N

N

Performing Deep Recurrent Double Q-Learning for
Atari Games

Felipe Moreno-Vera

» To cite this version:

Felipe Moreno-Vera. Performing Deep Recurrent Double Q-Learning for Atari Games. International
Conference on Machine Learning, LatinX in AI Workshop, Jun 2019, Long Beach, United States.
hal-02217800v2

HAL Id: hal-02217800
https://hal.science/hal-02217800v2
Submitted on 8 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02217800v2
https://hal.archives-ouvertes.fr

Performing Deep Recurrent Double Q-Learning
for Atari Games

Felipe Moreno-Vera
felipe.morenoQucsp.edu.pe

Universidad Catlica San Pablo, Arequipa, Pert

Abstract. Currently, many applications in Machine Learning are based
on define new models to extract more information about data, In this
case Deep Reinforcement Learning with the most common application
in video games like Atari, Mario, and others causes an impact in how to
computers can learning by himself with only information called rewards
obtained from any action. There is a lot of algorithms modeled and
implemented based on Deep Recurrent Q-Learning proposed by Deep-
Mind used in AlphaZero and Go. In this document, We proposed Deep
Recurrent Double Q-Learning that is an implementation of Deep Rein-
forcement Learning using Double Q-Learning algorithms and Recurrent
Networks like LSTM and DRQN.

Keywords: Deep Reinforcement Learning - Double Q-Learning - Re-
current Networks - Convolutional Networks - Reinforcement Learning -
Atari - Video Games - DQN - DRQN - DDQN

1 Introduction

Currently, there is an increase the number of application in Reinforcement Learn-
ing, specially in Deep Reinforcement Learning with new techniques. One of ap-
plication of DRL (Deep Reinforcement Learning) is in Games like AlphaZero
(Go, Chess, etc) and video games like Mario, Top racer, Atari, etc. Deep Rein-
forcement Learning is considered like a third model in Machine Learning (with
Supervised Learning and Unsupervised Learning) with a different learning model
and architecture.

There are several methods of implementing these learning processes, where Q-
Learning is a prominent algorithm, the @ value of a pair (state, action) contains
the sum of all these possible rewards. The problem is that this sum could be
infinite in case there is no terminal state to reach and, in addition, we may
not want to give the same weight to immediate rewards as to future rewards,
in which case use is made of what is called an accumulated reinforcement with
discount: future rewards are multiplied by a factor v [0, 1] so that the higher
this factor, the more influence future rewards have on the Q value of the pair
analyzed. Formally:

2 F. Moreno

Richard Sutton [1, 2] define various models to describe Reinforcement Learn-
ing and how to understand it. DeepMind was the first to achieve this Deep
Learning with AlphaZero and Go game using Reinforcement Learning with Deep
Q-Learning (DQN) [3] and Deep Recurrent Q-Leaning (DRQN) [4], follow up
by OpenAl who recently suprased professional players in Star Craft 2 (Gramve
created by Blizzard) and previously in Dota 2 developed by Valve. Chen et al. [5]
proposed a CNN based on DRQN using Recurrent Netowrks (a little variance of
DRQN model using LSTM, the first neural network architecture that introduces
the concept of memory cell [6], on agents actions to extract more information
from frames.

1.1 Deep Q-Learning

The first algorithm proposed by DeepMind was Deep Q-Learning, based on Q-
Learning with experience replay [3], with this technique they save the last N
experience tuples in replay memory This approach is in some respects limited
since the memory buffer does not differentiate important transitions and always
overwrites with recent transitions due to the finite memory size N.

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x;} and preprocessed sequenced ¢; = ¢(s)
fort = 1,Tdo
With probability € select a random action a,
otherwise select a; = max, Q" (¢(s:), a;0)
Execute action a; in emulator and observe reward r; and image ;4
Set s;+1 = $y. ay, x4y and preprocess ¢y = O(s411)
Store transition (¢, ag, 1y, dp4q) in D
Sample random minibatch of transitions (¢;. a;.r;, @,+1) from D
rj for terminal ¢+
rj +ymaxa Q(djs1,a';6) for non-terminal ¢j4+1

Sety; =

Perform a gradient descent step on (y; — Q(¢;,a;; f';')j2 according to equzllion
end for
end for

Fig. 1: Deep Mind DQN algorithm with experience replay [3].

1.2 Deep Double Q-Learning

Hado et al [7] propose the idea of Double Q-learning is to reduce over estimations
by decomposing the max operation in the target into action selection and action
evaluation.

— DQN Model:
Y: = Rirq + ymaxQ(Siy1; a; 0y)

DRDQN for Arati Games 3
— DDQN Model:
Y; = Rey1 +7Q(Sig1; argmazQ(Sis; as; 0,); 67)
Where:

— e q; represents the agent.

e 0, are the parameters of the network.

e () is the vector of action values.

e Y} is the target updated resembles stochastic gradient descent.

e v is the discount factor that trades off the importance of immediate and
later rewards.

e S; is the vector of states.

— o Ry4q is the reward obtained after each action.
1.3 Deep Recurrent Q-Learning
Mathew et al [4] have been shown to be capable of learning human-level control
policies on a variety of different Atari 2600 games. So they propose a DRQN
algorithm which convolves three times over a single-channel image of the game

screen. The resulting activation functions are processed through time by an
LSTM layer.

Q-Values

4
LSTM / 512

Conv3
64-filters 64
3x3
Stride 1
7
Conv2
64-filters
1% 4 64
Stride 2
¢
9
Convl
32-filters 32
8x8
Stride 4 20
20 1
e ¢ 1
&4

(a) DQRNN (b) DQRN

Fig. 2: Deep Q-Learning with Recurrent Neural Networks model (a) [5] and Deep
Recurrent Q-Learning model (b)[4].

4 F. Moreno

1.4 Deep Q-Learning with Recurrent Neural Networks

Chen et al. [5] says DQN are limited, so they try toimprove the behavior of the
network using Recurrent networks (DRQN) using LSTM in the networks to take
better advantage of the experience generated in each action.

2 Proposed model

We implement the CNN proposed by Chen et al. [5] with some variations in the
last layers and using ADAM error. The first attempt was a simple CNN with
3 Conv 2D layers, with the Q-Learning algorithm, we obtain a slow learning
process for easy games like Spacelnvaders or Pong and very low accuracy in
complicated games like Beam Rider or Enduro. Then, we try modifying using
Dense 512 and 128 networks at last layer with linear activation and relu, adding
a LSTM layer with activation tanh.

In Table 7?7 we present our Hyperparameters using in our models, we denote
this list of hhyperparameters as the better set (in our case). We run models over
an NVIDIA GeForce GTX 950 with Memory 1954MiB using Tensorflow, Keras
and GYM (Atari library) for python. We implement DDQN, DRQN, DQN and
our proposed to combine DRQN with Double Q-Learning [7] algorithm using

LSTM.
Conv 2D, 32
Claiv 2o} 52 (8x8), stride
(8x8), stride = 4 =1
Conv 2D, 64
Conv 2D, 64 (4x4), stride
(4x4), stride = 2

=2
Conv 2D, 64
(3x3), stride = 1
Dense(512, relu)

Dense(actions, linear)

Conv 2D, 64
(3x3), stride
=1

LSTM(512,
tanh

Dense(128,
relu)

Dense(actions, linear)

Convolutional Network Recurrent Convolutional Network

Fig. 3: Convolutional Networks used in our models.

DRDQN for Arati Games 5

3 Results

Our experiments is build over Atari Learning Enviroment (ALE) [8] which serve
us as an evaluation platform for our algorithm and allow us to compare with
DQN, DDQN and DRQN. After to run our algorithms using 10M (10 millions)
episodes, we obtain results for each model in each respective game. We get best
scores for the 4 games mentioned above (Spacelnvaders, Enduro, Beam Rider
and Pong).

Models and respective Scores
Model [Spacelnvaders|Enduro|Pong|Beam Rider
DQN 1450 1095 | 65 349
DRQN 1680 885 39 594
DDQN 2230 1283 | 44 167
DRDQN 2450 1698 | 74 876

Table 1: Results Scores of Space Invaders, Enduro, Pong and Beam Rider.

We compare with Volodymyr et al. [9] Letter about best scores form games
obtained by DQN agents and professionals gamers (humans) to verify correct be-
havior of learning process, we measure accuracy based on Q-tables from the agent
and DL algorithm (Double Q-Learning) extracting information from frames with
the Convolutional Neural Networks (See Fig. 4).

Spacelnvaders DQN training Spacelnvaders DDQN training

—— last 1000 average
—=- last 10000 average

=4
©

H = last 1000 average
=== last 10000 average

4
@

e
S

0.6 4

accuracy
accuracy
o
o

o
kS
e
«

0.2 4

e
=

e
w

0.0 1

0 100000 200000 300000 400000 500000 600000 700000 0 100000 200000 300000 400000 500000 600000 700000
update update

(a) DQN Accuracy (b) DDQN Accuracy

Fig.4: DDQN vs DQN Accuracy.

6 F. Moreno

4 Conclusions

We Present a model based on DRQN and Double Q-Learning combined to get
a better performance in some games, using LSTM and CNN to analyze frames.
We notice that each method could be good for an specific Atari game and other
similar games but not for all. but can be improved using different CNN and get
more information from the frames in each batch iteration.

5 Acknowledgements

This work was supported by grant 234-2015-FONDECYT (Master Program)
from CienciActiva of the National Council for Science,Technology and Techno-
logical Innovation (CONCYTEC-PERU).

6 Appendix: Hyperparameters

Note: Y means Target Network.

List of Hyperparameters

Iterations

10 000000

number of batch iterations to the learning process

miniBatch size

32

number of experiences for SGD update

Memory buffer size 900000 [SGD update are sampled from this number of most recent frames
Learning Rate 0.00025 |learning rate used by RMS Propagation

Training Frequency 4 Repeat each action selected by the agent this many times

Y Update Frequency| 40000 [number of parameter updates after which the target network updates
Update Frequency 10000 [number of actions by agent between successive SGD updates

Replay start size 50000 |The number of Replay Memory in experience

Exploration max 1.0 Max value in exploration

Exploration min 0.1 Min value in exploration

Exploration Steps 850000 |The number of frames over which the initial value of e reaches final value
Discount Factor 0.99 |Discount factor v used in the Q-learning update

Table 2: Hyperparameters used in models

References

1. Richard S. Sutton, ”Reinforcement Learning Architectures”.
2. Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Daan Wierstra, Alex Graves,

Toannis Antonoglou, Martin Riedmiller, ”Playing Atari with Deep Reinforcement
Learning”, In NIPS Deep Learning Workshop 2013.

DRDQN for Arati Games 7

. Matthew Hausknecht and Peter Stone, ”Deep Recurrent Q-Learning for Partially
Observable MDPs”, In AAAT Fall Symposium Series 2015.

. Clare Chen, Vincent Ying, Dillon Laird, "Deep Q-Learning with Recurrent Neural
Networks”.

. Hochreiter and Schmidhuber. Long short-term memory. Neural Comput. 9(8):1735-
1780.

. Hado van Hasselt, Arthur Guez and David Silver, ”Deep Reinforcement Learning
with Double Q-learning”.

. M. Bellemare, Y. Naddaf, J. Veness and M. Bowling, The arcade learning enviro-
ment. An evaluation platform for general agents. In Journal of Artificial Intelligence
Research, 47:253-279, 2013

. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis, ” Human-
level control through deep reinforcement learning”.

