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Abstract: The paper deals with stiffness modeling of NAVARO II transmission system, which is a novel 

variable actuation mechanism based on active and passive pantographs. The desired models are obtained 

using the enhanced matrix structural analysis (MSA) approach that is able to analyze the under-actuated 

and over-constrained structures with numerous passive joints.  Depending on the pantograph type, the 

models operate with the matrices of size 252x288 and 264x294 suitable for parametric optimization of 

the entire manipulator. 
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1. INTRODUCTION 

For most industrial robots, the actuator transmission system 
is one of the principal components defining the stiffness 
properties of an entire manipulator. For conventional serial 
manipulators, the elasticity of the transmission can be easily 
taken into account by introducing equivalent one-dimensional 
springs in actuated joints (Alici and Shirinzadeh, 2005, 
Klimchik and Pashkevich, 2017, Klimchik et al., 2017b, 
Klimchik et al., 2017a). A similar approach is also used for 
many parallel manipulators (GS platform, etc.) (Gosselin, 
1990), where the actuator elasticity is modeled by one-
dimensional springs integrated into the legs connected 
moving platform and the base. However, recent 
developments in parallel robotics produced new architectures 
for which traditional approach operating with one-
dimensional equivalent springs can be hardly applied. In such 
manipulators, the moving platform is actuated via multi-link 
chains whose elasticity is multi-dimensional and 
configuration-dependent. This paper presents a stiffness 
analysis of one of such systems used in parallel manipulator 
NAVARO II and gives a general framework for elastostatic 
modeling of similar robots.  

At present, there exist three main techniques for the stiffness 
modelling (Pashkevich et al., 2011b), which are the Finite 
Element Analysis (FEA) (Yan et al., 2016, Wang et al., 2006, 
Klimchik et al., 2013), the Matrix Structural Analysis (MSA) 
(Nagai and Liu, 2008, Marie et al., 2013, Deblaise et al., 
2006) and the Virtual Joint Modelling (VJM) (Klimchik et 
al., 2012, Quennouelle and Gosselin, 2008, Gosselin and 
Zhang, 2002, Pashkevich et al., 2011a). The most accurate 
but computationally expansive is the FEA (Yan et al., 2016), 
while the MSA used in this paper is considered as a 
compromise technique since it operates with rather large 
flexible elements connected by the actuated and passive 
(Klimchik et al., 2019b).  

The NAVARO II robot, whose transmission system is 
studied here, is a novel variable actuation mechanism based 

on modified 3-RPR parallel kinematics where the second 
revolute joint of each leg is replaced by a scissor (Chablat 
and Rolland, 2018). Such modification gives a number of 
benefits and allows excluding kinematic parallelograms that 
are traditionally used in similar manipulators. To obtain 
better spatial rigidity, the leg mechanism is constructed by 
placing the scissors in an orthogonal plane to the 
displacement.  

The actuation system of NAVARO II can be considered as a 
double clutch and contains an electric motor and two 
electromechanical clutches connecting the motor shaft either 
to the first revolute joint or to the shaft of the prismatic joint. 
Two position sensors give the leg angular position relative to 
the base and the current length of the prismatic joint. 
Depending on the clutches’ state, such kinematics allows to 
implement four actuation schemes where: (#0) the leg is not 
controlled and may freely change its length and orientation; 
(#1) the leg length may be arbitrary but its orientation is 
controlled; (#2) the leg length is controlled while its 
orientation may be arbitrary; (#3) both the leg length and 
orientation are controlled in order to execute synchronized 
translation/rotation. However, only the first and second 
schemes are studied in this paper because of their practical 
significance. It is clear that actuation scheme #0 is passive 
and cannot be used to control the mobile platform location. 

 
Figure 1.  Parallel planar manipulator NaVaRo. 



 

 

     

 

2. FUNDAMENTALS OF MSA MODELLING FOR 

ROBOTIC MANIPULATORS  

For the stiffness modeling of NAVARO II manipulator, 
which includes numerous closed-loops and passive 
connections, it is reasonable to use the MSA-based technique. 
Main theoretical results in this area suitable for the analysis 
of under-constrained, fully actuated and over-constrained 
serial and parallel manipulators were presented in our 
previous works (Klimchik et al., 2018, Klimchik et al., 
2019a, Klimchik et al., 2019b). Here, let us present a 
summary of this approach that will be further applied to the 
stiffness analysis of the NAVARO II parallel manipulator. 

2.1. Modeling of manipulator links and platform 

In the frame of the MSA technique, the manipulator is 
presented as a set of nodes connected by flexible or rigid 
links. The flexible link is described by the following linear 
matrix equation relating displacements at the end-nodes 
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where ,i j t t  are the deflections at the link ends, ,i jW W  
are the link end wrenches, i and j are the node indices, 
and ( ) ( ) ( ) ( )

11 12 21 22, , ,ij ij ij ij
K K K K  are 6 6  stiffness matrices.  

The moving platform is being presented as a set of elastic 
links connecting the nodes , , ,...i j k  of the manipulator leg 
clamping and the reference point node e . For the platform 
with three legs, this gives the following equation  
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where , ,i j k  t t t  are the deflections at the leg clamping 
points, et  is the deflection at the end-effector reference 
point, ,i j kW W W  are the wrenches at the leg clamping 
points, eW  is the total wrench applied to the end-effector. 

It should be mentioned that all stiffness matrices in eqs. (1) 
and (2) should be presented in a global coordinate system. 
Relevant numerical values of the stiffness matrix elements 
can be obtained either from the approximation of the links by 
regular beams or from the FEA-based experiments in the 
virtual environment using link’s CAD models (Klimchik et 
al., 2013). 

If the link flexibility is negligible, the stiffness model (1) 
should be replaced by the “rigidity constraint” 
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which includes 6 6  identity matrix 6 6I  and 6 6  matrix 
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where 
( )[ ]ij d  denotes the 3 3  skew-symmetric matrix 

derived from the vector ( )ij
d  describing link geometry.  

In addition, it is necessary to take into account the force 
equilibrium that here can be presented in the following form 
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Totally, this yields 12 scalar equations describing relations 
between the displacements/wrenches, similarly to (1). 

2.2. MSA models of manipulator's joints 

To take into account connections between the adjacent links 
by means of joints, the stiffness model must include relations 
describing two principal rules of structural mechanics: (a) 
displacement compatibility, (b) force equilibrium. For the 
rigid joint, the displacement compatibility is expressed as 

 6 6 6 6 6 16 12

i

j
  

 
−  =  

t
0

t
I I  (6) 

and the force equilibrium is presented as 
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For the passive joint, the displacement compatibility 
condition contains only 6r   equations  
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where  1* 6
,..., r r

Tr


=Λ u u  is a rectangular matrix of the rank 

r  that is formed the vectors
1 2 6, ., ..,u u u  composing the 

orthonormal basis associated with the orientation of passive 
joint(s) in such way that the unit vectors 

1,..., ru u  describe 
the directions of the rigid connection and the unit vector(s) 

1 6,...,r+u u  correspond to the passive connection allowing free 
relative motions. In this case, the force equilibrium gives the 
following relations  
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where the matrix  1* 66,...,
p

T

r

p

+ 
=Λ u u . It should be noted 

that all passive connections should be treated separately (in 
contrast to rigid ones). 

For the elastic joint, the deflection compatibility condition (8) 
remains the same. However, the force equilibrium condition 
must be replaced by  
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where the matrix *

e

ijΛ  of size 6e , 6e r= −  corresponds to 
the non-rigid directions of the joint (similar to *

p

ijΛ ) and e

ijK  
is e e  stiffness matrix describing elastic properties of the 
joint, 0

ijW  is preloading in the corresponding springs.  

2.3. Connection to the base and loadings 

The rigid connection of the link to the robot base can be 
presented as a special case of the rigid joint with zero 
deflection j =t 0 . This simplifies the deflection 
compatibility constraint (6) down to 

 6 6 6 1j 
   = I 0t  (11) 



 

 

     

 

The passive connection of the link to the robot base can be 
presented as a special case of the passive joint with zero 
deflection in the non-passive directions *

r

ij j =Λ t 0 . This 
reduces the deflection compatibility constraint (8) and force 
equilibrium to 
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The elastic connection of the link to the robot base can be 
presented as a special case of the elastic joint with zero 
deflection in the non-elastic directions *

r

ij j =Λ t 0 . This 
allows us to use the following relation for deflection 
compatibility constraint and force equilibrium 
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To take into account the external loading 
eW , the global 

stiffness model must be extended by the linear equation 
ensuring the force equilibrium, i.e. ...i j k e+ + + =W W W W , 
which can be rewritten in the form (for three adjacent links)  

   6 6 6 6 6 6 6 18 6 1

18 1

i

j

k

e    



 
  =
 
  

W

I I I W W

W

 (14) 

A similar technique is used to all nodes where the external 
wrenches are applied. 

4.4. Aggregation of MSA model components 

After aggregation of all equation describing the manipulator 
links and their connections, the global stiffness model of the 
manipulator can be presented in the form 
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where 
iW  and 

it  are the wrench and displacement of the ith 
node, the matrices ( )

W

i
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(i
A  and the vectors ( )

0

i
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above using expressions presented in the previous sections. 
After rearranging the matrix rows and introducing relevant 
definitions for the blocks, the global stiffness model can be 
rewritten as  
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where the matrices are obtained using relevant equations 
describing the links and connections, while the vectors agrW  
and [ ; ]agr m e

T T T=   tt t  aggregate all variables describing 
the wrenches and displacements. The node displacement 

agrt  is divided into two groups mt  and et  corresponding 
to the manipulator internal nodes and the end-effector node, 
where the external wrench eW  is applied. The latter allows 
us to obtain, the desired Cartesian stiffness matrix 
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where the matrix inversion usually exists (if the manipulator 
does not include redundant passive joints). 

3. NAVARO II MANIPULATOR ARCHITECTURE 

3.1. Particularities of NAVARO II architecture 

NAVARO II is a special case of the 3-RPR manipulator 
(Fig. 2) where the translational joint is implemented by 
means of double clutch pantograph-type transmission 
presented in Fig. 3. In more details, the architecture of this 
manipulator is presented in Fig. 1.  

 
Figure 2.  Kinematic model of NAVARO II manipulator. 

Due to the double-clutch system, the transmission allows to 
implement three following actuation modes: 

Mode #1: Clutch 1 is active while clutch 2 is passive. The 
first leg axis (green) is driven by the rotation of the motor 
shaft. In this case, the angle   is active while   is passive. 

Mode #2: Clutch 2 is active while clutch 1 is passive. The 
first leg joint is free, but the rotation of the motor shaft leads 
to a displacement of the slider, which activates the scissors. 
In this case, the   is passive and   is active. 

Mode #3: Both clutches 1 and 2 are active. Both joints 
cause a synchronized rotation and translation motion. The 
end of the leg will make a spiral motion. 

 
Figure 3.  Kinematic model of NAVARO II transmission. 

In this paper, we will focus on the stiffness analysis of the 
NAVARO II manipulator and its transmission for the 
actuation modes #1 and #2, which are the most interesting for 
practical application. 

3.2. Kinematics of NAVARO II manipulator 

To estimate the manipulator stiffness behavior within its 
workspace it is required to obtain relations allowing to find 
the transmission variables i  and i  corresponding to the 
given end-effector location, i.e. to solve the inverse kinematic 
problem. For this manipulator, for any given end-effector 



 

 

     

 

position O  and platform orientation  , the positions of the 
platform connection points 

iB  can be computed as 
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where r  is the distance from the platform center to the 
connection points (the same for all points), and ( ).zR  is 
elementary rotation matrix around z-axis. This allows us to 
find the pantograph orientation 

i  and leg length 
i  

(pantograph length) for the known leg base positions 
iA  

from the following equations 
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It should be noted that the inverse kinematic solution exists 
for reachable mobile platform location only, which is 
specified by minimum and maximum pantograph lengths, i.e.   

min maxi     (20) 

The values 
i  will be used further to compute orientations of 

the pantograph internal links. 

3.3. Kinematics of NAVARO II transmission system 

As it was mentioned before, the NAVARO II controller may 
utilize two actuation mode (types of transmission): with 
active and passive pantographs (Fig. 4). Clearly, this effects 
on the transmission stiffness properties while from the 
kinematical point of view these cases are identical.  

 
Figure 4.  Equivalent models of NAVARO II transmission. 

For both passive and active pantographs, the inverse 
kinematics problem (giving the orientation of the 
transmission links) can be solved using the relation between 
the length of the leg   and the length of pantograph links l   

2 cosl  =  (21) 

That gives the following expressions for the links orientations  

acos( / 2 ), / 2up down upl   = = −  (22) 

The latter allows us to compute the orientation of each link of 
the pantograph transmission and to transform the link 
stiffness matrices into the global coordinate system. 

4. MSA MODELS OF MANIPULATOR COMPONENTS 

To apply the MSA technique for the stiffness modeling of 
NAVARO II, let us split the manipulator into four parts: 
three kinematically identical legs and the mobile platform, 
which is actuated by means of either passive or active 
pantographs. The MSA representations for these principal 
components are shown in Fig. 5. Relevant models are 
composed of a number of flexible and rigid links (i,j) 
connected in a special way by passive, rigid and elastic joints 
<i,j>. The model components are also listed in Table 1. 
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Figure 5.  MSA-based representation of the NAVARO II manipulator. 

4.1. MSA models of pantograph-type transmission system 

In order to obtain stiffness model of entire NAVARO II 
mechanism let us first derive the stiffness model for separate 
legs represented via passive or active pantographs. AS 
follows from Figure 5a,b the leg is composed of a set of eight 
flexible links (3,5), (4,6), (7,9), (8,10), (11,13), (12,14), 
(15,17), (16,18) with rigid connections <5,8>, <6,7>, 
<13,16>, <14,15>, elastic connections <1,1’> or <0,1> for 
active and passive pantographs and passive connections 
between the nodes  <1,3>, <2,4>, <5,6>, <9,11>, <10,12>, 
<13,14>, <17,e>, <18,19>, <e,19> complemented by the 
connections <0,1> or <1,2> for active and passive 
pantographs. Active pantograph also contains a rigid link 
(1’,2). Such presentation allows us to describe the elastic 
properties of pantographs by the following matrix equation  



 

 

     

 

Table 1 Components of the MSA-based model of NAVARO II manipulator and its legs 

Mechanical 

structure 

Structural components 

Passive joints Elastic joints Rigid joint Elastic links 
Rigid 

links 

Active 

pantograph 

<0,1>, <1,3>, <2,4>, <5,6>, 

<9,11>, <10,12>, <13,14>, 

<17,e>, <18,19>, <e,19> 

<1,1’> 
<5,8>, <6,7>, 

<13,16>, <14,15> 

(3,5), (4,6), (7,9), (8,10), 

(11,13), (12,14), (15,17), 

(16,18) 

(1’,2) 

Passive 

pantograph 

<1,2>, <1,3>, <2,4>, <5,6>, 

<9,11>, <10,12>, <13,14>, 

<17,e>, <18,19>, <e,19> 

<0,1> 
<5,8>, <6,7>, 

<13,16>, <14,15> 

(3,5), (4,6), (7,9), (8,10), 

(11,13), (12,14), (15,17), 

(16,18) 

 

Entire 

manipulator 
<2a,3a>, <2b,3b>, <2c,3c>  

<0a,1a>, <0b,1b>, 

<0c,1c> 

(1a,2a), (1b,2b), (1c,2c), 

(3a,ep), (3b,ep), (3c,ep) 
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where agrt  and agrW  are the aggregated displacement and 
wrenches defined at the nodes from 3 to 18, legK  aggregates 
stiffness matrices of links (3,5), (4,6), (7,9), (8,10), (11,13), 
(12,14), (15,17), (16,18) presented in the form (1) into a 
single matrix of a size 96 96  allowing to describe the 
manipulator leg elasticity. 

For the considered manipulator, the MSA based model 
includes three types of passive joints and two types of elastic 
joints with passive directions around z and y-axis and 
translational joint in z directions, which are described by the 
following matrices 
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where the matrix *

r

yiΛ  depends on the orientation of the ith 
leg of the manipulator and are different for all chains in non-
symmetrical configurations. Using this notation, the 
constraints imposed by the passive joints <1,3>, <2,4>, 
<5,6>, <9,11>, <10,12>, <13,14>, <17,e>, <18,19>  can be 
presented as  
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For passive pantograph it is required to consider additionally 
passive joint constraints for <1,2>, <e,19> while for active 
parallelogram only for joints <e,19>, i.e. 
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For an active parallelogram, the passive joint constraint for 
<0,1> is described as follows 
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Additionally for active pantograph it is required to take into 
account rigidity constraints (3) and (5) for the link (1’,2), 
where vector [0,0,2 sin ]T

i il =d . 

Translation elastic joint <1,1’> for active pantograph adding 
in the system the following equations 
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where the coefficient e

tK  defines translation joint stiffness. 
Similarly, for passive pantograph rotation elastic join <0,1> 
adding in the system the following equations 
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where the coefficient 
e

K  defines rotation joint stiffness. 

For both pantographs, it is required to take into account that 
pantograph contains only 4 component by introducing rigid 
joint constraints via equations (6) and (7) for the joints <5,8>, 
<6,7>, <13,16>, <14,15>. Due to particularities of the above-
described assumptions, for both active and passive 
pantographs, boundary constraints are introduced in the 
system for the node <0> via rigid constraint (11) and external 
force introduces via eq.(14) for the node <e>. Combining all 
above-mentioned equations it is possible to write stiffness 



 

 

     

 

model for active and passive pantographs in the form (15), 
where for passive pantograph the size of the main matrix has 
the size of 252 288  and for active pantograph has the size 
of 264 294 . It is obvious that the system of equation is 
over-constrained, so to find the desired Cartesian stiffness 
matrix using expression(17) pseudo inversion should be used.  

4.2. MSA models of NAVARO II parallel manipulator  

Using the stiffness model of the transmission system, it is 
possible to obtain the model of the entire manipulator can be 
presented as a non-rigid mobile platform connected via 
passive joints to equivalent models of pantograph-type 
transmissions fixed at another end. In this case to describe 
elasticity of mobile platform one can use eq. (2) and for legs 
flexibility reduced form of eq. (1), where the first node is 
eliminated because of the rigid connection to the base. The 
latter allows us to use only 6 6  stiffness matrices to 
describe elasticities of the pantograph-type transmission 
system. Passive joints for the connections <2a,3a>, <2b,3b>, 
<2c,3c> describes using expression (29). External loading 
applied to the platform end-effector <ep> is introduced via 
eq. (14) Combining all above-mentioned equations into a 
single system of equations one can get a system of order 84 
(with the matrix of the size 84 84 ) in the form (15) and (16) 
that can be solved with respect to the reaction of the end 
effector node <ep> on the external wrench applied to it using 
eq. (17). This stiffness matrix can be computed for any 
reachable end-effector location and used for stiffness analysis 
of manipulator behavior within its workspace.  

7. CONCLUSIONS 

This paper deals with the stiffness modeling of a new type of 

parallel manipulator NAVARO II with a pantograph-type 

transmission system. The desired models were obtained using 

the enhanced matrix structural analysis (MSA) approach that 

is able to analyze the under-actuated and over-constrained 

structures with numerous passive joints. The MSA technique 

was applied to active and passive pantograph-type 

mechanisms for which the stiffness models operate with the 

matrices of sizes 252 288  and 264 294  respectively. 

MSA-based model for the entire manipulator with equivalent 

models for the pantograph-type transmission legs stiffness 

models operates with the matrix of sizes 84 84 . These 

models will be used for manipulator parametric optimization 

and stiffness analysis of NAVARO II manipulator with 

different types of actuation modes. 
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