4 FIG. 4. Raman resonance spectra obtained by scanning the Raman frequency difference (ω1 -ω2)/2π, across the resonance for five different frequency chirps applied on the laser diode. A is the peak-to-peak amplitude voltage of the signal command. (a) For β = 0 a single peak is observed due to the simultaneous resonant conditions. (b),(c),(d),(e): When applying a frequency chirp two peaks are observed allowing to lift the degeneracy between the two Raman transitions. The two Raman resonances are separated by 2δω/2π.

FIG. 5 .

 5 FIG. 5. (a) Sketch of the horizontal atomic accelerometer. The atoms fall under gravity in the retroreflected Raman beam. By measuring the transition probability P as a function of free-fall time of the atoms we adjust the timing of our experiment and the position of the Raman laser beam. The pulse duration is equal for the three Raman light-pulses. The center of the classical accelerometer (Acc.) matches the position of the cold atom cloud at the π pulse. L = 24 cm: atom-mirror distance. (b) Raman frequency ω1(t) during the interferometer sequence. The same linear chirp is applied for the three Raman pulses. proportion of atoms in each ouput port of the AI by fluorescence. The normalized proportion of atoms in the hyperfine state |F = 2, m F = 0 after the final π/2 pulse

FIG. 7 .

 7 FIG. 7. Contrast as a function of the frequency chirp.

FIG. 8 .FIG. 9 .

 89 FIG.8. Allan standard deviation (ADEV) of the atomic accelerometer (blue line). The dash line illustrates the τ -1/2 scaling. The green line illustrates the τ scaling.

FIG. 11 .

 11 FIG.11. Response function (in red) of the Mach-Zehnder AI for equal pulses of duration τ , and considering that the π-pulse occurs at t = 0. Here T = 3 ms and τ = 1 ms for clarity sake. The intensity of the laser is the same for the first and last laser-pulse (e.g. Ω1 = Ω3,Ω2 = 2Ω1,3). The green dash-line symbolises the Raman pulse and the black line represents the Raman frequency ramp characterized with parameters ω (i) 1 , Ai, βi.

ACKNOWLEDGMENTS

We thank F. Nez, from Laboratoire Kastler Brossel (LKB) for helpful discussions. M. C acknowledges funding from ONERA through research project CHAMO (Central Hybride AtoMique de l'Onera).

Appendix A: Frequency chirp induced bias

Origin of the bias phase

In this appendix we investigate the effect of chirping the Raman laser during the light-pulses of the Mach-Zehnder atom interferometer. To calculate this effect, we express the interferometer phase shift as:

where

is the phase difference imprinted onto the atoms by the two counterpropagating Raman beams of frequencies ω 1 and ω 2 at the i-th Raman pulse. Figure 10 is a schematic describing the interaction between atoms and Raman pulses. Considering the retroreflection delay t d = 2L/c, where L is the distance from the atoms to the mirror, one finds the laser phase difference imprinted onto the atoms at the i-th pulse is (see Fig. 10):

where

1,2 is the Raman frequency at the i-th laser pulse. Therefore, it turns out that if the Raman laser frequency is not perfectly the same for the three Raman laser pulses, it leads to a bias phase [4]: