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By listening to gravity in the low-frequency band, between 0.1 mHz and 1 Hz, the future space-based
gravitational-wave observatory LISAwill be able to detect tens of thousands of astrophysical sources from
cosmic dawn to the present. The detection and characterization of all resolvable sources is a challenge in
itself, but LISA data analysis will be further complicated by interruptions occurring in the interferometric
measurements. These interruptions will be due to various causes occurring at various rates, such as laser
frequency switches, high-gain antenna repointing, orbit corrections, or even unplanned random events.
Extracting long-lasting gravitational-wave signals from gapped data raises problems such as noise leakage
and increased computational complexity. We address these issues by using Bayesian data augmentation, a
method that reintroduces the missing data as auxiliary variables in the sampling of the posterior distribution
of astrophysical parameters. This provides a statistically consistent way to handle gaps while improving the
sampling efficiency and mitigating leakage effects. We apply the method to the estimation of galactic
binary parameters with different gap patterns, and we compare the results to the case of complete data.

DOI: 10.1103/PhysRevD.100.022003

I. INTRODUCTION

The laser interferometer space antenna (LISA) [1], the
future space-borne gravitational-wave observatory under
development by the European Space Agency and NASA,
will probe gravitational-wave radiation in the millihertz
regime, with a peak sensitivity between 0.1 mHz and 1 Hz.
Unlike the ground-based detectors LIGO [2] and Virgo [3],
LISA will be constantly observing a large number of
sources, some of them emitting long-lasting signals on
periods of months to years. The detection and characteri-
zation of all resolvable sources is a challenge for data
analysis [4]. In addition, over such timescales, the instru-
ment is very likely to undergo interruptions in the meas-
urement, which will add an extra complication in the
extraction of gravitational signals.
The LISA observatory is a constellation of three satellites

forming a triangle whose side path lengths are monitored
through laser links with a sensitivity level of pm

ffiffiffiffiffiffi
Hz

p
.

Inertial references are provided by free-falling test masses
housed in the satellites, and the gravitational signal is
obtained from several interferometric measurements. In
such a complex system, measurement interruptions can be

caused by various phenomena. One of them is the repoint-
ing process of the satellites’ high-gain antennas, during
which the measured data may be saturated or too perturbed
to be usable to infer scientific information. Another one is
the relocking of the laser frequencies, which may be needed
to maintain heterodyne frequencies in the sensitive band-
width of the phasemeters. In addition, the measurement is
likely to be affected by transient perturbations in the data.
Such events have been observed in LIGO-Virgo [5] and in
LISA Pathfinder [6] data. In some cases, the safest solution
to avoid their impact on the science performance may be to
discard the parts of the data where they arise, thereby
inducing gaps in the exploitable data streams.
Assessing the impact of data gaps on the observation of

gravitational-wave sources with LISA is important to
quantify the relative impact of different kinds of interrup-
tions, in order to inform the design of the instrument.
Furthermore, reducing this impact to minimum is crucial to
be able to optimize the scientific return of the mission.
In the problem under study, we define data gaps as the

absence of usable data points during certain time spans in
time series that are originally evenly sampled. Data gaps can
be problematic for two reasons. First, the discrete Fourier
transform (DFT) of gapped data is subject to spectral
leakage, affecting both the gravitational signal and the*quentin.s.baghi@nasa.gov
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stochastic noise. This may lead to increased bias and
variance when the computation of the likelihood is done
in the Fourier domain. Second, in addition to the leakage
effect, another problem is that the diagonal approximation of
the covariancematrix in Fourier space is not valid for gapped
data. Appropriately weighting the data to account for the
noise would require to compute the covariance in the time
domain, which is computationally expensive andmay not be
possible for long data samples. Therefore, appropriate
analysis methods must be developed.
Few works have addressed the problem of gravitational-

wave parameter inference in the presence of a data gap.
Pollack [7] studied the recovery of monochromatic signals
in the presence of data disturbances and encountered
complications for daily gaps. Carré and Porter [8] studied
the effect of gaps on the precision of ultracompact galactic
binary (UCB) parameter estimation based on the Fisher
information matrix (FIM) approximation. Their approach is
to apply apodization, i.e., a window in the time domain
which has smooth transitions at the gap edges, allowing
them to reduce spectral leakage. They provide a first
assessment of the impact of hour-long gaps on parameter
estimation, showing that errors increase by 2%–9%
depending on the parameter. Worst cases are obtained
for gap frequencies larger than one per week.
However, these studies do not entirely address the

problem of noise correlations in the presence of gaps.
Besides the fact that FIM calculations do not always
properly represent correlations between parameters, the
diagonal approximation of the noise covariance matrix in
the Fourier domain is generally not valid for gapped data.
Likewise, treating the remaining data segments as inde-
pendent measurements may lead to modeling errors.
Indeed, apodization windowing is a suboptimal weighting
of the data, the optimal one being provided by the inverse
covariance of the entire vector of observed data.
In the present work, we tackle the problem of gaps based

on statistical inference, by studying its impact on Bayesian
parameter estimation and by proposing an adapted method
that optimally takes into account noise correlations.
Statistical inference in the presence of missing data is a

well-covered problem in the statistical literature [9–11]. To
circumvent the computational issues that can arise when
directly computing the likelihood with respect to the
observed data, a common trick is to introduce a step where
missing data are attributed a statistically consistent value, a
process called “imputation.” This allows one to efficiently
compute the likelihood from the reconstructed data using
standardmethods for complete datasets. In the framework of
maximum likelihood estimation, this approach corresponds
to the expectation-maximization (EM) algorithm [12]. In
the framework of Bayesian estimation, which is more
widely used in gravitational-wave data analysis, the equiv-
alent algorithm is known as data augmentation (DA) [13]. In
this procedure, the missing data are treated as auxiliary

variables of the model and sampled along with the param-
eters of interest. The sampling of missing data can be done
iteratively, in a block-Gibbs process [9,14]. In a way similar
to the EM algorithm, the procedure iterates between two
steps: an imputation (I) step, where the missing data are
drawn from their conditional distribution, and a posterior (P)
step, where the parameters of interest are drawn from their
distribution given the current value of the missing data. The
algorithm is shown to converge towards the joint posterior
distribution of the model parameters and the missing data,
given the observed data. In this work, we implement a data
augmentation method that we apply to simulated LISA
observations, in order to demonstrate the performance of
such an approach.
To analyze measurements of gravitational-wave detec-

tors, we usually model the data by a multivariate Gaussian
and stationary distribution [15]. In this case, the conditional
distribution of missing data given the observed data is also
Gaussian and can be written explicitly. However, it involves
the computation of the product of the inverse covariance
matrix of observed data with the vector of model residuals.
As Fourier diagonalization is not possible, this inversion
would requireOðN3

oÞ operations, whereNo is the number of
observed data points. In the case of stationary noise, more
efficient ways to perform this computation are possible, by
taking advantage of iterative inversionmethods and efficient
matrix-to-vector computations using the fast Fourier trans-
form (FFT) [16–18]. However, we found that this was a too
heavy bottleneck for the large number of iterations involved
in Markov-chain Monte Carlo (MCMC) algorithms used to
sample the posterior distribution of gravitational-wave
parameters. Instead, we adopt an approximation to perform
the imputation step, which is done conditionally on the
nearest observations around gaps [19].
In this work, we develop a blocked-Gibbs data augmen-

tation algorithm which estimates the posterior distribution
of signal and noise parameters. In order to demonstrate the
performance of this method on a simple example, we apply
it to the characterization of UCBs in simulated LISA data.
In Sec. II, we present the general Gaussian stationary model
that we adopt to describe gravitational-wave measurements,
in both the complete- and gapped-data cases. Then, in
Sec. III, we describe the standard method of time-domain
windowing that can be used to handle data gaps. We show
how to optimize it before highlighting its drawbacks. This
leads us to introduce the data augmentation method as an
alternative approach in Sec. IV, where we describe its
theoretical basis. In Sec. V, we present an application to
the case of UCB parameter estimation, where we describe
the time-domain model used to simulate LISA data and the
frequency-domain model used for the data analysis. In
Sec. VI, we detail the simulations used in this study, and in
Sec. VII, we present the results of the gravitational-wave
parameter estimation. We finally draw conclusions in
Sec. VIII.
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II. GENERAL STATISTICAL MODEL

In this section, we introduce the model used to describe
the data, in the case of both complete- and gapped-data
series.

A. Complete-data case

In gravitational-wave astronomy, interferometric mea-
surements are time series y sampled at some frequency fs.
Temporarily putting aside the physical quantity that they
represent, they can generally be modeled as the sum of a
gravitational signal and a noise term:

y ¼ hðθhÞ þ nðθnÞ; ð1Þ

where y is a N × 1 vector containing the measured data
points and h is the signal due to the incoming gravitational
waves (GWs) depending on a vector of parameters θh. The
vector n represents the random measurement noise and is a
zero-mean, stationary Gaussian random variable of covari-
ance Σ with probability density function

pðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN jΣj

p exp

�
−
1

2
nTΣ−1n

�
: ð2Þ

For a complete, evenly sampled time series, the covariance
of the noise has a Toeplitz structure, which means that its
elements are constant along diagonals. They are directly
given by the autocovariance function RðtÞ, which is related
to the power spectral density (PSD) function SnðfÞ such
that, ∀ ðp; qÞ ∈ ½0; N − 1�2,

Σðp; qÞ ¼ R

�
p − q
fs

�
¼

Z þfs=2

−fs=2
SnðfÞe2jπf½ðp−qÞ=fs�df:

ð3Þ

The PSD can be parametrized by some parameter vector θn.
For a sufficiently large number of points N, a Toeplitz
matrix can be approximated by a circulant matrix, which is
diagonalizable in the Fourier basis:

Σ ≈ F�
NΛFN; ð4Þ

where FN is the DFT matrix defined as
FNðl; mÞ ¼ N−1=2 exp ð− 2πjlm

N Þ, where j ¼ ffiffiffiffiffiffi
−1

p
denotes

the complex number. Λ is a diagonal matrix whose
elements are directly related to the PSD as
Λkk ¼ fsSðfkÞ, where fk are the frequency elements of
the Fourier grid fk ¼ fs k

N if 0 ≤ k ≤ bN−1
2
c and fk ¼

−fs N−k
N otherwise.

Up to a constant, the log-likelihood for model (1) with a
noise distribution given by Eq. (2) can be written as

logpðyjθÞ ¼ −
1

2
½log jΣj þ ðy − hÞTΣ−1ðy − hÞ�; ð5Þ

where θ≡ ðθThθTn ÞT gathers all the parameters describing
the model, i.e., both the signal and noise.
Equation (4) allows us to write the model log-likelihood

using the Whittle approximation [20]:

logpðyjθÞ ≈ −
1

2

XN−1

k¼0

�
logΛkk þ

jỹk − h̃kj2
Λkk

�
; ð6Þ

where, for any vector x, the notation x̃ designates its
discrete Fourier transform:

x̃≡ FNx: ð7Þ

The likelihood in Eq. (6) can be efficiently computed, since
it involves only elementwise operations on vectors. In
addition, if the signal is narrow banded, it can be restricted
to a short frequency interval, so that the sum involves a
small number of elements.

B. Modeling missing data

Let us now introduce the possibility to have some gaps in
the time series. Gaps are identified by a mask w such that
wðnÞ ¼ 0 if data n are unavailable and wðnÞ ∈ �0; 1� if data
n are observed (values may be lower than 1 for smoothing).
In the following, subscripts o and m, respectively, mean
“observed” and “missing.” Let No be the number of
observed data points and Nm ¼ N − No the number of
missing data points. If we label ioðqÞ ∀ q ∈ ½0; No − 1�
the indices of observed data, we can form the observed data
vector yo such that yoðqÞ ¼ yioðqÞ. We can likewise define
the missing data vector ym of size Nm. It is also formally
useful to define the matrix operator Wo (respectively, Wm)
that maps the complete-data vector to the observed data
vector (respectively, the missing data vector):

yo ¼ Woy;

ym ¼ Wmy: ð8Þ

Using this notation, the covariance of yo with itself is given
byΣoo ¼ WoΣWT

o. UnlikeΣ, the matrixΣoo is not Toeplitz,
and approximations (4) and (6) do not hold anymore. As a
result, in principle, the likelihood should be computed using
Eq. (5), replacing y by yo and Σ by Σoo. However, the
computational cost of Σ−1

ooz for any vector z can be
prohibitive. To avoid this, we ideally want to come back
to a situation similar to the complete-data case and use the
convenient formulation of Whittle’s likelihood in Eq. (6).
Approaches following this idea are described below.
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III. THE WINDOWING APPROXIMATION
METHOD

One rather straightforward way to deal with data gaps is
to make the assumption that the Fourier transform of the
masked data is approximately equal to the Fourier trans-
form of the complete data, which is acceptable if the signal
is stationary or has a short frequency bandwidth. Formally,
if we define the masked data vector yw as ywðiÞ ¼ wðiÞyðiÞ,
then we can assume that the DFTs of yw and y are equal up
to a normalizing constant:

ffiffiffiffiffiffiffiffiffiffi
rðwÞ

p
ỹw ≈ ỹ; ð9Þ

where we have applied an extra factor
ffiffiffiffiffiffiffiffiffiffi
rðwÞp

to the DFT,
where rðwÞ ¼ N=Nw and Nw ≡P

N−1
n¼0 wn in order to take

into account the loss of power due to masking. Note that for
this approximation to be valid, the mask vector w must be
smooth enough, gradually going to zero at the gap edges, in
order to limit frequency leakage as much as possible. This
is the approach adopted in Ref. [8] and is referred to as the
“windowing method.”
One could argue that we could also treat gapped data as a

sequence of independent segments. We could then write a
likelihood (6) for each of them and approximate the full
likelihood by the sum of the individual segment like-
lihoods. While this approach could be considered in the
case of a few large gaps, it raises two problems when it
comes to frequent and relatively short gaps as we assume
here. First, short and frequent segments may happen within
the noise autocorrelation time and, thus, cannot be treated
as long and widely separated segments, i.e., independent
experiments. Second, this would result in a loss of
frequency resolution that can be problematic when estimat-
ing low-frequency signals with short bandwidths. There-
fore, we restrict our baseline approach to the windowing
method.

A. Quantification of leakage

In spite of smooth tapering, using the windowing
approximation induces a residual leakage which affects
both the signal and noise. We quantitatively study this
leakage effect in this section.
Let h̃ðfÞ be the discrete Fourier transform of the GW

signal h in Eq. (1). For simplicity, here we approximate the
DFT of vectors h and w by the continuous Fourier trans-
forms of the GW response function hðtÞ and the mask
function wðtÞ, that we respectively label HðfÞ and WðfÞ.
Then the DFT of the masked GW signal can be approxi-
mated by the convolution of the original signal Fourier
transform with the mask Fourier transform:

HwðfkÞ ¼
Z þfs=2

−fs=2
Hðf0ÞWðfk − f0Þdf0; ð10Þ

where fk is the kth element of the Fourier grid. This
expression illustrates the intuitive fact that the broader the
Fourier transform of the window, the larger the error from
masking. In addition, the shorter the signal bandwidth, the
smaller the error, since HðfÞ will quickly drop to zero far
from its central frequency f0.
The noise is also affected by windowing in the time

domain. One can show [21,22] that the diagonal elements
of the covariance of the windowed noise DFT ñw are given
by the convolution of the true spectral density with the
mask periodogram:

SwnðfÞ ≈
Z þfs=2

−fs=2
Snðf − f0Þjw̃ðf0Þj2df0; ð11Þ

where w̃ðfÞ ¼ N−1=2 PN−1
n¼0 wðnÞe−2jπnf=fs is the DFT of

the mask calculated at frequency f. For what follows, it is
useful to determine a figure of merit quantifying the amount
of noise power leakage that affects the estimation. To this
end, we use the expression of the signal-to-noise ratio
(SNR) that we adapt to take into account the leakage. In the
absence of gaps, the general, continuous approximation
formula adopted in GW analysis is [15]

ρ≡ 4

Z
∞

0

jHðfÞj2
S1nðfÞ

df; ð12Þ

where S1nðfÞ ¼ 2SnðfÞ is the one-sided noise PSD. It is
then sensible to define an effective SNR in the presence of
masking:

ρw ≡ 4

Z
∞

0

jHwðfÞj2
S1wnðfÞ

df; ð13Þ

where HwðfÞ is given by Eq. (10) and S1wnðfÞ ¼ 2SwnðfÞ
with SwnðfÞ given by Eq. (11). Note that the effective SNR
depends on the source, the noise PSD, the integration time,
and the mask pattern. We will see that the convolution
effects involved can degrade the SNR with respect to the
complete-data case. That is why we propose an alternate
approach to the windowing method, that allows us to avoid
any leakage effect.

IV. A DATA AUGMENTATION METHOD

The alternative presented in this study is to treat missing
data as auxiliary variables to be estimated as part of the
parameter estimation scheme. We detail such a strategy in
this section.

A. Iterative blocked-Gibbs sampler

The purpose of any Bayesian estimation method is to
estimate the posterior probability density of the parameters
of interest, given the data at hand. Formally, this is
expressed by Bayes’ theorem
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pðθjyÞ ¼ pðyjθÞpðθÞR
Θ pðyjθÞpðθÞdθ ; ð14Þ

where pðθjyÞ is the posterior distribution of the parameters,
pðyjθÞ is the likelihood function, pðθÞ is the prior dis-
tribution, and the denominator is the evidence which acts as
a normalizing constant.
When there are data gaps, our goal is to compute the

posterior distribution given the observed data only. This
means that we want to sample pðθjyoÞ using Eq. (14).
While the complete-data likelihood can be efficiently
computed using Eq. (6), the gapped-data likelihood
pðyojθÞ is usually hard to compute because of the reasons
mentioned in Sec. II B. Thus, we need a workaround to use
the computational convenience of the complete-data like-
lihood while properly probing the gapped-data likelihood.
This is done by DA [13], also called Bayesian multiple
imputation. As mentioned in Sec. I, this algorithm iterates
between two steps. The first one is the I step, where the
missing data vector is drawn conditionally on the observed
data and on the current state of the parameters. The second
one is the P step, where the parameter vector θ is drawn
from the posterior distribution given both the observed and
missing data, exactly as in standard Bayesian estimation.
Thus, in the DA algorithm the update from iteration i to
iteration iþ 1 is done as

I step∶ draw yðiþ1Þ
m ∼ pðymjyo; θðiÞÞ;

P step∶ draw θðiþ1Þ ∼ pðθjyo; yðiþ1Þ
m Þ: ð15Þ

This scheme corresponds to a blocked-Gibbs sampler,
because two blocks of parameters (ym and θ) are drawn
sequentially, conditionally to the value of the other param-
eter at previous iteration. In the following, we detail the two
steps of the algorithm.

B. The imputation step

The imputation step draws a value for the missing data
vector ym from its posterior distribution, given the current
value of the model parameters and the observed data. If the
data are assumed to follow a multivariate Gaussian dis-
tribution, then the conditional distribution pðymjyo; θÞ is
also Gaussian, with mean and covariance given by

μmjo ¼ hmðθÞ þ ΣmoΣ−1
oo ðyo − hoðθÞÞ; ð16Þ

Σmjo ¼ Σmm − ΣmoΣ−1
ooΣT

mo; ð17Þ

respectively, where Σmm ≡WmΣWT
m is the covariance of

the missing data vector and Σmo ≡WmΣWT
o is the covari-

ance between the missing and the observed data vectors.
Equation (16) involves the inverse of the covariance matrix
Σoo. A direct computation of this matrix would be
cumbersome for large datasets (i.e., for No > 103).

Instead, it is possible to iteratively solve the system Σooz ¼
b for z using the preconjugate gradient algorithm, because
the matrix-to-vector product Σooz can be efficiently com-
puted using FFT algorithms [17,23]. However, in our
application we found that the number of iterations needed
to reach a reasonable precision is still restrictive, since a
large number of imputation steps must be done to sample
the posterior distribution of the parameters.
As an alternative, we make the assumption that the

conditional distribution of any missing data ymðiÞ mainly
depends on the nearest observed points, which is true for
fast-decaying autocovariance functions. More particularly,

let us consider a data gap that we label j. We denote yðjÞm the

vector of data lying inside that gap. Now let yðjÞo be a subset
of observed data yo which includes the nearest points to
gap j (previous to and following the gap). Then we can
assume that

pðyðjÞm jyoÞ ≈ pðyðjÞm jyðjÞo Þ: ð18Þ

In the following, the subset yðjÞo is defined as the union of
the Nj available data points before gap j and the Nj data
points coming right after. Then drawing a realization of the
conditional distribution defined by Eqs. (16) has a com-
plexity in OðN2

jÞ; hence, Nj must be kept as small as
possible.

C. The posterior step

In the posterior step, we assume that the missing data
vector ym is given. Then model parameters θ can be drawn
from the posterior distribution pðθjyo; ymÞ. To that end, we
use a Metropolis-Hastings step: If we denote θðiÞ the value
of the parameters at the previous iteration, we use a
probability density qðx0jxÞ to propose a new value θ0 for
the parameters. We then accept this proposal with a
probability given by the Metropolis ratio

Aðx0; xÞ≡min

�
1;
pðx0jyÞqðxjx0Þ
pðxjyÞqðx0jxÞ

�
; ð19Þ

that we calculate for x0 ¼ θ0 and x ¼ θðiÞ.
For our purpose, it will be convenient to separate the

update of the model parameters in two Gibbs substeps as
done by Edwards, Meyer, and Christensen [24], where we
first update the noise parameters θn and then the signal
parameters θh:

P1∶ θðiþ1Þ
n ∼ pðθnjθðiÞh ; yo; y

ðiþ1Þ
m Þ;

P2∶ θðiþ1Þ
h ∼ pðθhjθðiÞn ; yo; y

ðiþ1Þ
m Þ: ð20Þ

As the noise PSD does not depend on θh and the GW signal
does not depend on θn, their conditional distributions are
well separable, making this scheme efficient to perform.
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V. CASE STUDY: THE EXAMPLE OF COMPACT
GALACTIC BINARIES

In this section, we describe the model adopted for the
gravitational-wave signal h, as well as the noise n. We
restrict our analysis to the case of nonmerging, slowly
chirping UCBs. Since the aim of this paper is to assess and
minimize the impact of data gaps on the LISA science
performance, this choice is motivated by the relative
simplicity of the signal model. In the following, we
differentiate between the model that we use to generate
the synthetic data set (the “simulation model”) and the
model that we use for the parameter estimation (the “data
analysis model”).

A. Simulation model

1. Time-domain model for gravitational-wave signal

Let us consider a source located by radius r, colatitude θ,
and longitude ϕ in the solar-system barycentric ecliptic
coordinate system. We assume that this source emits a
gravitational wave with strain polarizations hþ and h× in
the source frame. We consider one of the interferometer
arms of the LISA constellation, labeled i, whose direction
is given by a unit vector ni, pointing towards the receiving
spacecraft, and whose length is given by Li. Then the
incoming wave on the detector will induce a optical phase
shift in the laser link, which can be written as [25,26]

ΔΦðiÞðtÞ ¼ hþðt − dÞFðiÞ
þ ðtÞ þ h×ðt − dÞFðiÞ

× ðtÞ; ð21Þ

where the functions Fþ and F× account for the time-
varying projection of the metric components onto LISA’s
interferometer arms. They depend on sky location ðθ;ϕÞ
and polarization ψ angles of the source and are better
detailed in the Appendix A. The time delay d corresponds
to the time-dependent projection of the wave vector onto
the vector r0 of modulus R localizing the barycenter of
LISA’s constellation from the solar-system barycenter
(SSB) and reads

dðtÞ≡ −
R sin θ

c
cos ðϕ −ΦTðtÞÞ: ð22Þ

This delay depends on the orbital angular position located
from the SSB, that we approximate by ΦTðtÞ ≈ 2πt=T,
where T is LISA’s orbital period (1 yr). In the Newtonian
limit, the gravitational-wave polarizations can be written as

hþðtÞ ¼ h0þðtÞ cos ðΦsðtÞ þ ϕ0Þ;
h×ðtÞ ¼ −h0×ðtÞ sin ðΦsðtÞ þ ϕ0Þ; ð23Þ

where h0þðtÞ is generally a time-varying amplitude and
ΦsðtÞ is the phase of the gravitational wave.

For sufficiently small binary masses and frequencies, the
amplitudes and phases of the above model can be approxi-
mated by

h0þ ¼ h0
2
ð1þ cos2iÞ;

h0× ¼ h0 cos i; ð24Þ

where i is the inclination of the source orbital plane with
respect to the direction of propagation of the incoming
wave. The phase is modeled to the first post-Newtonian
order [27], which we approximate up to second order in
time:

ΦsðtÞ ¼ 2πf0tþ π _f0t2; ð25Þ

where _f0 is the time derivative of the frequency, assumed
constant.
In the case of LISA, the observables of interest are given

by time delay interferometry (TDI) rather than the phase-
meter measurements themselves, in order to deal with the
fact that we have unequal and time-varying arm lengths.
They are constructed from a delayed linear combination of
phasemeter measurements tailored to cancel the otherwise
overwhelming laser frequency noise [28]. Assuming equiv-
alence of clockwise and counterclockwise light pro-
pagation directions, the first-generation TDI Michelson
observable X is given by [29,30]

X1 ¼ ðΔΦ20∶3220 þ ΔΦ1∶220 þ ΔΦ3∶20 þ ΔΦ10 Þ
− ðΔΦ3∶20303 − ΔΦ10∶303 þ ΔΦ20∶3 þ ΔΦ1Þ; ð26Þ

where the colon indicates the application of a delay
operator

fðtÞ∶k ¼ f

�
t −

Lk

c

�
: ð27Þ

The primes in Eq. (26) indicate that the delay is taken in the
counterclockwise direction. In this study, we assume that
all arms have equal and constant lengths, but we use
Eq. (26) to account for the effect of TDI on noise
correlations and signal response. Note that other TDI
variables can be obtained from similar combinations.

2. Noise model

The noise model used to generate the data in this study is
specified in Ref. [31] and can be written in relative
frequency units as
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SXðfÞ ¼ 16sin2
�
f
f�

��
2

�
1þ cos2

�
f
f�

��
SaνðfÞ

þ SoνðfÞ
�
; ð28Þ

where f� ≡ c
2πL ≈ 19 mHz is the LISA response transfer

frequency and SaνðfÞ and SoνðfÞ are, respectively, the test-
mass acceleration and the optical metrology system noise
PSDs:

Saν ¼ 10−30
�
1þ

�
fa1
f

�
2
��

1þ
�

f
fa2

�
4
�
ð2πfcÞ−2;

Soν ¼ 2.25 × 10−22
�
1þ

�
fo
f

�
4
��

2πf
c

�
2

; ð29Þ

where the inflection frequencies are fa1 ¼ 4 × 10−4 Hz,
fa2 ¼ 8 × 10−3 Hz, and fo ¼ 2 × 10−3 Hz. The resulting
PSD shape is a convex function of frequency reaching its
minimum at about 2 mHz, with a low-frequency slope of
f−4 and a high-frequency slope of f2, modulated by the
LISA response and the effect of TDI delays (see Fig. 4).

B. Data analysis model

1. Frequency domain model for gravitational-wave signal

In order to efficiently compute the likelihood in Eq. (6),
it is preferable to have an analytic model of the response in
the frequency domain. This model can be approximately
derived in two steps.
First, in the case of model (23), one can show that

Eq. (21) can be rewritten in the form of a linear combi-
nation of oscillating functions [32–34] as

ΔΦðiÞðtÞ ¼
X4
j¼1

aðiÞj gjðtÞ: ð30Þ

The amplitudes aðiÞj depend only on the source’s sky
localization and orientation angles, as well as its amplitude.
The functions gjðtÞ (whose expressions are given in
Appendix B) depend on the source’s frequency and
frequency derivative and have a delay term depending
on its sky location. The parameters characterizing gj are
usually called intrinsic parameters.
If the frequency of the incoming wave is small with

respect to the interspacecraft travel time L=c (low-
frequency approximation), the TDI combination written
in Eq. (26) acts like a differential operator, and the TDI
response can similarly be written as a linear combination:

X1ðtÞ ¼
4L
c

X4
k¼1

aXk _gkðtÞ; ð31Þ

where we set aXj ¼ a2j − a3j. In the following, we express
TDI in relative frequency shift δν=ν0, which is obtained
from the phase shift by applying a time derivation and
dividing by the laser frequency. Finally, in the frequency
domain, the waveform can be written as [35,36]

X̃νðfÞ ¼
X4
k¼1

aXkg̃νkðfÞ; ð32Þ

where we defined the function g̃νðfÞ≡ − 8πf2L
ν0c

g̃ðfÞ. The
formulation in Eq. (32) is useful for data analysis, because
it can be converted into matrix notation as

h̃ ¼ M̃a; ð33Þ

where h̃ is the signal DFT vector with elements h̃ðpÞ ¼
X̃νðfpÞ, a is the amplitude vector with elements
aðkÞ ¼ aXk, and M̃ is a design matrix with elements
M̃ðp; kÞ ¼ g̃νkðfpÞ. As a result, sampling the GW param-
eters [i.e., performing step P1 of the DA algorithm in
Eq. (20)] can be done in two Gibbs steps: (i) sample for the
intrinsic parameters using a Metropolis-Hastings step and
(ii) sample for a using its conditional distribution, which is
a Gaussian distribution whose mean and variance can be
written explicitly

a ∼N ðμa;CaÞ;
μa ¼ ðM̃�Λ−1M̃Þ−1M̃�Λ−1ỹ;

Ca ¼ ðM̃�Λ−1M̃Þ−1: ð34Þ

This scheme allows us to set up a MCMC algorithm which
reduces to four parameters (θ;ϕ; f0; _f0) instead of eight
(h0;ϕ0; i;ψ ; θ;ϕ; f0; _f0). This is similar to using the F -
statistics in the search phase, where one marginalizes over
parameters a [15]. Once the GW parameters are updated,
we form the model residuals ỹ − M̃a that are used in the
next step (P2) where the noise parameters are sampled for.

2. Parametrization of the noise power spectral density

In a complex measurement like LISA, it is safer to
estimate the noise characteristics along with the signal, in
order to avoid biases due to mismodeling of the noise PSD.
Furthermore, we require some flexibility in the modeling,
as the actual PSD may depart from the physical model
described by Eq. (28). To be as general as possible, we
simply assume that the log-PSD is smooth enough to be
modeled by cubic splines, borrowing from the BayesLine
algorithm used to analyze LIGO science runs [37]. We
found that writing the model for the log-PSD rather than for
the PSD itself eases the estimation because of the regu-
larizing effect of the logarithm on the variance. While other
more sophisticated models of the PSD can also be adopted
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in the context of Bayesian inference [24], we leave the
study of PSD modeling performance for future work. Let
log fj, logSj be the control points of the cubic spline. Then
the model can be written ∀ j ∈ ½1; J� as

log SnðfÞ ¼
X3
i¼0

ci

�
log

f
fj

�
i

for f ∈ ½fj; fjþ1�: ð35Þ

Although the number Ns of control points can be a free
parameter, in order to simplify our analysis and maintain a
constant dimensionality, we fix them on a logarithmic grid
lying in the interval ½10−n0 ; 10−ns � such that the grid spacing
increases with the frequency:

log10 fj ¼ −n0 þ
1 − αj

1 − α
; ð36Þ

where α is a constant chosen such that fJ ¼ 10−ns . Then,
the PSD parameters to be estimated at step P2 are the
control points θn ¼ ðlog S1;…; log SJÞ, where typically
J ¼ 30. This is done via the Metropolis-Hastings method.

C. Summary of the DA algorithm
for UCB parameter estimation

In previous sections, we presented the general DA
algorithm as well as the data analysis model that we use
in the particular case of UCB parameter estimation. Here
we summarize the main steps of the DA method for UCB.
At iteration i, the process to follow is as follows.

(I)Missing data imputation.—For each gap, compute the
covariance of neighboring observed points using
Eq. (3). Draw the data in the gap using their condi-
tional distribution described in Eq. (16). Obtain a
reconstructed time series yðiÞ.

(P) Sampling the parameter posterior distribution.
(P1) Sampling for PSD parameters.—Compute the DFT

of the reconstructed time series ỹðiÞ and form the

model residuals ỹðiÞ − hðθðiÞh Þ. Sample the noise PSD
parameters θn using Whittle’s likelihood in Eq. (6)
and the PSD model in Eq. (35) via a Metropolis-
Hastings step and obtain the PSD update SðθnðiÞÞ.

(P2) Sampling for GW parameters.—Sample the GW
parameters θh in two steps: use a Metropolis-
Hastings step with likelihood (6) to sample for
intrinsic parameters, and sample for extrinsic
parameters using Eq. (34). Obtain θhðiÞ.

These steps are repeated until the distribution of intrinsic
parameters reaches a stationary state.
In order to implement this algorithm, some choices were

made to increase its efficiency. We give some details below.
(a) Size of conditional set.—The posterior step involves

the inversion of the covariance matrix of the available
observations. In the nearest-neighbor approximation that
we adopt, Ng inversions are required, where Ng is the
number of gaps which ranges from 50 to 485 in our

application. The choice of the size of the conditional set
(which includes the two segments before and after the gap
in our setup) strongly affects the computational cost, which
scales as NgN3

c, where Nc is the size of the conditional set.
We have determined that for LISA noise PSD Nc ¼ 150 is
sufficient to have a faithful recovery of the spectrum, which
corresponds to 25 min. This number is chosen to be
conservative with respect to the decay time of the autoco-
variance function. For now, no parallelization nor optimi-
zation of the process have been done, leaving room for
efficiency improvement in further studies.
(b) Cadence of imputation steps.—In the DA algorithm

presented in Eq. (15), the two steps usually do not have the
same computational complexity. With the above choice of
Nc, the imputation step requires a computation time 2
orders of magnitude longer than the posterior step (a few
seconds instead of a few tens of milliseconds), because it is
dominated by the FFT computations. This may be cum-
bersome for large-scale MCMC algorithms. Although we
would ideally like to perform an I step after each P step, we
choose to tune their relative update cadence in order to
decrease the computational burden. We find that perform-
ing an I step every 100 P steps is sufficient to obtain good
posterior distributions in a couple of hours on a desktop
computer.
(c) MCMC setup.—To sample the posterior distribution

we use PTEMCEE, a parallel-tempered Markov chain
Monte Carlo sampler (PTMCMC) that dynamically adapts
the temperature ladder [38]. It is built upon the EMCEE code
[39], which runs an ensemble of chains where the proposals
for each chain is done based on the positions of other
chains, using what is called a stretch move. We choose a
uniform prior in ½0; π� and ½0; 2π� for the colatitude θ and
the longitude ϕ, respectively. For the frequency, we choose
a uniform but more restrictive prior centered on the
amplitude maximum of the signal, with an interval range
of about 2 × 10−7 Hz. We use ten different temperatures to
reach a sufficient exploration of the posterior and a number
of chains equal to 4 times the number of dimensions (or
12), which is a minimal value to restrict the computa-
tion time.

VI. NUMERICAL SIMULATIONS

In this section, we describe the set of data and gap
patterns that we use to assess the impact of missing data on
parameter estimation and introduce a way to tune the
window function’s smoothness in each case.

A. Simulated signal and noise

In the following, we use a simulated one-year measure-
ment of TDI channel X sampled at 0.1 Hz, assuming an
analytic Keplerian orbit for LISA’s spacecrafts, and first-
generation TDIs. We restrict the study to this single
channel, since we are interested in relative effects only.
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The gravitational signal is simulated for each phasemeter
using the time-domain model described in Sec. VA 1 and
then recombined using Eq. (26). In order to concentrate on
the effect of gaps, we assume constant and perfectly known
arm lengths.
We consider three compact, nonchirping galactic binary

sources. We assume that these sources have the same sky
localization but different frequencies. We choose these
frequencies to be submillihertz, equal to 0.1, 0.2, and
0.5 mHz, as we shall see that the impact of gaps is
significant only for the lowest frequencies. Even if the
probability to observe such systems with sufficient SNR is
not high, we consider this case for the sake of assessing the
qualitative impact of gaps on parameter estimation. The
amplitude of the sources are chosen so that their SNR is
about 46 in the X channel alone. Note that, for such low
frequencies, chirping can be neglected. Therefore, we do
not include the frequency derivative _f0 in the set of
parameters to estimate. Sky location is chosen arbitrarily,
as we do not expect source localization to have a major
influence on the general results of this study given that the
simulation time spans an entire orbit. Table I summarizes
the values of the source parameters.

B. Simulated gap patterns

We consider two gap scenarios in the following. The first
one is a planned interruption schedule, simulating generic
maintenance periods such as antenna repointing (see
Sec. I). While we do not have yet precise information
about what the future maintenance cycle will be, we
conservatively assume rather frequent periodic interrup-
tions: We simulate one interruption every 5 days, lasting
approximately 1 hr. Given that some flexibility will be
possible on the gap times and that all operations may not
last the same time, we allow both the gap time locations and
their duration to randomly vary. The gap start times follow
a periodic pattern with deviations modeled by a Gaussian
distribution with a standard deviation of 1 day. The duration
is also a Gaussian distribution with mean 1 hr and standard
deviation 10 min.

The second gap pattern models unplanned interruptions,
due to any glitch events preventing the instrument from
properly acquiring the measurement. Based on LISA
Pathfinder feedback, these kind of events are likely to
occur at an average rate of 0.78 per day [6]. To be
conservative, we assume one event per day. The number
of events in a given interval is assumed to follow a Poisson
distribution, so that the intervals between gaps follow an
exponential distribution. We assume that each gap lasts
about 10 min, with a standard deviation of 1 min. In the
following, we label the two gap patterns “five-day periodic
gaps” and “daily random gaps,” respectively, and we
summarize their characteristics in Table II.
It is worth noting that the two gap patterns have almost

the same loss fraction (less than 1%) but strong differences
in gap occurrences and duration. A visual insight is
provided in Fig. 1, where we plot an extract of simulated
data representing TDI X amplitude as a function of time,
expressed in fractional frequency. Data lying inside gaps
are plotted in gray for five-day periodic gaps and in red for
daily random gaps. The remaining observations are shown
in black. This plot highlights the difference of gap
occurrences in the two patterns.

C. Optimization of windowing

As mentioned in Sec. III, the impact of gaps can be
mitigated using a window function smoothly decaying at
the gap edges. Hence, we have to choose the amount of
smoothness. For a given source, a given noise, and a given
gap pattern, it is actually possible to find an optimal value.
In this section, we present a way to perform such an
optimization and adopt it in the simulations as our baseline
to assess the impact of gaps.
We use a Tukey-like window, such that each segment of

available data of length Ts is tapered with a window
function parametrized by the smoothing time tw:

wTs
ðtÞ≡

8>>>>><
>>>>>:

1
2
½1 − cos ð2π t

2tw
Þ� 0 ≤ t < tw

1 tw ≤ t < Ts − tw
1
2
½1 − cos ð2π t−Tsþ2tw

2tw
Þ� Ts − tw ≤ t < Ts

0 otherwise;

ð37Þ

TABLE I. Values of the UCB source parameters used in the
simulations. While any other parameter remains the same, the
sources in the three datasets differ from their amplitudes (first
row) and frequencies (second row). All sources have the same
SNR of about 46.

Parameter Value

Amplitude [strain ×10−20] 15, 2.0, 0.2
Frequency [mHz] 0.1, 0.2, 0.5
Ecliptic latitude [rad] 0.47
Ecliptic longitude [rad] 4.19
Inclination [rad] 0.179
Initial phase [rad] 5.78
Polarization [rad] 3.97

TABLE II. Two types of gap patterns are considered: One
models planned events such as antenna operation gaps, while the
second one models unplanned events such as glitch masking.

Five-day periodic gaps Daily random gaps

Occurrence 5 days� 1 day 1 day� 1 hr
Duration 1 hr � 10 min 10 min�1 min
Loss fraction 0.8% 0.7%
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such that the full window function is

wðtÞ ¼
XNs

s¼1

wTs
ðt − tsÞ; ð38Þ

where ts is the starting time of segment s (i.e., the end of the
previous gap). In order to choose the optimal smoothing
time tw (i.e., the time controlling the transition length
between 0 to 1 and conversely), we can resort to the
effective SNR defined in Eq. (13) and plot it as a function of
tw. We find that there is a value tw;opt that maximizes the
effective SNR. Choosing tw ¼ tw;opt ensures a trade-off
between the minimization of noise leakage and the limi-
tation of SNR loss due to tapering. In Fig. 2, we plot the
effective SNR for the three considered sources, both for
five-day periodic gaps (top) and B (bottom). In order to
better assess the impact of gaps, the SNR is normalized by
the complete-data SNR.
These plots show that the function ρwðtwÞ first starts to

increase (however, not always monotonically), reaches a
maximum, and then slowly decreases as tw continues to
grow. This behavior can be easily understood: For values
close to tw ¼ 0, the window function is rectangular and has
rough edges, generating a large leakage effect, thus
increasing the denominator in Eq. (13). For values larger
than the optimal threshold tw;opt (indicated by dashed
vertical lines in the figure), further smoothing the window
does not better cancel the leakage while making the tapered
signal lose a bit of its power [i.e., the numerator in Eq. (13)
is then decreasing]. In addition, we see that the amount of
leakage is larger for daily random gaps (i.e., when the gaps
are shorter and more frequent) than for five-day periodic
gaps: While for periodic gaps the value of the effective
SNR at tw;opt is close to 100% of the complete-data SNR,

for random gaps it drops to about 70% for f0 ¼ 0.5 mHz
and to about 30% for f0 ¼ 0.1 mHz. Comparing the three
curves also indicates that the lower the frequency, the more
the SNR is affected by leakage.

VII. ESTIMATION RESULTS

After simulating the three sources and the two gap
patterns as described in Sec. VI, we aim at recovering
the signal and noise parameters from these simulations.
This is done by sampling their posterior distribution using
the PTMCMC algorithm outlined in Sec. V C. In this
section, we present the results that we obtain, in the case of
complete data and gapped data, using the windowing and
the DA method.

FIG. 1. Segment of a simulated times series with observed data
in black and missing data in gray for five-day periodic gaps and in
red for daily random gaps. In scenario A, gaps are 5 times longer
and 5 times less frequent than in scenario B.

FIG. 2. Effective SNR as a function of the smoothing time tw
calculated with Eq. (13) in the case of five-day periodic gaps (top
panel) and B (bottom panel), normalized by the optimal SNR
value obtained for complete data. The calculation is done for
three sources of frequency 0.1 (black line), 0.2 (red line), and
0.5 mHz (blue line). The dashed vertical lines show the value of
tw where the maximum is reached.

QUENTIN BAGHI et al. PHYS. REV. D 100, 022003 (2019)

022003-10



A. Results of parameter estimation for one single source

We first consider the case where one single source is
present in each data series. For each source, a first
estimation is done by running the PTMCMC algorithm
on complete data. This provides the “best case” baseline to
compare the results. Then we introduce gaps in the data (for
each pattern), and we perform a second estimation by
running the PTMCMC algorithm using the windowed data,
where the smoothing time tw is chosen equal to its optimal
value. A third estimation is done using the data augmenta-
tion method presented in Sec. IV. We plot the results of the

three estimations in Fig. 3, as histograms representing the
joint posterior distribution of (θ, ϕ) and the posterior
distribution of f0.
Starting with f0 ¼ 0.1 mHz (first row), the windowing

method (gray dotted line) applied to five-day periodic gaps
(right-hand side panel) yields a slightly larger posterior
distribution than the complete-data series (solid black line),
suggesting a slight effect of noise power leakage. The DA
method (dashed blue line) gives results comparable to the
complete-data case, with a similar variance. If we now
consider daily random gaps (right-hand side panel), the

FIG. 3. Result of PTMCMC sampling of the posterior distribution for ecliptic colatitude θ, ecliptic latitude ϕ, and GW frequency f0
for UCB sources with frequencies f0 ¼ 0.1 mHz (first row), f0 ¼ 0.2 mHz (second row), and f0 ¼ 0.5 mHz (third row). The left-hand
side panels correspond to periodic gaps and the right-hand side panels to random gaps. The estimated posterior distributions obtained
from full data are shown by solid black curves. The ones obtained from gapped data are shown in dotted gray when using the windowing
method and in dashed blue when using the DA method.
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difference between the twomethods is more obvious. In this
case, the parameters cannot be recovered using the window-
ing method. The noise power leakage is too large for the
signal to stand out, and the obtained posterior distribution is
dominated by noise. However, the DA method yields a
posterior distribution that is consistent with the injection and
similar to the case without any gaps. This quasisimilarity is
expected for data losses lower than 1%.
Now considering f0 ¼ 0.2 mHz (second row), in the

case of five-day periodic gaps the difference between
posterior distributions obtained with the two methods is
hardly visible, and they are similar to the case of complete
data. However, for daily random gaps, while the windowing
method is still able to recover the injection, we observe a
broadening of the distribution with standard deviations
increasing by 50% for all parameters. This is due to the
leakage effect that is not completely removed as shown by
the bottom panel in Fig. 2, which also indicates a loss of
SNR by about the same amount. Applying the DA method
allows us to obtain a posterior that is close to the case of
complete data.
For f0 ¼ 0.5 mHz, the differences between complete

data and gapped data are getting narrower, as well as the
differences between the results of the two methods. Again,
this observation can be related to Fig. 2, where we saw that
for the highest frequency the impact of leakage becomes
insignificant.

B. Results of PSD estimation

In this section, we analyze the results of the noise PSD
estimation that is obtained with the model described in

Sec. V B 2. The PSD parameters are estimated from the
model residuals at each posterior step of the Gibbs
algorithm. The estimated PSD posteriors are presented
in Fig. 4.
In this figure, we plot the periodograms of the completed

data (black line) and the gap-windowed data (gray line),
along with the estimated PSD using the windowing method
(dotted brown line) and using the DA method (dashed blue
line). In both cases the estimates are obtained by using the
maximum a posteriori (MAP) estimator. The 3σ confi-
dence intervals (light blue areas) are computed using the
sample variance of the posterior distribution. For compari-
son, the true PSD used to generate the data [see Eq. (28)] is
shown in solid green.
In the case of the windowing method, the PSD estimates

are affected by leakage and follow the distorted periodo-
gram. This is visible for both gap patterns A and B. The
lowest frequencies are more affected by spectral leakage,
and the PSD estimates are accurate in a larger frequency
band for five-day periodic gaps than for daily random gaps.
If we consider the DA method, the PSD estimates are
consistent with the true PSD within error bars. This implies
that the gap data imputation step allows one to recover the
right statistic of the noise and removes the bias caused by
leakage. We can also check the consistency of the impu-
tation in the time domain, by looking at one missing data
draw such as in Fig. 5.
In addition, the right-hand side plot in Fig. 4 corroborate

the results presented in Sec. VII C for f0 ¼ 0.1 mHz and
daily random gaps where we obtain a quasiflat posterior
distribution. The leakage effect is so large that the signal

FIG. 4. Results of PSD estimations with gapped data, with five-day periodic gaps (left-hand side) and daily random gaps (right-hand
side). Dotted red curves show PSD estimates obtained with the windowing method and dashed blue curves the ones obtained with the
DA method. They are compared to the true PSD represented by solid green curves. The window method estimates are affected by
leakage effects due to the gapped observation window, while the DA method yields unbiased estimates in most of the frequency band.
Black and gray solid lines, respectively, represent periodograms of complete data and periodograms of gapped data. The peaked curves
in orange shades correspond to GW sources at 0.1, 0.2, and 0.5 mHz. For a 1-yr integration time, their signal stand out of the noise with
five-day periodic gaps but is overwhelmed by noise leakage with daily random gaps for f0 ¼ 0.1 mHz.
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frequency peak (light orange) is blurred into the noise,
making the MCMC algorithm fail to recover the param-
eters. However, if we consider the two other peaks in
orange shades corresponding to higher signal frequencies,
the larger the frequency, the more they come out of
the noise.

C. Results of parameter estimation for two sources

Given that LISA will observe tens of thousands of
sources at the same time, an important aspect of data
analysis is the ability to distinguish two sources whose
frequency bandwidths overlap. Therefore, we want to
assess our ability to resolve two galactic binaries with
close frequencies, i.e., our ability to determine the right
number of sources in a given bandwidth. To this aim, we
simulate a dataset with a first source whose frequency is
f1 ¼ 0.2 mHz and a second source whose frequency is
slightly offset with respect to the first one: f2 ¼ f1 þ Δf.
We study the cases where Δf ¼ 10−n Hz, with
n ¼ 7; 8; 9; 10. We assume different sky positions and
distances, as indicated in Table III.
Even if dedicated detection and estimation algorithms

allowing one to determine the dimension of the parameter
space have been developed [40], here we adopt a simple
approach where we perform two estimations: one assuming
a single source in the signal model and the other assuming
two sources. In the latter assumption we set the constraint
f1 < f2 in the frequency prior, which allows the MCMC

algorithms to better cluster the posteriors (avoiding fre-
quent jumps between two modes). The one-source and two-
source model estimations are done in the case of complete
data and in the case of gapped data, using the windowing
method and then the DA method. In order to assess the
validity of the model (including the priors on its param-
eters; see Sharma [41]), at the end of each estimation we
estimate the Bayes factor

B21 ≡ pðyjM2Þ
pðyjM1Þ

; ð39Þ

where pðyjM2Þ is the evidence associated with the
posterior distribution for model Mi with i source(s) and
is defined as

pðyjMiÞ ¼
Z
Θ
pðθ;MiÞpðyjθ;MiÞ: ð40Þ

The evidences are computed via thermodynamic integra-
tion [42–44], a method which uses the results of the
PTMCMC algorithm at all temperatures and which has
already been applied in GW data analysis [45,46]. Details
about our implementation of this method are given in
Appendix C.
In Fig. 6, we gather the estimated posterior distributions

of source frequencies f̂1 and f̂2 for each injected frequency
separation. In the complete-data case (solid black curve),
the frequencies are well resolved for Δf > 1 nHz, where
the two posterior distributions start to be superimposed, as
their standard deviation is about 2.5 nHz.
In the case of periodic gaps, this behavior is observed for

both windowing and DA methods, although the statistical
error increases by about 30% in the case of the windowing
method. In the case of random gaps, the posteriors are
much more spread when using the windowing method,
making impossible to resolve the frequencies for separa-
tions of 10 nHz and below. The posteriors obtained with the
DA method are very similar to the complete-data case,
restoring the frequency resolution power to a level com-
parable with full-data resolution.

FIG. 5. Results of one gap imputation draw in the time domain
after the MCMC chains have reached stationarity. This draw is
obtained for a periodic gap pattern and a source frequency
f0 ¼ 0.1 mHz. The noise statistics are preserved inside the gap,
allowing us to accurately sample the PSD when Fourier trans-
forming the imputed data. The enlarged inset shows the GW
signal (green line) and the estimated conditional mean μmjo inside
the gap (dashed orange line), taking into account both noise
correlations and the deterministic signal. The colored area
represents the conditional 99% confidence interval.

TABLE III. Characteristics of the two simulated sources in each
data stream. Four data streams are generated where the sources
are 100, 10, 1, or 0.1 nHz apart in frequency, with different sky
locations and orientation.

Parameter Source 1 Source 2

Amplitude [strain ×10−20] 2 2
Frequency [mHz] 0.2 0.2þ Δf
Ecliptic latitude [rad] 0.47 −1.0
Ecliptic longitude [rad] 4.19 5.5
Inclination [rad] 0.179 0.1
Initial phase [rad] 5.78 2.89
Polarization [rad] 3.97 0.21
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The frequency estimates can be compared to the values
obtained for the estimated Bayes factors, plotted in Fig. 7.
As in Fig. 6, they are ordered by decreasing separations
between the two source frequencies injected in the simu-
lated data. We show the case of a complete-data series
(black vertical bars), along with gapped data with the

windowing method (gray) and the DA method (blue). The
top and bottom panels correspond to periodic and random
gaps, respectively. For periodic gaps, although the window-
ing method yields smaller values of B21 than the DA
method, the Bayes factor significantly favor a two-source
model, in the case of both complete and masked data,

FIG. 6. Posterior distribution of frequencies f̂1 and f̂2 of two sources with different sky locations, obtained with the two-source model.
We show four different cases of frequency separation Δf (which is decreasing from left to right) with and without random gaps. The
sample values are offset by f1 ¼ 2 mHz for clarity. Kernel estimates of the posterior distribution densities in the case of complete data
are represented by black solid curves; the case of gapped data with the use of the windowing method is represented by the dotted gray
curves, and the case of gapped data with the use of the DA method is represented in dashed blue. Vertical green lines indicate the true
value of both frequencies.

FIG. 7. Estimated Bayes factors B21 as a function of the frequency separation Δf ¼ f2 − f1 between the two sources with different
sky locations, in the case of five-day periodic gaps (left-hand side) and random daily gaps (right-hand side). In both panels, the posterior
obtained from complete data is shown in solid black for reference, while the posteriors obtained from gapped data with the windowing
method are shown in dotted gray and in dashed blue with the DA method. The dashed red horizontal lines corresponds to the threshold
above which the Bayes factor indicates positive evidence towards two sources (values suggested in Romano and Cornish [47]). The error
bar accounts for the possible bias due to the numerical integration.
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regardless of the method used. For Δf ¼ 0.1 nHz, the
value that we compute with the windowing method gets
closer to the positive threshold (indicated by the red dashed
horizontal line), which we set to B21 ¼ 20 [47]. This
suggests that for such a frequency separation it would
be difficult to discriminate the two models if the SNR was
smaller (as the amplitudes of Bayes factors would be
lower). Besides, not surprisingly, the values of the Bayes
factors are decreasing as the frequencies of the sources get
closer.
If we now look at the case of daily random gaps in the

bottom panel, we see that in most cases the windowing
method yields values of B21 lying below or close to the
positive threshold and does not allow us to conclude on a
preference model given the large systematic error bars.
However, the DA method allows us to confidently favor the
presence of two sources, as does a complete-data series.
They both give B21 > 150, which corresponds to a very
strong positive test. This means that, even when the
frequencies cannot be distinguished, we are still able to
tell whether there is one or two sources in the data. Besides,
one may remark that the Bayes factors computed with the
DA method seem to have a systematically larger amplitude
than for the case of full data, although the error bars suggest
that this could only be coincidental for this particular
realization of the data. The difference can be explained by
the fact that the two posterior distributions that are probed
in the case of complete and missing data are not the same,
since in the former case we sample for pðθjyÞ and in the
latter we sample for pðθ; ymjyoÞ which includes the missing
data points as additional parameters in the model. Although
increasing the sampling cadence of missing data tends to
decrease this systematic, we may have to define a more
adapted threshold when using the DA method, which will
be investigated in future studies.

VIII. CONCLUSIONS

We tackled the problem of GW parameter estimation in
the presence of data gaps in LISA measurements (i) by
assessing their impact on the performance of a standard
method using window functions in the time domain and
(ii) by minimizing this impact through the development of
an adapted Bayesian method.
For the assessment task, we introduced a figure of merit

that we call effective signal-to-noise ratio, which takes into
account the signal and noise leakage effect that is inherent in
any finite-time windowing method. Our study focused on
compact galactic binary sources with different frequencies
and on two kinds of gap pattern: weekly, pseudoperiodic
gaps were generated to mimic possible satellite antenna
repointing operations, and daily random gaps were gener-
ated to account for a situation where frequent and loud
instrumental glitcheswould corrupt somedata,making them
unusable. We showed that short and frequent data gaps
(glitch-masking type) are more impacting than longer and

fewer gaps (antenna type). They can degrade the effective
SNR by up to 70% for low-frequency (0.1 mHz) sources,
with only 1% data losses. This is explained by the large
stochastic noise power leakage that is transferred to low
frequency when masking (even smoothly) the data. We also
showed that this degradation gets larger when the frequency
of the source decreases. The precision of GW parameter
estimation is found to be in direct correlation with the noise
leakage and drops by the same amount as the effective SNR.
We also studied how the resolution power depends on gaps.
For weekly gaps, we showed that timewindowingmaintains
a good performance for frequency resolution and source
disentanglement,with a slight increase in the statistical error,
on the order of a few percent. However, daily gaps largely
deteriorate the ability to distinguish between two sources
that are close in frequency.
In order to mitigate the loss of effective SNR due to time

windowing, we developed an alternate Bayesian method to
handle data gaps in a statistically consistent framework,
called data augmentation. We introduce an extra step in the
sampling of the posterior distribution where, beside GW
and noise PSD parameters, we sample for missing data.
This allows us to use standard MCMC sampling techniques
on iteratively reconstructed time series, which removes
leakage effects while properly taking data gaps into account
in the posterior distribution of GW parameters. We showed
that, in cases where the time-windowing treatment of gaps
performs poorly, data augmentation restores UCB para-
meter precision at a level that is comparable with complete-
data analysis, thereby increasing the ability to distinguish
between different sources. One advantage of this method is
that it is agnostic to any waveform model and can be easily
plugged in any existing MCMC scheme. By limiting the
sampling cadence of missing data, this “plug-in” represents
an moderate extra computational cost, lower than 5%.
Furthermore, for a given fraction of data losses, the method
shows equivalent performance with different gap patterns.
As a conclusion, our study shows that data gaps may

degrade LISA’s performance if not properly handled,
impacting both parameter precision and source resolution
power. Handling them properly presents a computational
challenge, but we proposed a Bayesian data augmentation
inference method that efficiently tackles the problem in a
statistically consistent way and gives promising results.
While the quasimonochromatic sources chosen for our
study allow us to easily assess the dependence of gap
impact on the frequency, the next obvious step that will be
taken by future works is to apply the DA method to other
LISA sources such as massive black hole binaries, which
span larger frequency ranges. In addition, some limitations
of the method remain to be addressed. In particular, the
computational complexity of the missing data imputation
step is currently larger than GW posterior sampling steps.
While we showed that reducing the imputation cadence
allows us to circumvent this problem while maintaining

GRAVITATIONAL-WAVE PARAMETER ESTIMATION WITH GAPS … PHYS. REV. D 100, 022003 (2019)

022003-15



good sampling accuracy, better sampling may be needed
for more complex problems. We plan to develop a more
efficient algorithm in the future, by using a sparse approxi-
mation of matrices and parallel computations.
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APPENDIX A: EXPRESSION OF MODULATION
FUNCTIONS

Here we give the expressions of the functions Fþ and F×
that are involved in Eq. (21) describing LISA’s response to
GWs. They are given by

FiþðtÞ≡ cosð2ψÞuiðtÞ − sinð2ψÞviðtÞ;
Fi
×ðtÞ≡ sinð2ψÞuiðtÞ þ cosð2ψÞviðtÞ; ðA1Þ

where uðiÞ and vðiÞ are modulation functions. If nθ, nϕ, and
k are the orthonormal vectors of the observational coor-
dinate system in the SSB frame, these modulation functions
are equal to

uiðtÞ ¼ πν0Li

c
½ðnθ · niÞ2 − ðnϕ · niÞ2�;

viðtÞ ¼ πν0Li

c
ðnθ · niÞðnϕ · niÞ: ðA2Þ

APPENDIX B: FOURIER-DOMAIN MODEL

In this section, we derive an approximate Fourier-domain
model for the UCB. To do that, it is convenient to expand
the waveform response in Fourier series. We start from
Eq. (30) that we reproduce here for convenience:

ΔΦðiÞðtÞ ¼
X4
j¼1

aðiÞj gjðtÞ: ðB1Þ

The elementary functions gj of this combination can be
written as

g1ðtÞ ¼ uðiÞðtÞ cosΦsðt − dðtÞÞ;
g2ðtÞ ¼ vðiÞðtÞ cosΦsðt − dðtÞÞ;
g3ðtÞ ¼ uðiÞðtÞ sinΦsðt − dðtÞÞ;
g4ðtÞ ¼ vðiÞðtÞ sinΦsðt − dðtÞÞ: ðB2Þ

At this point we can develop both the modulation functions
uðiÞðtÞ and uðiÞðtÞ and the delayed GW phase Φsðt − dðtÞÞ
in Fourier series. The former can be expressed as a sum of
sinusoidal functions with integer multiples of the orbital
angular frequency ωT ¼ 2π=T:

uiðtÞ ¼
X4
m¼0

UðiÞ
c;m cos ðmωTtÞ þUðiÞ

s;m sin ðmωTtÞ;

viðtÞ ¼
X4
m¼0

VðiÞ
c;m cos ðmωTtÞ þ VðiÞ

s;m sin ðmωTtÞ: ðB3Þ

Then the modulated cosine and sine functions of the GW
phase can be expanded as

ejΦsðt−dðtÞÞ ≈ ejΦsðtÞþjω0τ0 cos ðϕ−ωTtÞ

¼
Xþ∞

n¼−∞
Jnðω0τ0ÞjnejΦsðtÞþjnðϕ−ωTtÞ; ðB4Þ

where in the first line we applied the slow chirp approxi-
mation and set ω0 ≡ 2πf0 and τ0 ≡ R sin θ

c , and in the second
line we used the Jacobi-Anger identity.
The Fourier transform of the above expression is a

convolution between the exponential harmonic at angular
frequency ωT and the Fourier transform of the GW
exponential phase, that we write as

ṽTðfÞ ¼
Z þ∞

−∞
Π0;TðtÞe−jΦsðtÞe−2jπftdt; ðB5Þ

where Π0;TðtÞ is the rectangular window of size T, which
accounts for the fact that we observe the signal during a
finite duration. In the case of a slowly chirping wave with
frequency derivative _f0, Eq. (B5) can be expressed as

ṽTðfÞ ¼ ITðf þ f0Þ − I0ðf þ f0Þ; with

ItðfÞ≡ e
jπð1

4
þf2

_f0
Þ

2

ffiffiffiffiffi
_f0

q erfi

� ffiffiffiffiffi
π
_f0

r
ej

π
4ð _f0tþ fÞ

�
; ðB6Þ

where erfi is the imaginary error function. When chirping
can be neglected, Eq. (B5) reduces to a cardinal sinus
function:

ṽTðfÞ ¼ Te−jπðfþf0ÞT sin c½ðf þ f0ÞTÞ�: ðB7Þ

Let us now take the Fourier transform of Eqs. (B4) after
truncating the series to some order nc:

F ½ejΦsðt−dðtÞÞ�ðfÞ ≈
Xþnc

n¼−nc

Jnðω0τ0ÞjnejnϕṽTðf − nfTÞ:
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Let us define ycðtÞ≡ cosΦsðt − dðtÞÞ and ysðtÞ≡
sinΦsðt − dðtÞÞ, which can also be written as

ycðtÞ ¼
1

2
½ejΦsðt−dðtÞÞ þ e−jΦsðt−dðtÞÞ�;

ysðtÞ ¼
1

2j
½ejΦsðt−dðtÞÞ − e−jΦsðt−dðtÞÞ�: ðB8Þ

Hence, the Fourier transforms of ycðtÞ and ysðtÞ are

ỹcðfÞ ¼
1

2

Xþnc

n¼−nc

Jnðω0τ0Þ½ejnðϕþπ
2
ÞṽTðf − nfTÞ

þ e−jnðϕþπ
2
Þṽ�Tð−f þ nfTÞ�;

ỹsðfÞ ¼
1

2j

Xþnc

n¼−nc

Jnðω0τ0Þ½ejnðϕþπ
2
ÞṽTðf − nfTÞ

− e−jnðϕþπ
2
Þṽ�Tð−f þ nfTÞ�: ðB9Þ

To obtain a more compact expression, we can also restrict
the frequency domain to positive frequencies, since the
likelihood is usually computed for positive frequencies
only. According to Eq. (B7), the function ṽTðfÞ is centered
in −f0, so that only terms of the form ṽTð−f þ kfTÞ are
dominant for f > 0:

ỹcðfÞ ≈
1

2

Xþnc

n¼−nc

Jnðω0τ0Þe−jnφṽ�Tð−f þ nfTÞ;

ỹsðfÞ ≈ jỹcðfÞ; ðB10Þ

where we set φ≡ ϕþ π
2
.

With this result in hand, the Fourier transform of the
functions gj in Eq. (B2) can be computed from the
convolution of Eq. (B4) with the Fourier transform of
Eq. (B3). For example, for j ¼ 1 we have
g1ðtÞ ¼ uðiÞðtÞycðtÞ; hence, for f > 0 we get

g̃1ðfÞ ¼
Z þ∞

−∞
ũðiÞðf − f0Þỹcðf0Þdf0

¼ 1

4

Xþnc

n¼−nc

X4
m¼0

Jnðω0τ0Þe−jnφðUðiÞ
c;m − jUðiÞ

s;mÞ

× ½ṽ�Tð−f þ ðnþmÞfTÞ þ ṽ�Tð−f þ ðn −mÞfTÞ�:

Similar expressions are obtained for g̃jðfÞ; j ¼ 2; 3; 4
which gives us an explicit formula for the frequency-
domain waveform response (B1).

APPENDIX C: IMPLEMENTATION OF
THERMODYNAMIC INTEGRATION

In this section, we detail the implementation that we use
to calculate the source model evidence. If we consider a
particular model M, we can define a tempered version of
the evidence:

ZðβÞ≡
Z
Θ
qβðθÞdθ; ðC1Þ

where

qβðθÞ ¼ pðyjθ;MÞβpðθjMÞ ðC2Þ

and β is the inverse temperature. Thus, we want to estimate
Zð1Þ. One can show that [44]

∂ logZðβÞ
∂β ¼ Eβ

�∂ logqβðθÞ
∂β

�

¼ Eβ½logpðyjθ;MÞ�; ðC3Þ

where the expectation is taken, for fixed β, with respect to
the tempered posterior distribution. We can derive the
evidence by taking the integral of Eq. (C3) along all
temperatures:

logZð1Þ − logZð0Þ ¼
Z

1

0

Eβs½logpðyjθ;MÞ�dβ; ðC4Þ

where Zð0Þ ¼ R
Θ pðθjMÞdθ is equal to 1; hence,

logZð0Þ ¼ 0. Since the PTMCMC algorithm samples
the tempered posterior distribution of θ for all temperatures,
we can estimate Eq. (C3) by calculating the sample
expectation

Eβ½logpðyjθ;MÞ� ≈ 1

K

XK
k¼1

logpðyjθk;MÞ; ðC5Þ

where K is the number of samples. The integral in Eq. (C4)
is then evaluated numerically using the trapezoidal method.
We also have to estimate the error made on the evidence

Zð1Þ when using this approximation. The bias due to the
integral approximation is usually larger than the variance.
To evaluate it, we use the approach adopted in the PTEMCEE

code [38], where the numerical integration is first per-
formed on a subset of the temperature ladder and then on
the entire ladder. The difference between the two values
that we obtain gives an estimate of the error due to the
discretization of the continuous integral, i.e., the bias on the
evidence.
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