
Performing Deep Recurrent Double Q-Learning for Atari Games

Felipe Moreno-Vera
felipe.moreno@ucsp.edu.pe

Universidad Catlica San Pablo, Arequipa, Perú

1 Introduction

Currently, there is an increase the number of application in Reinforcement Learning, specially in Deep
Reinforcement Learning with new techniques. One of application of DRL (Deep Reinforcement Learning)
is in Games like AlphaZero (Go, Chess, etc) and video games like Mario, Top racer, Atari, etc. Deep
Reinforcement Learning is considered like a third model in Machine Learning (with Supervised Learning
and Unsupervised Learning) with a different learning model and architecture.

Sutton [1] define various models to describe Reinforcement Learning and how to understand it. DeepMind
was the first to achieve this Deep Learning with AlphaZero and Go game using Reinforcement Learning
with Deep Q-Learning (DQN) [2] and Deep Recurrent Q-Leaning (DRQN) [3], follow up by OpenAI who
recently suprased professional players in Star Craft 2 (Gramve created by Blizzard) and previously in Dota
2 developed by Valve. Chen et al. [4] proposed a CNN based on DRQN using Recurrent Netowrks (a little
variance of DRQN model using LSTM on agents actions to extract more information from frames.

2 Proposed model

We implement the CNN proposed by Chen et al. [4] with some variations in the last layers and using ADAM
error. The first attempt was a simple CNN with 3 Conv 2D layers, with the Q-Learning algorithm, we obtain
a slow learning process for easy games like SpaceInvaders or Pong and very low accuracy in complicated
games like Beam Rider or Enduro. Then, we try modifying using Dense 512 and 128 networks at last layer
with linear activation and relu, adding a LSTM layer with activation tanh.

List of Hyperparameters

Iterations 10 000000 number of batch iterations to the learning process

miniBatch size 32 number of experiences for SGD update

Memory buffer size 900000 SGD update are sampled from this number of most recent frames

Learning Rate 0.00025 learning rate used by RMS Propagation

Training Frequency 4 Repeat each action selected by the agent this many times

Target Network Update Frequency 40000 number of parameter updates after which the target network updates

Update Frequency 10000 number of actions by agent between successive SGD updates

Replay start size 50000 The number of Replay Memory in experience to learn or forgot achievements

Exploration max 1.0 Max value in exploration

Exploration min 0.1 Min value in exploration

Exploration Steps 850000 The number of frames over which the initial value of e reaches final value

Gamma or Discount Factor 0.99 Discount factor γ used in the Q-learning update

Table 1: Hyperparameters used in models

In Table 2 we present our Hyperparameters using in our models, we denote this list of hhyperparameters
as the better set (in our case). We run models over a NVIDIA GeForce GTX 950 with Memory 1954MiB
using Tensorflow, Keras and GYM (Atari library) for python. We implement DDQN, DRQN, DQN and our
proposed to combine DRQN with Double Q-Learning [5] algorithm using LSTM.



2 F. Moreno

Conv 2D, 32
(8x8), stride = 4

Conv 2D, 64
(4x4), stride = 2

Dense(512, relu)

Dense(actions, linear)

Conv 2D, 64
(3x3), stride = 1

Convolutional Network

Conv 2D, 32
(8x8), stride 

= 4

Conv 2D, 64
(4x4), stride 

= 2

Conv 2D, 64
(3x3), stride 

= 1

LSTM(512, 
tanh)

Dense(128, 
relu)

Dense(actions, linear)

Recurrent Convolutional Network

Fig. 1: Convolutional Networks used in our models.

3 Results

After to run our algorithms for 5 days with 10M Batch iterators, we obtain results for each model in each
respective game. We get best scores for the 4 games mentioned above (SpaceInvaders, Enduro, Beam Rider
and Pong), We compare with Volodymyr et al. [6] Letter about best scores form games obtained by DQN
agents and professionals gamers (humans).

Models and respective Scores

Model SpaceInvaders Enduro Pong Beam Rider

DQN 1450 1095 65 349

DRQN 1680 885 39 594

DDQN 2230 1283 44 167

DRDQN 2450 1698 74 876

Table 2: Results Scores of Space Invaders, Enduro, Pong and Beam Rider.

(a) DQN Accuracy (b) DDQN Accuracy

Fig. 2: DDQN vs DQN Accuracy.



DRDQN for Arati Games 3

References

1. Richard S. Sutton, Reinforcement Learning Architectures.

2. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Daan Wierstra, Alex Graves, Ioannis Antonoglou, Martin

Riedmiller, Playing Atari with Deep Reinforcement Learning.

3. Matthew Hausknecht and Peter Stone, Deep Recurrent Q-Learning for Partially Observable MDPs.

4. Clare Chen, Vincent Ying, Dillon Laird, Deep Q-Learning with Recurrent Neural Networks.

5. Hado van Hasselt, Arthur Guez and David Silver, Deep Reinforcement Learning with Double Q-learning.

6. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex

Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,

Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis, Human-level

control through deep reinforcement learning

7. Github Repository, https://github.com/Jenazads/LatinXinAI/tree/master/2019/


