
HAL Id: hal-02205829
https://hal.science/hal-02205829v2

Preprint submitted on 21 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Axiomatizations of betweenness in order-theoretic trees
Bruno Courcelle

To cite this version:

Bruno Courcelle. Axiomatizations of betweenness in order-theoretic trees. 2020. �hal-02205829v2�

https://hal.science/hal-02205829v2
https://hal.archives-ouvertes.fr

Axiomatizations of betweenness in

order-theoretic trees

Bruno COURCELLE
LaBRI, CNRS

and Bordeaux University
courcell@labri.fr

April 21, 2020

Abstract

The ternary betweenness relation of a tree, B(x, y, z), indicates
that y is on the unique path between x and z. This notion can be
extended to order-theoretic trees defined as partial orders such that
the set of nodes greater than any node is linearly ordered. In such
generalized trees, the unique "path" between two nodes can have
infinitely many nodes.

We generalize some results obtained in a previous article for the
betweenness of join-trees. Join-trees are order-theoretic trees such
that any two nodes have a least upper-bound. The motivation was
to define conveniently the rank-width of a countable graph. We called
quasi-tree the structure based on the betweenness relation of a join-
tree. We proved that quasi-trees are axiomatized by a first-order
sentence.

Here, we obtain a monadic second-order axiomatization of be-
tweenness in order-theoretic trees. We also define and compare sev-
eral induced betweenness relations, i.e., restrictions to sets of nodes
of the betweenness relations in generalized trees of different kinds.
We prove that induced betweenness in quasi-trees is characterized
by a first-order sentence. The proof uses order-theoretic trees.

All trees and related structures are finite or countably infinite.

Keywords : Betweenness, order-theoretic tree, join-tree, first-order logic,
monadic second-order logic, quasi-tree.

1

Introduction

The rank-width rwd(G) of a finite graph G defined by Oum in [13], is a com-
plexity measure based on ternary trees whose leaves hold the vertices. If H is
an induced subgraph of G, then rwd(H) ≤ rwd(G). In order to define the rank-
width of a countable graph in such a way that it be the least upper-bound of
those of its finite induced subgraphs, we have defined in [4] certain generalized
(undirected) trees called quasi-trees such that the unique "path" between any
two nodes can have infinitely many nodes. In particular, it can have the order-
type of an interval of the set Q of rational numbers. As no notion of adjacency
can be used, we have defined them in terms of a notion of betweenness. The
betweenness relation of a tree is the ternary relation B, such that B(x, y, z)
holds if and only if x, y, z are distinct and y is on the unique path between x
and z. It can be extended to order-theoretic trees defined as partial orders such
that the set of elements greater than any element is linearly ordered. A join-tree

is an order-theoretic tree such that any two nodes have a least upper-bound,
equivalently in this case, a least common ancestor. A join-tree may have no
root, i.e., no largest element. A quasi-tree is defined abstractly as a ternary
structure S = (N,B) satisfying finitely many first-order betweenness axioms.

But quasi-trees are equivalently characterized as the betweenness relations of
join-trees [4].

In this article we axiomatize in monadic second-order logic betweenness in
order-theoretic trees1 . We also define and study several induced betweenness

relations, i.e., the restrictions to sets of nodes of betweenness relations in gener-
alized trees of different kinds. An induced betweenness relation in a quasi-tree
need not be that of a quasi-tree. However, induced betweenness relations in
quasi-trees are also axiomatized by a single first-order sentence. This fact does
not follow immediately from the first-order characterization of quasi-trees by
a general logical argument. The proof that this axiomatization is valid uses
order-theoretic trees.

We define actually four types of betweenness structures S = (N,B) for which
we prove that the inclusions that follow easily from the definitions are proper.
For each type of betweenness, a structure S is defined from an order-theoretic
tree T . Except for the case of induced betweenness in order-theoretic trees, some
defining tree T can be described in S by monadic second-order formulas. In
technical words, T is defined from S by a monadic second-order transduction,
a notion thoroughly studied in [8]. The construction of a monadic second-
order transduction for induced betweenness in quasi-trees is not straighforward.
It is based on a notion of structuring of order-theoretic trees already used in
[3, 4, 5]. In these articles, we obtained algebraic characterizations of the join-
trees and quasi-trees that are the unique countable models of monadic-second
order sentences2 .

1All trees and related structures (except lines in the plane in the definition of topological
trees) are finite or countably infinite.

2This type of characterization will be extended to order-theoretic trees in a future work.

2

In order to provide a concrete view of our generalized trees, we embed
them into topological trees, defined as unions of possibly unbounded segments of
straight lines in the plane that are connected but have no subset homeomorphic
to a circle. Induced betweenness relations in topological trees and in quasi-trees
are the same.

We study finite and countably infinite structures. Our main results concern
the class IBQT of induced betweenness relations in quasi-trees and are the
following ones:

this class is first-order axiomatizable (Theorem 3.1),

a join-tree witnessing that a ternary structure S is in IBQT can be
constructed in S by monadic second-order formulas (Theorem 3.25),

induced betweenness relations in topological trees and in quasi-trees
are the same (Theorem 4.4).

Betweenness in other structures has been studied. In partial orders it is
axiomatized by an infinite set of first-order sentences in [12], that cannot be
replaced by a finite one [7], In this article, we axiomatize betweenness in partial
orders by a single monadic second-order sentence. Although we define gener-
alized trees as partial orders, we do not use here this notion of betweenness.
Several notions of betweenness in graphs have also been investigated and ax-
iomatized. We only refer to the survey [1] that contains a rich bibliography.
Another reference is [2].

Summary: We review definitions and notation in Section 1. We define four
different notions of betweenness in order-theoretic trees in Section 2. We es-
tablish in Section 3 the first-order and monadic second-order axiomatizations
presented above. The case of induced betweenness in order-theoretic trees is left
as a conjecture. We also examine whether monadic second-order transductions
can produce witnessing trees from given betweenness structures. In Section 4,
we describe embeddings of join-trees into topological trees. In an appendix we
give an example of a first-order class of relational structures (actually of la-
belled graphs) whose induced substructures do not form a first-order (and even
a monadic second-order) axiomatizable class.

1 Definitions and basic facts

All trees, graphs and logical structures are countable, which means, finite or
countably infinite. We will not repeat this hypothesis in our statements, except
for emphasis.

In some cases, we denote by X ⊎ Y the union of sets X and Y to insist that
they are disjoint. Isomorphism of ordered sets, trees, graphs and other structures
is denoted by ≃. We denote by [n] the set of integers {1, ..., n}.

3

The arity of a relation R is ρ(R). The restriction of a relation R defined on
a set V to a subset X of V is denoted by R[X]. If S is an {R1, .., Rk}-structure
(N,R1, .., Rk), then S[X] := (X,R1[X], .., Rk[X]).

The Gaifman graph of S = (N,R1, .., Rk) has vertex set N and an edge
between x and y �= x if and only if x and y belong to a same tuple of some
relation Ri. We say that S is connected if its Gaifman graph is connected. If it is
not, S is the disjoint union of connected structures, each of them corresponding
to a connected component of its Gaifman graph.

A class of relational structures is first-order (resp. monadic second-order)
axiomatizable or definable if there exists a single first-order (resp. monadic
second-order) sentence whose countable models form this class. See Section 1.4
for details.

1.1 Partial orders

For partial orders ≤,�,⊑, ... we denote respectively by <,≺,⊏, ... the corre-
sponding strict partial orders. We write x⊥y if x and y are incomparable for
the considered order.

Let (V,≤) be a partial order. For X,Y ⊆ V , the notation X < Y means
that x < y for every x ∈ X and y ∈ Y . We write X < y instead of X < {y}
and similarly for x < Y . We use similar notation for ≤ and ⊥. The least
upper-bound of x and y is denoted by x ⊔ y if it exists and is called their join.

An interval X of (V,≤) is a convex subset, i.e., y ∈ X if x < y < z and
x, z ∈ X. If X ⊆ V , then N≤(X) := {y ∈ V | y ≤ x for every x ∈ X} (hence
N≤(X) ≤ X) and ↓ (X) := {y ∈ V | y ≤ x for some x ∈ X}.

Let (N,≤) and (N ′,≤′) be partial orders. An embedding j : (N,≤) → (N ′,
≤′) is an injective mapping such that x ≤ y if and only if j(x) ≤′ j(y); in this
case, (N,≤) is isomorphic by j to (j(N),≤′′), where ≤′′ is the restriction of ≤′

to j(N); we will write more simply (j(N),≤′). We say that j is a join-embedding

if, furthermore, j(x ⊔ y) = j(x) ⊔′ j(y) whenever x ⊔ y is defined.

1.2 Trees

A tree is a possibly empty, undirected graph that is connected and has no cycles.
Hence, it has neither loops nor multiple edges3 . The set of nodes of a tree T is
denoted by NT .

A rooted tree is a nonempty tree equipped with a distinguished node called
its root. We define on NT the partial order ≤T such that x ≤T y if and only
if y is on the unique path between x and the root. The least upper-bound of x
and y, denoted by x ⊔T y is their least common ancestor. The minimal nodes
are the leaves, and the root is the greatest node.

We will specify a rooted tree T by (NT ,≤T) and we will omit the index T
when the considered tree is clear.

3No two edges with same ends.

4

Fact : A partial order (N,≤) is (NT ,≤T) for some rooted tree T if and only
if it has a largest element and, for each x ∈ N , the set L≥(x) := {y ∈ N | y ≥ x}
is finite and linearly ordered. These conditions imply that any two nodes have
a join.

1.3 Order-theoretic forests and trees

Definition 1.1 : O-forests and O-trees.
In order to have a simple terminology, we will use the prefix O- to mean

order-theoretic and to distinguish these generalized trees from those of [5].
(a) An O-forest is a pair F = (N,≤) such that:
1) N is a possibly empty set called the set of nodes,
2) ≤ is a partial order on N such that, for every node x, the set L≥(x) is

linearly ordered.
It is called an O-tree if furthermore:
3) every two nodes x and y have an upper-bound.
An O-forest is thus the union of the disjoint O-trees that are its connected

components with respect to its Gaifman graph. Two nodes are in a same com-
posing O-tree if and only if they have an upper-bound.

The leaves are the minimal elements. If N has a largest element r (x ≤ r
for all x ∈ N) then F is a rooted O-tree and r is its root.

(b) A line in an O-forest (N,≤) is a linearly ordered subset L of N that is
convex, i.e., such that y ∈ L if x, z ∈ L and x < y < z. A subset X of N is
upwards closed (resp. downwards closed) if y ∈ X whenever y > x (resp. y < x)
for some x ∈ X. In an O-forest, the set L>(X) of strict upper-bounds of a
nonempty set X ⊆ N , defined as {y ∈ N | y > X} is an upwards closed line L.

(c) An O-tree T is a join-tree4 if every two nodes x and y have a least upper-
bound denoted by x⊔T y and called their join (cf. Subsection 1.1). In a join-tree,
every finite set has a least upper-bound, but an infinite one may have none.

(d) Let J = (N,≤) be an O-forest and X ⊆ N . Then J [X] := (X,≤) is an
O-forest5 . It is the sub-O-forest of J induced on X. Two elements x, y having
a join in J may have no join in J [X], or they may have a different join. If J is
an O-tree, J [X] may not be an O-tree. �

Examples 1.2 :

(1) If T is a rooted tree, then (NT ,≤T) is a join-tree. Every finite O-tree is
a join-tree of this form.

(2) Every linear order is a join-tree.
(3) Let S := N ∪ {a, b, c} be ordered6 by <S such that a <S b, c <S b and

b <S i <S j for all i, j ∈ N such that j < i, and a and c are incomparable. Then

4An ordered tree is a rooted tree such that the set of sons of any node is linearly ordered.
This notion is extended in [5] to join-trees. Ordered join-trees should not be confused with
order-theoretic trees, that we call O-trees for simplicity.

5We recall from Subsection 1.1 that the notation ≤ is used for the restriction of ≤ to X. .
6The notation <S indicates that we define a strict partial order. The corresponding partial

order will be denoted by ≤S .

5

Figure 1: The join-tree of Example 1.2(3) and 3.4(a).

T := (S,≤S) is a join-tree, see Figure 1. In particular a ⊔S c = b. The relation
≤S is not the partial order associated with any rooted tree. We can consider
N ∪ {a, b} as forming a "path" in the join-tree T between a and 0, the largest
element. A formal definition of paths will be given.

If S′ := S − {b} is ordered by <S, we have an O-tree with set of nodes S′.
It is not a join-tree because a and c have no join.

(4) Fraïssé has defined in [9] (Section 10.5.3) a binary join-tree T := (Seq+(Q),
�) where Seq+(Q) is the set of finite nonempty sequences of rational numbers
partially ordered by � as follows :

(xn, ..., x0) � (ym, ..., y0) if and only if
n ≥ m, (xm−1, ..., x0) = (ym−1, ..., y0) and xm ≤ ym.

In particular, for all xn, ..., x0, y we have (xn, ..., x0) ≺ (xn−1, ..., x0) and
(y, xn−1, ..., x0) ≺ (xn, ..., x0) if and only if y < xn. The strict partial order ≺ is
generated by transitivity from these particular relations.

The join of incomparable nodes (xn, ..., x0) and (ym, ..., y0) is (x′p, ..., x0) such
that p ≤ n, p < m, (yp, ..., y0) = (x

′
p, ..., x0) and xp < x′p. Examples of lines are

{(x) | x ∈ Q}, {(x, x0) | x ∈ Q} and , for each x0 ∈ Q, {(x, x0), (y) | y, x ∈
Q, y ≥ x0}. See also Examples 3.6 and 3.28.

Every O-tree (N,≤) is isomorphic to T [X] for some subset X of Seq+(Q).�

Definitions 1.3: Extending and completing an O-forest.
Let F = (N,≤) be an O-forest.
(a) Let C a countable family of downwards closed nonempty subsets of N

that is nonoverlapping : if two sets have a nonempty intersection, then, one is
included in the other. We define F (C) := (C,⊆). It is an O-forest.

Let j : N → P(N) be such that j(x) := N≤(x) where N≤(x) denotes
{y ∈ N | y ≤ x}. The family of sets j(x), denoted by j�N�, is countable,
nonoverlapping and its elements are downwards closed in F . The mapping j
is an isomorphism: F → F (j�N�). If a family C as above is nonoverlapping
and contains j�N�, then j is an embedding : F → F (C). Hence, C defines an

6

extension of F . The joins are not necessarily preserved by j. We will use this
construction to "add" joins to O-trees.

(b) For every two, possibly equal, nodes x, y, we let U(x, y) := N≤(L≥(x, y)).
It is the set of nodes z such that z ≤ u for every u ≥ {x, y}. We have {x, y} ⊆
U(x, y). If x ≤ y, then U(x, y) = N≤(y). If x ⊔ y is defined, then U(x, y) =
N≤(x ⊔ y). If x and y have no upper-bound, then U(x, y) = N≤(∅) = N.

The family U of sets U(x, y) is countable. It is nonoverlapping: if z ∈
U(x, y) ∩ U(x′, y′) then L≥(x, y) ⊆ L≥(x

′, y′) or vice-versa ; if L≥(x, y) =
L≥(x

′, y′) then U(x, y) = U(x′, y′) and if L≥(x, y) ⊂ L≥(x
′, y′) there is w in

L≥(x
′, y′) − L≥(x, y) and we have U(x′, y′) ⊆ N≤(w) = U(w,w) ⊆ U(x, y).

Hence F (U) is an O-tree. It is even a join-tree : if x ⊔ y is defined, then,
N≤(x ⊔ y) identified with x ⊔ y, is x ⊔F (U) y ; otherwise, x ⊔F (U) y = U(x, y).
This fact is easy to check, as is the nonoverlapping condition.

We call F (U) the join-completion of F . We denote it by �F . Its construction
adds to F the "missing joins". The existing joins are preserved. It follows that
every O-forest F with set of nodes N is �F [N] where �F is a join-tree.

1.4 Monadic second-order logic

We will express properties of relational structures by first-order (FO in short)
and monadic second-order (MSO) formulas and sentences. Logical structures
are relational (they have only relation symbols) and countable.

Definitions 1.4 : Quick review of terminology and notation.

Monadic second-order logic extends first-order logic by the use of set vari-

ables X,Y,Z ... denoting subsets of the domain of the considered logical struc-
ture. The atomic formula x ∈ X expresses the membership of x in X. We call
first-order a formula where set variables are not quantified. For example, a
first-order formula can express that X ⊆ Y . A sentence is a formula without
free variables.

A property P of R-structures where R is a finite set of relation symbols, is
first-order or monadic second-order expressible (FO or MSO expressible) if it
is equivalent to the validity, in every R-structure S, of a first-order or monadic
second-order sentence ϕ. The validity of ϕ in S is denoted by S |= ϕ. We say
that a property of tuples of subsets X1, ...,Xn of the domains of structures in
a class C is FO or MSO definable if it is equivalent to S |= ϕ(X1, ...,Xn) in
every R-structure S in C, where ϕ is a fixed FO or MSO formula with n free set
variables. A class of structures is thus FO or MSO definable or axiomatizable if
it is characterized by an FO or MSO sentence

Transitive closures and choices of sets, typically in graph coloring problems,
are MSO but not FO expressible. See [8] for a detailed study of MSO expressible
graph properties. Other comprehensive books are [10, 11].

Examples 1.5 : Partial orders and graphs.
(1) A simple undirected graph G can be identified with the {edg}-structure

(VG, edgG) where VG is its vertex set and edgG(x, y) means that there is an edge

7

between x and y if G. For example, 3-colorability is expressed by the MSO
sentence :

∃X,Y [X ∩ Y = ∅ ∧ ¬∃u, v(edg(u, v) ∧ [(u ∈ X ∧ v ∈ X)∨

(u ∈ Y ∧ v ∈ Y) ∧ (u /∈ X ∪ Y ∧ v /∈ X ∪ Y)])].

(2) We now consider partial orders (N,≤). The FO formula Lin(X) defined
as ∀x, y.[(x ∈ X ∧ y ∈ X) =⇒ (x ≤ y ∨ y ≤ x)] expresses that a subset X of N ,
partially ordered by ≤, is linearly ordered. The MSO formula

Lin(X) ∧ ∃a, b.[Min(X, a) ∧Max(X, b) ∧ θ(X,a, b)]

expresses thatX is linearly ordered and finite, whereMin(X, a) andMax(X, b)
are FO formulas expressing respectively that X has a least element a and a
largest one b, and θ(X, a, b) is an MSO formula expressing that :

(i) each element x of X except b has a successor c in X (i.e., c is the
least element of {y ∈ X | y > x}), and

(ii) (a, b) ∈ Suc∗, where Suc is the above defined successor relation
(depending on X) and Suc∗ is its reflexive and transitive closure.

Assertion (ii) is expressed by the MSO formula:
∀U [U ⊆ X ∧ a ∈ U ∧ ∀x, y((x ∈ U ∧ (x, y) ∈ Suc) =⇒ y ∈ U) =⇒ b ∈ U].

First-order formulas expressing U ⊆ X, (x, y) ∈ Suc and Property (i) are
easy to write. The finiteness of a linear order is not FO expressible7 . Without
a linear order, the finiteness of a set X is not MSO expressible.

Definitions 1.6 : Transformations of relational structures.

As in [8], we call transduction a transformation of relational structures spec-
ified by logical formulas8 . We will try to be not too formal but nevertheless
precise.

(a) The basic type of transduction τ is as follows. A structure S′ = (D′, R′1, ..,
R′m) is defined from a structure S = (D,R1, .., Rn) and a p-tuple (X1, ..,Xp) of
subsets of D called parameters by means of formulas χ, δ, θR′

1
, ..., θR′

m
used as

follows:

τ(S, (X1, ..,Xp)) = S′ is defined if and only if S |= χ(X1, ...,Xp),

S′ = (D′, R′1, .., R
′
m) has domain D′ ⊆ D such that d ∈ D′ if and

only if S |= δ(X1, ...,Xp, d),

R′i is the set of tuples (d1, ..., ds) ∈ D′s, s = ρ(R′i), such that S |=
θR′

i
(X1, ...,Xn, d1, ..., ds).

7Follows from the Compactness Theorem for FO logic [10].
8The usual terminology of interpretation is inconvenient as it is frequently unclear what

is defined from what. The term transduction is borrowed to formal language theory that is
concerned with transformations of words, trees and terms. There are deep links between
monadic second-order definable transductions and tree transducers [8].

8

We call τ an FO or an MSO transduction if the formulas that define it are,
respectively, first-order or monadic second-order ones.

As an example, the mapping from a graph G = (V, edg) to the connected
component (V ′, edg[V ′]) containing a vertex u is defined by χ, δ and θedg where
χ(X) expresses that X is a singleton {u}, δ(X, d) expresses that there is a path
between d and the vertex in X, and θedg(x, y) is the formula always true, say,
x = x. It is an MSO transduction as path properties are expressible by monadic
second-order formulas.

(b) Transductions of the general type may enlarge the domain of the input
structure. A structure S′ = (D′, R′1, .., R

′
m) is defined from S = (D,R1, ..,Rn)

and a p-tuple (X1, ..,Xp) of parameters as above by means of formulas χ, δ1, ..., δk
and others, θR′

i
,i1,...,is , used as follows:

τ(S, (X1, ..,Xp)) = S′ is defined if and only if S |= χ(X1, ...,Xp),

S′ = (D′, R′1, .., R
′
m) has domain D′ ⊆ (D × {1}) ⊎ ... ⊎ (D × {k})

such that (d, i) ∈ D′ if and only if S |= δi(X1, ...,Xp, d),

R′i is the set of tuples ((d1, i1), ..., (ds, is)) ∈ D′s, s = ρ(R′i), such
that

S |= θR′
i
,i1,...,is(X1, ...,Xp, d1, ..., ds).

If D is finite, then |D| ≤ k |D′|.
An easy example consists in the duplication of a graph G = (V, edg) into the

graph H := G⊕G, that is G together with a disjoint copy of it. We get a graph
H up to isomorphism, because of the use of disjoint isomorphic copies. To define
a transduction, we take k = 2, p = 0 (no parameter is needed), χ, δ1, δ2 always
true, θedg,i,j(x, y) always false if i �= j, and equal to edg(x, y) if i = j, where
i, j ∈ [2].

Another more complicated example is the transformation of an O-forest F =
(N,≤) into its join-completion �F . We define concretely the set of nodes of �F as
(N × {1}) ⊎ (M × {2}) where M is a subset of N in bijection with the set of
sets U(x, y) such that x and y have no join, cf. Example 1.3. This bijection can

be made MSO definable, and so is the order relation of �F . Defining M is not
straightforward because the sets U(x, y) are not pairwise disjoint. We can use
the notion of structuring of an O-tree, see Remark 3.35.

2 Quasi-trees and betweenness in O-trees

In this section, we define a betweenness relation in O-trees, and compare it with
the betweenness relation induced by sets of nodes in join-trees or O-trees. We
generalize the notion of quasi-tree defined and studied in [4] and [5].

For a ternary relation B on a set N and x, y ∈ N , we define [x, y]B :=
{x, y} ∪ {z ∈ N | (x, z, y) ∈ B}. If n > 2, then the notation �= (x1, x2, ..., xn)
means that x1, x2, ..., xn are pairwise distinct (hence abreviates an FO formula).

9

Figure 2: A rooted tree R cf. Example 2.2.

2.1 Betweenness in trees and quasi-trees

Definition 2.1 : Betweenness in linear orders and in trees.

(a) Let L = (X,≤) be a linear order. Its betweenness relation9 BL is the
ternary relation on X defined by :

BL(x, y, z) :⇐⇒ x < y < z or z < y < x.

(b) If T is a tree or a forest, its betweenness relation BT is the ternary
relation on NT defined by :

BT (x, y, z) :⇐⇒ x, y, z are pairwise distinct and y is on the unique
path between x and z.

If R = (N,≤R) is a rooted tree, we define its betweenness relation BR as
BUnd(R) where Und(R) is the tree obtained from R by forgetting its root and
its edge directions. For all x, y, z ∈ N , we have :

BR(x, y, z) ⇐⇒ x, y, z are pairwise distinct, x and z have a join
x ⊔R z and x <R y ≤R x ⊔R z or z <R y ≤R x ⊔R z.�

Example 2.2 : Figure 2 shows a rooted tree R with root 0. For illustrating
the above observation, we have BR(b, a, 0) and b < a < 0 = b ⊔ 0, and also
BR(b, a, c) and b < a < 1 = b ⊔ c.�

With a ternary relation B on a set X, we associate the ternary relation A
on X : A(x, y, z) :⇐⇒ B(x, y, z) ∨ B(x, z, y) ∨ B(y, x, z), to be read : x, y, z

9This definition can be used for partial orders. The corresponding notion of betweenness
is axiomatized in [12, 7]. We will not use it for defining betweenness in order-theoretic trees,
although these trees are partial orders.

10

are aligned. If n ≥ 3, then B+(x1, x2, ..., xn) stands for the conjunction of the
conditions B(xi, xj , xk) for all 1 ≤ i < j < k ≤ n and all 1 ≤ k < j < i ≤ n.

The following is Proposition 5.2 in [5] or Proposition 9.1 in [8].
Proposition 2.3 : (a) The betweenness relation B of a linear order (X,≤)

satisfies the following properties for all x, y, z, u ∈ X.

A1 : B(x, y, z)⇒�= (x, y, z).

A2 : B(x, y, z)⇒ B(z, y, x).

A3 : B(x, y, z)⇒ ¬B(x, z, y).

A4 : B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).

A5 : B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).

A6 : B(x, y, z) ∧B(x, u, z)⇒ y = u ∨ [B(x, u, y) ∧B(u, y, z)]

∨[B(x, y, u) ∧B(y, u, z)].

A7’ : �= (x, y, z)⇒ A(x, y, z).

(b) The betweenness relation B of a tree T satisfies the properties A1-A6
for all x, y, z, u in NT together with the following weakening of A7’:

A7 : �= (x, y, z)⇒ A(x, y, z)∨∃w.(B(x,w, y)∧B(y,w, z)∧B(x,w, z)).

Remarks 2.4.

(1) Property A7’ says that if x, y, z are three elements in a linear order,
then, one of them is between the two others. Properties A1-A5 belong to the
axiomatization of betweenness in partial orders given in [7, 12]. Property A6 is
actually a consequence of Properties A1-A5 and A7’, as one proves easily.

(2) Property A7 says that, in a tree T , if x, y, z are three nodes not on a
same path, some node w is between any two of them. In this case, we have :

{w} = Px,y ∩ Py,z ∩ Px,z where Px,y is the set of nodes on the path
between x and y,

so that we have B(x,w, y) ∧B(y,w, z) ∧B(x,w, z).
If T is a rooted tree, and x, y, z are not on a path from a leaf to the root,

then w is the join (the least common ancestor) of two nodes among x, y, z. In
the rooted tree R of Figure 2, we have, for example, w = 1 if x = a, y = d and
z = e.

Property A6 is a consequence of Properties A1-A5 and A7.
(3) Properties A1-A6 (for an arbitrary structure S = (N,B)) imply that

the two cases of the conclusion of A7 are exclusive10 and that, in the second
one, there is a unique node w satisfying B(x,w, y) ∧B(y,w, z) ∧B(x,w, z) (by
Lemma 11 of [4]), that is denoted by MS(x, y, z). �

10The three cases of A(x, y, z) are exclusive by A2 and A3.

11

Figure 3: Structure S of Example 2.6(1)

Definitions 2.5 : Other betweenness properties.

The letter B and its variants, BT , B1, etc. will denote ternary relations.
We define the following properties of a structure S = (N,B) :

A8 : ∀u, x, y, z.[�= (u, x, y, z) ∧B(x, y, z)⇒

B(u, x, y) ∨B(u, y, z) ∨B(x, y, u) ∨B(y, z, u)].

A8’ : ∀u, x, y, z.[�= (u, x, y, z)∧B(x, y, z)∧¬A(y, z, u)⇒ B(x, y, u)].

If S satisfies A1-A6, the four cases of the conclusion of A8 are not exclusive
: B(u, x, y) implies B(u, y, z) (because of B(x, y, z) and A4).�

Example and remark 2.6 :
(1) Properties A1-A6 do not imply A8’. Consider S := ([5],B) where B

satisfies (only) B+(1, 2, 3, 4) ∧ B+(5, 3, 4) illustrated in Figure 3. (There is no
curve line going through 1,2,5 because B(1, 2, 5) is not assumed to be valid).
Conditions A1-A6 hold but A8’ does not, because we have ¬A(2, 3, 5)∧B(1, 2, 3).
Then, A8’ would imply B(1, 2, 5) that is not assumed. By the next lemma, A1-
A6 do not imply A8 either.

(2) Properties A1-A5 and A8’ imply A6.
Assume we have B(x, y, z) ∧ B(x, u, z) ∧ y �= u. If ¬A(y, z, u), then by A8’

we have B(x, y, u) and so, B+(x, y, u, z) but then we have B(y, u, z) hence
A(y, z, u). Hence, we have A(y, z, u), that is, B(y, z, u) or B(z, y, u) or B(y, u, z).

If B(y, z, u) holds, then we have B+(x, y, z, u) hence B(x, z, u) that contra-
dicts B(x, u, z).If B(z, y, u) holds, then we have B+(x, u, y, z) hence B(x, u, y),
one case of the conclusion. The last case is B(y, u, z), the other case of the
conclusion.

We keep Property A6 in our axiomatization for its clarity and to shorten
proofs. �

In the following proofs and discussions about a structure (N,B), we will
always assume (unless otherwise specified) that Properties A1-A6 hold, and we
will not make their use explicit. We say that (N,B) is trivial if B = ∅. In this
case, Properties A1-A6, A8 and A8’ hold.

12

Lemma 2.7 : Let S = (N,B) satisfy A1-A6.
(1) A8 is equivalent to A8’.
(2) A7 implies A8, and thus, A8’.
(3) If A8 holds, then the Gaifman graph11 of S is either edgeless (if B = ∅)

or connected.
Proof: (1) If B = ∅, then A8 and A8’ both holds. Otherwise, assume that

A8 holds and that we have �= (u, x, y, z) ∧ B(x, y, z) ∧ ¬A(u, y, z). Then, A8
yields the following possibilities :

(1.1) B(u, x, y) : we have B+(u, x, y, z), which implies B(u, y, z), and thus
A(u, y, z),

(1.2) B(u, y, z), which implies A(u, y, z),
(1.3) B(y, z, u), which implies A(u, y, z).
These three cases cannot hold since we assume ¬A(u, y, z). The only remain-

ing case is :
(1.4) B(x, y, u) : this is the desired conclusion.
Hence, A8’ is valid.
Conversely, assume that A8’ holds and we have �= (u, x, y, z) ∧B(x, y, z).
If A(u, y, z) holds, we have B(y, u, z) ∨ B(u, y, z) ∨ B(y, z, u). Because of

B(x, y, z), B(y, u, z) implies B(x, y, u). Hence we have B(x, y, u) ∨B(u, y, z) ∨
B(y, z, u). If ¬A(u, y, z), then A8’ yields B(x, y, u), and the desired fact.

(2) We prove that A7 entails A8’. Assume we have �= (u, x, y, z)∧B(x, y, z)∧
¬A(u, y, z).There isw such thatB(u,w, y)∧B(y,w, z)∧B(u,w, z).WithB(x, y, z),
we get : B+(x, y, w, z), hence, B(x, y, w). With B(y,w, u), we get B(x, y, u), as
desired.

(3) Clear from definitions. �

Definition 2.8 : Quasi-trees [4].
(a) A quasi-tree is a structure S = (N,B) such that B is a ternary relation

on a set N , called the set of nodes, that satisfies conditions A1-A7. To avoid
uninteresting special cases, we also require that |N | ≥3. We say that S is
discrete if [x, y]B := {x, y} ∪ {z ∈ N | B(x, z, y} is finite for all x, y.

(b) From a join-tree J = (N,≤), we define a ternary relation BJ on N by :

BJ(x, y, z) :⇐⇒�= (x, y, z) ∧ ([x < y ≤ x ⊔ z] ∨ [z < y ≤ x ⊔ z]),

called its betweenness relation. As a definition, we use here the observation
made for rooted trees in Definition 2.1. The join x ⊔ z is always defined.

(c) In a quasi-tree S = (N,B), the path that links x and y is the set [x, y]B.
It is linearly ordered with least element x and largest one y. It may be infinite
in this case, an element may have no successor or no predecessor.�

Figure 4 shows a quasi-tree, where the dashed lines represent infinite paths
in the above sense. In such a structure, no adjacency notion is available. The
ternary notion of betweenness is an alternative.

Theorem 2.9 [Proposition 5.6 of [5]] :

11Defined in Section 1.

13

Figure 4: A quasi-tree.

(1) The structure qt(J) := (N,BJ) associated with a join-tree J = (N,≤)
with at least 3 nodes is a quasi-tree. Conversely, every quasi-tree S is qt(J) for
some join-tree J .

(2) A quasi-tree is discrete if and only if it is qt(J) for the join-tree J :=
(NR,≤R) where R is a rooted tree.

This theorem shows that one can specify a quasi-tree by a binary relation,
actually a partial order. However, this is inconvenient because choosing a par-
tial order breaks the symmetry. This motivates the use of a ternary relation.
Similarily, betweenness can formalize the notion of a linear order, up to reversal.

2.2 Other betweenness structures

Definition 2.10 : Induced betweenness in a quasi-tree

If Q = (N,B) is a quasi-tree, X ⊆ N , we say that Q[X] := (X,B[X]) is an
induced betweenness relation in Q. It is induced on X. �

Remark and example 2.11: The structure Q[X] need not be a quasi-tree
because A7 does not hold for a triple (x, y, z) such that MQ(x, y, z) is not in X
(cf. Proposition 2.3).

Figure 5 shows a tree T to the left, with NT = [7]. Its betweenness relation
BT is expressed in a short way by the properties B+

T (1, 2, 7, 3, 4), B
+
T (1, 2, 7, 5, 6)

and B+
T (6, 5, 7, 3, 4). Let Q := (NT , BT). The induced betweenness S1 := Q[6] is

illustrated on the right, where the curve lines represent the facts B+
T (1, 2, 3, 4),

B+
T (1, 2, 5, 6) and B+

T (6, 5, 3, 4). It is not a quasi-tree because 7 = MQ(1, 4, 6)
has been not kept in NS1 .�

Our objective is to axiomatize induced betweenness relations in quasi-trees
(equivalently in join-trees), similarly as betweenness relations in join-trees12 are
by A1-A7 in Theorem 2.9(1).

Proposition 2.12 : An induced betweenness relation in a quasi-tree satisfies
properties A1-A6 and A8.

12As in [4], we have defined quasi-trees (DEfinition 2.8) as the ternary structures that satisfy
A1-A7. In the sequel, we will rather consider them as the betweenness relations of join-trees,
and A1-A7 as their axiomatization.

14

Figure 5: An induced betweenness in a quasi-tree, cf. Example 2.11.

Figure 6: Illustration of Property A8’.

Proof: The sentences expressing A1-A6 and A8 are universal, that is, are of
the form ∀x, y, ..., z.ϕ(x, y, ..., z) where ϕ is quantifier-free. The validity of such
sentences is preserved under taking induced substructures (we are dealing with
relational structures). The result follows from Theorem 2.9 and Lemma 2.7(2)
showing that a quasi-tree satisfies A8. �

Our objective is to prove that a ternary relation is an induced betweenness
in a quasi-tree if and only if it satisfies Properties A1-A6 and A8. Our proof
will use O-trees.

Figure 6 illustrates Property A8’ which says: B(x, y, z) ∧ ¬A(y, z, u) ⇒
B(x, y, u). The white circle between y and z represents the node MQ(y, z, u) of
a quasi-tree Q that has been deleted, so that Property A7 does not hold in the
structure Q[N − {MQ(y, z, u)}].

Definition 2.13 : Betweenness in O-forests.
(a) The betweenness relation of an O-forest F = (N,≤) is the ternary relation

BF on N such that :

BF (x, y, z) :⇐⇒�= (x, y, z) ∧ [(x < y ≤ x ⊔ z) ∨ (z < y ≤ x ⊔ z)].

(b) If F = (N,≤) is an O-forest and X ⊆ N , then (X,BF [X]) is an induced

betweenness relation in F .
The difference with Definition 2.8(b) is that if x and z have no least upper-

bound (i.e., if x ⊔ z is undefined, which implies that x and z are incomparable,

15

Figure 7: Proper inclusions of classes proved in Proposition 2.15.

denoted by x⊥z), then BF contains no triple of the form (x, y, z). If F is a finite
O-tree, it is a join-tree and thus, (N,BF) is a quasi-tree.�

We have four classes of betweenness relations S = (N,B) : quasi-trees, in-
duced betweenness relations in quasi-trees, betweenness and induced between-
ness relations in O-forests, denoted respectively by QT, IBQT, BO and IBO.

Remarks 2.14 : (1) The induced betweenness (X,B) on a set X of leaves
of a tree is trivial, which means that B = ∅.

(2) The Gaifman graph of a betweenness structure S is connected in the
following cases : S ∈IBQT and is not trivial (in particular S ∈QT), or S is
the betweenness structure of an infinite O-tree. It may be not connected in the
other cases.

(3) If S is an induced betweenness in an O-forest consisting of several disjoint
O-trees, then two nodes in the different O-trees cannot belong to a same triple,
hence, cannot be linked by a path in the Gaifman graph of S. Hence, a structure
(N,B) is the betweenness of an O-forest, or an induced betweenness in an O-
forest if and only if each of its connected components is so in an O-tree. We
will only consider betweenness of O-trees (class BO) and induced betweenness
in O-trees (class IBO).

Proposition 2.15 : We have the following proper inclusions :

QT ⊂ IBQT, QT ⊂ BO ⊂ IBO and QT ⊂ IBQT∩BO.

The classes IBQT and BO are incomparable. For finite structures, we have
QT = BO.�

These inclusions are illustrated in Figure 7. Structures S1, S2, S4 and S5
witnessing proper inclusions are described in the proof.

Proof: All inclusions are clear from the definitions. We give examples
to prove that the inclusions are proper. We recall that S[X] := (X,B[X]) if
S = (N,B) and X ⊆ N .

16

Figure 8: The O-tree T2 used in the proof of Proposition 2.15, Parts (2) and
(4).

(1) The structure S1 of Example 2.11, shown in Figure 5, is in IBQT but
not in QT. It is not in BO either, because otherwise, it would be a quasi-tree
as it is finite.

(2) We consider N2 := N ∪ {a, b, c}, the O-tree T2 := (N2,�) in Figure
8 such that a ≺ b ≺ i ≺ j and c ≺ i ≺ j for all all i, j in N such that
j < i . Its betweenness structure S2 := (N2, B2) is described by the properties
B+
2 (a, b, i, j, k) and B+

2 (c, i, j, k) for all i, j, k in N such that k < j < i. Since b
and c have no least upper-bound in T2, we do not have BT2(a, b, c). Hence, S2
is in BO but not in IBQT, as it does not satisfy A8’: we have ¬AT2(0, b, c) ∧
BT2(a, b, 0) but not BT2(a, b, c). The classes IBQT and BO are incomparable.

However, if we take c as new root, then we obtain a join-tree U = (N2,�′)
where a ≺′ b ≺′ c and 0 ≺′ 1 ≺′ 2... ≺′ i ≺′ ... ≺′ c. Clearly BU �= BT2 .
Hence, betweenness in O-trees depends some kind of orientation, that can be
specified by a root, or by a line (cf. the notion of structuring used below). To
the opposite, in the case of quasi-trees and induced betweenness in quasi-trees,
any node can be taken as root in the constructions of the relevant join-trees (cf.
[5] for quasi-trees, and the proof of Theorem 3.1 and Remark 3.4(d)).

(3) To prove that the inclusion of BO in IBO is proper, we consider S3 :=
(N3, BT3), N3 := {a, b, c, d} ∪ Z and the O-tree T3 := (N3,≺) with order : a ≺
b ≺ i ≺ j and d ≺ c ≺ i ≺ j for all i, j ∈ N such that j < i and i′ ≺ j′ ≺ i ≺ j
if i, j ∈ N, i′, j′ < 0, j < i and j′ < i′. It is shown in Figure 9(a). We let then
S4 := S3[{a, b, c, d,−1, 0, 1}] with corresponding O-tree T4 (Figure 9(b)). The
structure S4 is in IBO but not in BO. Otherwise, as it is finite, it would be a
quasi-tree. But S4 does not satisfy A8’ : we have ¬AT3(0, b, c)∧BT3(a, b, 0) but
(a, b, c) /∈ BT3 . For this reason, S4 is not in IBQT either.

Note that S4 in IBO is finite but is not the induced betweenness relation

17

Figure 9: Part (a) shows T3 and (b) shows T4 of the proof of Proposition 2.15,
Part (3), and Example (3.6).

of a finite O-tree. Otherwise, it would be in IBQT because a finite O-tree is a
join-tree.

(4) Let T5 be the O-tree T2[N5] where N5 := N∪{b, c} and S5 := (N5, BT5).
(Figure 8 shows T2). It is in BO, and also in IBQT : just add to T5 a least
upper-bound m for b and c such that m < N, one obtains a join-tree. It is not a
quasi-tree because A7 does not hold for the triple (0, b, c). Hence, we have QT

⊂ IBQT∩BO.
Note that S2 is not in IBQT but its induced substructure S5 is. �

Figure 7 shows how these examples are located in the different classes of
betweenness relations. The structures S1 and S4 are finite, S2 and S5 are
infinite, which is necessary because the finite structures in BO and QT are the
same.

Remark 2.16 : An alternative notion of betweenness for an O-forest F =
(N,≤) could be defined as B′

F := B�F
[N]. As it is an induced betweenness in

a join-tree, this definition does not bring anything new. If F is an O-tree, we
have : (x, y, z) ∈ B′

F if and only if �= (x, y, z) and, either x < y ≤ m ≥ z or
z < y ≤ m ≥ x for some m that need not be the join of x and z.

3 Axiomatizations

3.1 First-order axiomatizations

Our first main result is Theorem 3.1 that provides a first-order axiomatization
of the class IBQT, among countable (finite or countably infinite) structures.
All our constructions are relative to countable structutres.

18

3.1.1 Induced betweenness in quasi-trees

The letter B designates always ternary relations.

Theorem 3.1 : The class IBQT is axiomatized by the first-order properties
A1-A6 and A8.

Lemma 3.2 : Let S = (N,B) satisfy Axioms A1-A6 and r ∈ N. Let ≤r be
the binary relation on N such that x ≤r y :⇐⇒ x = y ∨ y = r ∨B(x, y, r).

(1) T (S, r) := (N,≤r) is an O-tree.
(2) If (x, y, z) ∈ B, x <r y and z <r y, then y = x ⊔r z.
(3) If (x, y, z) ∈ B and x <r w <r y , we do not have z <r w.
Proof : (1) It is easy to check that ≤r is a partial order and that for any

x ∈ N , the set {y ∈ N | y ≥r x} is linearly ordered.
(2) Assume (x, y, z) ∈ B, x <r y, z <r y. We cannot have x <r z or

z <r x, because otherwise, we have (x, z, y) ∈ B or (z, x, y) ∈ B, contradicting
(x, y, z) ∈ B. Assume for a contradiction, that x <r w <r y and z <r w <r y.
Then, we have (x,w, y) ∈ B and (z,w, y) ∈ B, whence B+(x,w, y, z), and
B+(z,w, y, x), which gives (w, y, z) ∈ B and (z,w, y) ∈ B, contradicting A2∧A3.

(3) This assertion follows immediately. �

Lemma 3.3 : Let S := (N,B) satisfy A1-A6 and A8, and r ∈ N .
(1) Let x and y are incomparable with respect to ≤r. If z <r y, then

(x, y, z) ∈ B.
(2) If (x, y, z) ∈ B, then x <r y or z <r y.
(3) We have B ⊆ BT (S,r) if N is finite.
Proof : In this proof, <, ≤ and ⊔ will denote <r,≤r and ⊔r.
(1) Let x and y are incomparable and z < y. The root r is not any of

x, y, z. If (x, r, y) ∈ B, then, since (r, y, z) ∈ B, we have B+(x, r, y, z) hence
(x, y, z) ∈ B. Otherwise, A(x, y, r) does not hold, and as we have (z, y, r) ∈ B,
we get (z, y, x) ∈ B by A8’, hence (x, y, z) ∈ B.

(2) Let (x, y, z) ∈ B. We have three cases.
Case 1 : The nodes x, y, z are pairwise incomparable w.r.t. < . Then, if

(x, r, y) ∈ B, we have B+(x, r, y, z), hence (r, y, z) ∈ B and z < y. Otherwise,
A(x, y, r) does not hold, hence by A8’, we have (z, y, r) ∈ B, hence z < y.

Case 2 : x and y are comparable. If x < y, we are done. If y < x, we have
(y, x, r) ∈ B, hence B+(z, y, x, r) which gives z < y. The case where z and y are
comparable is similar because (z, y, x) ∈ B.

Case 3 : x and z are comparable. If x < z, we have B(x, z, r), hence
B+(x, y, z, r) which gives x < y. If z < x, the proof is similar.

(3) Let (x, y, z) ∈ B. As N is finite, x and z have a join x ⊔ z. We have
x < y or z < y by (2). If x < y, there are two cases : if y ≤ x ⊔ z, we have
(x, y, z) ∈ BT (S,r); if x⊔z < y, we cannot have x⊔z = z because then (x, z, y) ∈
B, and we cannot have x⊥z because then x < x ⊔ z < y and z < x⊔ z < y and
(x, y, z) /∈ B by Lemma 3.2(2). The case z < y is similar.�

19

Figure 10: (a) shows S8 and (b) shows T8, Example 3.4(c) and Remark 3.16.

Examples 3.4 : (a) In statement (3) above, we may have a proper inclu-
sion. Consider S6 defined as (N6, B6) with N6 := {0, 1, 2, a, c}, B+

6 (0, 1, 2, a),
B+
6 (0, 1, 2, c) and r := 0. Then T (S6, 0) = T [N6] where T is the join-tree of

Figure 1. We have (a, 2, c) in BT (S6,0) but not in B6.
(b) The inclusion B ⊆ BT (S,r) may be false if S is infinite. Consider S7 =

(N ∪ {a, b, c}, B7) defined as S2 in the proof of Proposition 2.15 (see Figure 8),
augmented with the triples (a, b, c) and (c, b, a). Then T (S7, 0) = T2 of this
proof, but (a, b, c) /∈ BT (S7,0).

(c) We give an example showing how we will prove Theorem 3.1. Let
S8 := (N8, B8) such that N8 := {0, a, b, c, d, e, f, g, h} and B8 is defined by
the following properties :

B+
8 (0, a, b), B

+
8 (0, c, d), B

+
8 (0, e, f), B

+
8 (0, g, h),

B+
8 (b, a, c, d), B

+
8 (f, e, g, h),

B+
8 (b, a, 0, e, f), B

+
8 (d, c, 0, e, f), B

+
8 (b, a, 0, g, h), B

+
8 (d, c, 0, g, h).

Figure 10(a) shows this structure drawn as Figures 3 and 5 (right part). We
do not show the last four conditions for the purpose of clarity.

By adding new nodes 1 and 2 to T (S8, 0) such that a < 1 < 0, c < 1 <
0, e < 2 < 0 and g < 2 < 0, we get the rooted tree T8 of Figure 10(b). Then
B7 = BT8 [N7], hence, is in IBQT.

The proof of Theorem 3.1 will consist in adding new elements to trees T (S, r)
for such cases.

(d) If S = (N,B) satisfies A1-A7 (and thus A8 by Lemma 2.7), then, for
each r ∈ N , the O-tree T (S, r) is a join-tree and B = BT (S,r) by Proposition
5.6 of [5]. �

Definitions 3.5 : Directions in O-trees.

(a) Let T = (N,≤) be an O-tree13 . Let L ⊆ N be linearly ordered and
upwards closed14 . We denote by N<(L) the set {x ∈ N | x < L}. Two nodes x

13Or an O-forest, but we will use the notion of direction only for O-trees.
14 In particular, if X �= ∅, the set L>(X) := {y ∈ N | y > X} is linearly ordered and

upwards closed.

20

and y in N<(L) are in the same direction w.r.t. L if x ≤ u and y ≤ u for some
u ∈ N<(L). This is an equivalence relation that we denote by ∼L. Clearly,
x ≤ y implies x ∼L y. Each equivalence class is called a direction relative to

L. We denote by DirL(x) the direction relative to L that contains x such that
x < L. The O-tree is binary if each such L has at most two directions.

(b) Let S = (N,B) satisfy A1-A6 (and not necessarily A8) and r be any
node taken as root. Let T = (N,≤r) be the O-tree T (S, r). We will denote ≤r
by ≤. Related notations are <, ⊔ and ⊥. If x and y in N are incomparable,
denoted by x⊥y, we let L>(x, y) := L>({x, y}). This set is an upwards closed
line that contains r, but not x and y. We denote by L the countable set of such
lines.

(c) For L ∈ L, we denote by D(L) the set of directions relative to L. We
have L = L>(N<(L)).�

Examples 3.6 : (1) In the O-tree T3 of Figure 9(a), L>(b, c) = N and the
corresponding three directions are {a, b},{c, d} and the set of negative integers.

(2) Let consider again the join-tree T (defined by Fraïssé, Example 1.2(4)).
We recall that T := (Seq+(Q),�) partially ordered by � as follows :

(xn, ..., x0) � (ym, ..., y0) if and only if
n ≥ m, (xm−1, ..., x0) = (ym−1, ..., y0) and xm ≤ ym.

The join of two incomparable nodes x := (xn, ..., x0) and y := (ym, ..., y0) is
z := (x′p, ..., x0) such that p ≤ n, p < m, (yp, ..., y0) = (x

′
p, ..., x0) and xp < x′p.

The directions relative to L = L>(x, y) = L>(z) are :

DirL(x) = {(uq, ..., up+1, up, xp−1..., x0) | uq, ..., up ∈ Q, up ≤ xp}
and

DirL(y) = {(uq, ..., up+1, x′p, ..., x0) | uq, ..., up+1 ∈ Q}.

We have a structuring of T consisting of the axis {(x) | x ∈ Q} and the lines
{(u, xp, ..., x0) | u ∈ Q} for all xp, ..., x0 ∈ Q and p ≥ 0. �

We will examine the directions relative to the sets L = L>(x, y). Clearly,
N<(L) is the disjoint union of the directions relative to L, and there are at least
two different ones, those of x and y

Lemma 3.7 : Let S = (N,B), r and < be as in Definition 3.5(b) and L ∈ L.
Let u, v ∈ D for some direction D relative to L, and w < m with m ∈ L. Then
(u,m,w) ∈ B if and only if (v,m,w) ∈ B.

Proof : We have {u, v} < a < m for some a ∈ D. Then (u, a,m) ∈ B and
(v, a,m) ∈ B. If (u,m,w) ∈ B, then we have B+(u, a,m,w), hence (a,m,w) ∈
B. With (v, a,m) ∈ B, we get B+(v, a,m,w), hence (v,m,w) ∈ B. �

It follows that we can define, for D,D′ ∈ D(L) and m ∈ L:

B(D,m,D′) :⇐⇒ B(u,m,w) for some u ∈ D and w ∈ D′.

21

This is actually equivalent to : B(u,m,w) for all u ∈ D and w ∈ D′.

Lemma 3.8 : Let S = (N,B) satisfy A1-A6 and A8. Let r ∈ N , T =
T (S, r) := (N,≤r) and m ∈ L ∈ L. The binary relation ¬B(D,m,D′) for
D,D′ ∈ D(L) is an equivalence relation.

Proof : Reflexivity and symmetry are clear. Assume that we have ¬B(D,m,
D′) and ¬B(D′,m,D′′) for distinct directions D,D′,D′′. Hence, ¬B(u,m, v)
and ¬B(v,m,w) for some u, v, w respectively in D,D′,D′′, and for a contradic-
tion, assume that B(u,m,w) holds.

Hence, we have ¬B(u,m, v) and also ¬B(m,u, v) and ¬B(m, v, u) because
u⊥v. Hence we have ¬A(m,u, v)∧B(v,m,w), and so, A8’ gives B(v,m,w), con-
tradicting the hypothesis that B(D′,m,D′′) does not hold. Hence, ¬B(u,m,w)
holds for all u,w respectively in D,D′′, so that ¬B(D,m,D′′). �

Definition 3.9 : Incompatible directions.
(a) If D, D′ ∈ D(L), we define D ≈L D′ if B(D,m,D′) holds for no m ∈ L.

By Lemma 3.2(2), B(D,m,D′) can hold only if m is the smallest element of
L. Hence, D ≈L D′ holds if and only if, either L has no smallest element or
B(D,min(L),D′) does not hold. Hence, by Lemma 3.3, ≈L is an equivalence
relation15 . We say that D and D are incompatible.

(b) For each D ∈ D(L), we denote by D the union of the directions that
are ≈L-equivalent to D. The sets D form a partition of N<(L). We define
C := C1 ⊎ C2 as the set of downward closed subsets of N such that :

C1 := {N≤(x) | x ∈ N} (in particular N = N≤(r)) and

C2 := {D | D ∈ D(L), L ∈ L and D is the union of at least two
directions}.

Lemma 3.10 : Let S be as in Lemma 3.8.
(1) The family C is not overlapping.
(2) It is first-order definable in S.
Proof : (1) Consider E and E′ in C such that w ∈ E ∩E′.
There are three possible cases to consider.
Case 1 : E = N≤(x), E

′ = N≤(y). Then x ≤ y or y ≤ x because w ≤ x and
w ≤ y, which gives E ⊆ E′ or E′ ⊆ E.

Case 2 : E = N≤(x), w ≤ x,E′ = D, D = DirL(w) where L ∈ L. Then
x < L (in particular if x = w) or x ∈ L, which gives E ⊆ D ⊆ E′ or E′ ⊆ E.

Case 3 : E = D, D ∈ D(L), and E′ = D′,D′ ∈ D(L′). Then L∪L′ ⊆ L>(w),
hence L′ ⊂ L or L ⊂ L′ or L = L′ . In the first case, we have DirL(w) ⊆ E ⊆
N≤(x) for any x ∈ L−L′. We have x < L′. Then, N≤(x) ⊆ DirL′(w) ⊆ E′. The
second case is similar and the last one gives DirL(w) = DirL′(w), hence, E =
E′.

15Not to be confused with ∼L of Definition 3.5(a), whose classes are the directions relative
to L.

22

(2) We recall that C is relative to a rooted O-tree T (S, r) that depends on a
chosen r ∈ N . There exists an FO formula ϕ(X, r) (not depending on S) such
that for every r and X ⊆ N ,

S = (N,B) |= ϕ(X, r) if and only if X ∈ C.

Since C is defined from T (S, r), this formula has free variable r. The partial
order ≤r (denoted by ≤) is FO definable in S in terms of r.

An FO formula ϕ1(X, r) can express that X = N≤(x) for some x ∈ N .
Next we consider the sets D. Let x and y be incomparable in T = T (S, r) =

(N,≤). Let L = L>(x, y) and u, v < L. The nodes u and v are in a same set D
for some D ∈ D(L) (actually D = DirL(u)) if and only if :
(N,B) |= ∀z.(z ∈ L =⇒ ¬B(u, z, v)),
which can be expressed by an FO formula σ(r, x, y, u, v) because z ∈ L is

FO expressible16 in terms of r, x and y.
If u < L, then DirL(u) is the union of at least two directions in D(L) if and

only if :
(N,B) |= u < L ∧ ∃v.(v < L ∧ ¬σ(r, x, y, u, v))
which is expressed by an FO formula δ(r, x, y, u) (for convenience, this for-

mula includes the condition u < L).
Let ϕ2(X, r) be the FO formula expressing that :

∃x, y.[x⊥y ∧ ∃u.(u ∈ X ∧ δ(r, x, y, u))∧

∀u.(u ∈ X =⇒ ∀v.(v ∈ X ⇐⇒ σ(r, x, y, u, v)))].

(The condition x⊥y is FO expressible in terms of r). It expresses that
X = DirL>(x,y)(u) for some incomparable elements x, y and some u < L>(x, y),
and that X is the union of at least two directions in D(L>(x, y)).

Hence, the formula ϕ1(X, r) ∨ ϕ2(X, r) expresses that X ∈ C. �

We will use F (C) (cf. Definition 1.3(a)), rather denoted by T (C) as it is an
O-tree, with root N≤(r) = N . We have T ⊆ T (C), where we identify a node
x of T with its image under the embedding T → T (C) that map x to N≤(x).
With this notation, we have the following obvious facts :

Lemma 3.11 : For all x, y ∈ N , D ∈ D(L), D′ ∈ D(L′) and L,L′ ∈ L we
have :

(1) N≤(x) ⊂ N≤(y) if and only if x < y.

(2) N≤(x) ⊂ D if and only if x < L and DirL(x) = D,
(3) D ⊂ N≤(x) if and only if x ∈ L,
(4) D ⊂ D′ if and only if L′ ⊂ L; if D ⊂ D′, we have D ⊆ N≤(x) ⊆ D′ for

some x in L− L′.

In the next three lemmas, S and the related objects are as in the previous
Lemmas of this section.

16This is a key point of the proof. In the proof of Theorem 3.25, we will use an alternative
description of sets L in L in which membership is still FO expressible.

23

Lemma 3.12: T (C) is a join-tree.
Proof: Let E and E′ be incomparable elements in T (C). We will prove they

have a join E ⊔T (C) E
′ in T (C). These sets are disjoint. There are three cases

and several subcases.
Case 1 : E = N≤(x), E

′ = N≤(y) where x⊥y .
Subcase 1.1 : (x,m, y) /∈ B for all m in L := L(x, y). Then DirL(x) ≈L

DirL(y) and E′′ := DirL(x) ⊇ E⊎E′. We haveDirL(x) ∈ C becauseDirL(x) �=
DirL(y).

We prove by contradiction that E′′ = E ⊔T (C) E
′. If this is not the case,

we may have E′′ ⊃ N≤(z) ⊇ E ⊎ E′. But then x, y < z, hence z ∈ L and
N≤(z) ⊇ N<(L). So we cannot have N≤(z) ⊂ E′′ ⊆ N<(L).

If E′′ ⊃ D′ ⊇ E ⊎ E′ then D′ = DirL′(x) = DirL′(y) where L ⊂ L′. Let
z ∈ L′ − L. Then x, y < z, hence z ∈ L, contradicting the choice of z.

Note that E′′ is not of the form N≤(z) for any z because it is the disjoint
union of at least two directions. If E′′ = N≤(z), then z would belong to one
direction, say D′′, and all these directions, in particular DirL(x) and DirL(y),
would be included in D′′ hence equal to D′′ because directions do not overlap.

Subcase 1.2 : (x,m, y) ∈ B where m = x ⊔T y = min(L). Let E′′ :=
N≤(m) ⊃ E ⊎E′.

We prove by contradiction that E′′ = E ⊔T (C) E
′. If this is not the case, we

might have E′′ = N≤(m) ⊃ N≤(z) ⊇ E ⊎ E′. But then {x, y} < z < m, hence
m is not the join of x and y.

If E′′ = N≤(m) ⊃ D′ ⊇ E ⊎ E′ then D′ = DirL′(x) = DirL′(y) where
L ⊂ L′. Let z ∈ L′ −L. Then {x, y} < z < m, hence m is not the join of x and
y.

Case 2 : E = N≤(x), E
′ = DirL(y). Since N≤(x) ∩ DirL(y) = ∅, we do

not have DirL(y) ≈L DirL(y), hence we have (x,m, y) ∈ B for some m that
must be x ⊔T y = min(L). We claim that N≤(m) = E ⊔T (C) E

′. The proof by
contradiction is as in Subcase 1.2.

Case 3 : E = D, D ∈ D(L), and E′ = D′,D′ ∈ D(L′). If L = L′ then,
as D �= D′, we have B(D,m,D′) with m = min(L) = x ⊔T y ∈ L, and then
E ⊔T (C)E

′ = N≤(m), as in Case 2. Otherwise, if L ⊂ L′, let y ∈ L′−L, x ∈ D,
and (x,m, y) ∈ B for somem ∈ L. Hence, m = min(L) andN≤(m) = E⊔T (C)E

′.
�

Lemma 3.13 : B ⊆ BT (C)[N].
Proof : We recall that < denotes <r=<T (S,r) that is, by Fact (1) of Lemma

3.11, the restriction of <T (C) to N . The joins in T (S, r) and T (C) are not always
the same.

Consider (x, y, z) ∈ B. By Lemma 3.3(2), we have x < y or z < y. Assume
the first.

If y < z then x <T (C) y <T (C) z, hence (x, y, z) ∈ BT (C)[N].
If z < y, then y = x ⊔T (S,r) z, by Lemma 3.2(2). We are in Subcase 1.2 of

Lemma 3.12, hence, y = x ⊔T (C) z and (x, y, z) ∈ BT (C).
If y⊥z, then, let E := y ⊔T (C) z. We have x < y <T (C) E, hence (x, y,E) ∈

BT (C), and also (y,E, z) ∈ BT (C), hence (x, y, z) ∈ BT (C).

24

The case z < y is similar. �

Lemma 3.14 : BT (C)[N] ⊆ B.
Proof : Let x, y, z ∈ N such that (x, y, z) ∈ BT (C).
If we have x < y < z or z < y < x, then (x, y, z) ∈ B by the definition of

< as <T (S,r) .
Otherwise x⊥z and, x < y ≤T (C) u >T (C) z where u = y ⊔T (C) z = x ⊔T (C) z

or, similarly, x <T (C) u ≥T (C) y > z. We assume the first.
Case 1 : y⊥z. Then we have (x, y, z) ∈ B by Lemma 3.3(1).
Case 2 : If y and z comparable, we must have y > z. As x < y ≤T (C) u =

x⊔T (C) z, we must have y = u. This means that we cannot be in Subcase 1.1 of
Lemma 3.12 (for the definition of x ⊔T (C) z); hence we are in Subcase 1.2 with
y = x ⊔T (S,r) z and (x, y, z) ∈ B.

This completes the proof. �

Proof of Theorem 3.1 : From (N,B) satisfying A1-A6 and A8, we have
built a join-tree T (C) whose nodes C contains N (with x identified with N≤(x))
such that, by Lemmas 3.13 and 3.14, the restriction of its betweenness relation
to N is B. Hence, together with Proposition 2.9, a structure (N,B) is in IBQT

if and only if it satisfies A1-A6 and A8. �

We know from Definition 10 and Proposition 17 of [4] that a quasi-tree
(N,B) is the betweenness relation of a tree if and only if B is discrete, i.e., that
each set [x, y]B := {x, y} ∪ {z ∈ N | B(x, z, y)} is finite (cf. Definition 2.8(a)).

Corollary 3.15: A nontrivial structure (N,B) is an induced betweenness
relation in a tree if and only if it satisfies axioms A1-A6, A8 and is discrete.
These conditions are monadic second-order expressible.

Proof: An induced relation (N,B) of a discrete one is discrete, which gives
the only if directions by Proposition 2.9.

If S = (N,B) satisfies axioms A1-A6, A8 and is discrete, then for all x, y ∈ N
such that x <T (S,r) y, the set {z ∈ N | x <T (S,r) z <T (S,r) y} is finite. Hence,
T (S, r) is a rooted tree.

From Lemma 3.11(4), we get that, for all x, y ∈ NT (C) such that x <T (C) y,
the set {z ∈ NT (C) | x <T (C) z <T (C) y} is finite. Hence, T (C) is a rooted tree.

The property that an interval of a linear order is finite is monadic second-
order expressible as recalled in Section 1.4.

Examples and remarks 3.16 : About the proof of Theorem 3.1.

(1) Consider the structure S8 of Figure 10(a). The O-tree T (S8, 0) is T8 (in
Figure 10(b)) minus the nodes 1 and 2. There are four directions relative to
L := {0} = L>(a, c) : D(a), the direction of a, and similarly, D(c),D(e) and
D(g). The two equivalence classes of D(L) are D(a) = D(a)⊎D(c) = {a, b, c, d}
and D(e) = D(e) ⊎ D(g) = {e, f, g, h}. The nodes 1 and 2 of Figure 10(b)
represent the two nodes D(a) and D(e) added to T (S8, 0) to form the tree T8
such that S8 = BT8 .

25

(2) Consider the O-tree of Figure 8 and its betweenness relation to which
we add the fact B+(a, b, c). Let L := N. The two directions relative to L are
{a, b} and {c}. They are ≈L-equivalent. Only one node is added : {a, b, c} =
D(a) ⊎D(c).

(3) Let T = (N,≤) be a join-tree with root r. Let S := (N,BT). Then,
T = T (S, r). We now apply the construction of Theorem 3.1. Each L ∈ L has
a minimal element, because T is a join-tree. It follows that no two different
directions relative to L are equivalent with respect to ≈L. Hence, The family C
consists only of the sets N≤(x) and so, T (C) = T (S, r) = T .

(4) If S = (N,B) is an induced betweenness in a quasi-tree, then any node
r can be taken as root for defining an O-tree T (S, r) and from it, a join-tree
T (C). This fact generalizes the observation that the betweenness in a tree T does
not dependent on any root. Informally, quasi-trees and induced betweenness in
quasi-trees are "undirected notions". This will not be true for betweenness in
O-trees. See the remark about U in the proof of Proposition 2.15, Part (2). �

3.1.2 Betweenness in rooted O-trees

We let BOroot be the class of betweenness relations of rooted O-trees. These
relations satisfy A1-A6.

Proposition 3.17 : The class BOroot is axiomatized by a first-order sen-
tence.

Proof: Consider S = (N,B). If B is the betweenness relation of an O-tree
(N,≤) with root r, then, ≤ is nothing but ≤r defined in Lemma 3.2 from B
and r. Let ϕ be the FO sentence that expresses properties A1-A6 (relative to
B) and the following one :

A9 : there exists r ∈ N such that the O-tree T (S, r) = (N,≤r) whose
partial order is defined by x ≤r y :⇐⇒ x = y ∨ y = r ∨ B(x, y, r)
has a betweenness relation BT (S,r) equal to B.

That S satisfies A1-A6 insures that (N,≤r) is an O-tree with root r. The
sentence ϕ holds if and only if S is in BOroot. When it holds, the found node
r defines via ≤r the relevant O-tree. �

The following counter-example shows that we do not obtain an FO axioma-
tization of the class BO.

Example 3.18 : BOroot is properly included in BO.
Let T be the O-tree with set of nodes Q and defining partial order � such

that x � y :⇐⇒ x ≤ y ∧ y ∈ Q− Z (see Figure 11). Any two elements of Z are
incomparable and no two incomparable elements have a join. We claim that BT
is not in BOroot.

Assume that BT = BU for some O-tree U with root r ∈ Q. We will derive
a contradiction.

26

Figure 11: The O-tree of Example 3.18.

If r ∈ Z we take, without loss of generality, r = 0. Let a = −1/2 and
b = −3/2. These nodes are incomparable in U otherwise, we would have (0, a, b)
or (0, b, a) in BU = BT which is false. Hence (a, 0, b) ∈ BU , but (a, 0, b) /∈ BT .

If r ∈ Q − Z we take, without loss of generality, r = 1/2. Let a = 1 and
b = 2. These nodes are incomparable in U otherwise, we would have (1/2, a, b)
or (1/2, b, a) in BU = BT which is false. Hence (a, 1/2, b) ∈ BU , but (a, 1/2, b) /∈
BT .

3.2 Monadic second-order axiomatizations

3.2.1 Betweenness in O-trees.

We will prove that the class BO is axiomatized by a monadic second-order
sentence. In the proof of Proposition 3.17, we have defined from S = (N,B)
satisfying A1-A6 and r ∈ N a candidate partial order ≤r for (N,≤r) to be an
O-tree with root r whose betweenness relation would be B. The order ≤r being
expressible by a first-order sentence, we finally obtained a first-order charac-
terization of BOroot. For BO, a candidate order will be defined from a line,
not from a single node. It follows that we will need for our construction a set
quantification.

The next lemma is Proposition 5.3 of [5].
Lemma 3.19 : Let (L,B) satisfy properties A1-A7’. Let a, b be distinct

elements of L. There exist a unique linear order ≤ on L such that a < b and
B(L,≤) = B. This order is quantifier-free definable in the logical structure (L,B)
in terms of a and b.

27

We will denote this order by ≤L,B,a,b. There is a quantifier-free formula λ,
written with the ternary relation symbol B, such that, for all a, b, u, v in L,
(L,B) |= λ(a, b, u, v) if and only if u ≤L,B,a,b v. We recall from Definition 1.1
that a line L in an O-tree T is a linearly ordered set that is convex : x ≤T y ≤T z
and x, z ∈ L imply y ∈ L.

Lemma 3.20 : Let T = (N,≤T) be an O-tree, L a maximal line in T that
has no largest node. Let a, b ∈ L, such that a <L b, where <L is the restriction
of <T to L.

(1) The partial order ≤T is first-order definable in a unique way in
the structure (N,BT) in terms of L,≤L, a and b.

(2) It is first-order definable in (N,BT) in terms of L, a and b.�

Maximality of L is for set inclusion. This condition implies that L is upwards
closed, and furthermore, infinite.

Proof: Let x, y ∈ N . We first prove the following facts.
Fact 1 : If x, y ∈ L, then x <T y if and only if x <L y.
Fact 2 : If x /∈ L, y ∈ L, then x <T y if and only if (x, y, z) ∈ BT for some

z ∈ L such that z >L y.
Fact 3 : If x, y /∈ L, then x <T y if and only if B+

T (x, y, z, u) holds for some
z, u in L, such that u >L z.

Fact 1 is clear from the definitions.
For Fact 2, we have some z >L y because L has no largest element. If

x <T y <L z, then (x, y, z) ∈ BT .
Assume now that (x, y, z) ∈ BT for some z >L y. By the definition of BT ,

we have x <T y ≤T x ⊔T z or z <T y ≤T x ⊔T z. Since z >L y, we cannot have
z <T y. Hence, x <T y. (We have actually (x, y, z) ∈ BT for every z >L y).

For Fact 3, we note that for every y /∈ L, we have some z ∈ L, z >T y : take
for z any upper-bound of y and some element of L, then z ∈ L because T is
an O-tree. Hence, we have z, u ∈ L such that y <T z <L u because L has no
largest element, hence (y, z, u) ∈ BT by Fact 2.

If x <T y, we have x <T y <T z hence, (x, y, z) ∈ BT and B+
T (x, y, z, u)

holds.
Assume now for the converse that B+

T (x, y, z, u) holds for z, u ∈ L such that
z <L u. We have (x, y, z) ∈ BT and z >T y by Fact 2. By the definition of BT ,
we have x <T y ≤ x ⊔T z or z <T y ≤ x ⊔T z. Since z >T y, we cannot have
z <T y, hence, x <T y.

We now prove the two assertions of the statement.
(1) The above four facts show that ≤T is first-order definable in (N,BT) in

terms of L,≤L, a and b. More precisely, Facts 1,2 and 3 can be expressed as a
first-order formula θ written with the relation symbols L,B and R of respective
arities 1,3 and 2, such that, if L is a maximal line in T that has no largest node,
a, b ∈ L and a <L b, then, for all u, v ∈ N , (N,L,BT ,≤L) |= θ(a, b, u, v) if and

28

only if u ≤T v. For the validity of θ(a, b, u, v), BT is the value of B, and ≤L is
that of R.

(2) However, ≤L is FO definable in (L,BT [L]) by Lemma 3.20. By replacing
the atomic formulas R(x, y) by λ(a, b, x, y), we ensure that R is ≤L, hence, we
obtain a first-order formula ψ(a, b, u, v), written with L and B such that, for
u, v ∈ N we have (N,BT) |= ψ(a, b, u, v) if and only if u <T v where BT is the
value of B. �

A line in a structure S = (N,B) that satisfies A1-A6 is a set L ⊆ N of
at least 3 elements in which any 3 different elements are aligned (cf. Definition
2.1(c)) and that is convex, i.e., [x, y]B ⊆ L for all x, y in L.

Theorem 3.21 : The class BO is axiomatized by a monadic second-order
sentence.

Proof : Let ϕ(L) be the monadic second-order formula expressing the fol-
lowing properties of a structure S = (N,B) and a set L ⊆ N :

(i) S satisfies A1-A6,

(ii) L is a maximal line in S,

(iii) there are a, b ∈ L such that the formula ψ(a, b, u, v) of Lemma
3.20 defines a partial order ≤ on N such that a < b,

(iv) (N,≤) is an O-tree U , in which L is a maximal line without
largest element, and

(v) BU = B.

We need a set quantification to express the maximality of L. All other con-
ditions are first-order expressible.

If S = (N,BT) is the betweenness relation of an O-tree T = (N,≤) without
root, and L is a maximal line in T , then L is also a maximal line in S. As T
has no root, L has no largest element. Then ϕ(L) holds where a, b ∈ L are such
that a <L b. Hence, S |= ∃L.ϕ(L).

Conversely, if S = (N,B) satisfies ∃L.ϕ(L), then, conditions (iv) and (v)
show that S is in the class BO.

Together with Proposition 3.17, we can express by an MSO sentence that
(S,N) is the betweenness relation of an O-tree, with or without root.

A structure S = (N,B) is the betweenness relation of an O-forest if and
only if its connected components (cf. Remark 2.14) that are the betweenness
relations of O-trees. Hence, we get a monadic second-order sentence expressing
that a structure S is the betweenness relation of an O-forest. �

3.2.2 Induced betweenness in O-trees.

Next we examine in a similar way the class IBO. It is easy to see that IBO =
IBOroot.

29

Figure 12: The structure U of Proposition 3.22 (the counter-example) and the
O-tree T of Remark 3.23.

Proposition 3.22 : Every structure in the class IBO satisfies Properties
A1-A6 but these properties do not characterize this class.

Proof: Every structure S in the class IBO is an induced substructure of
some S′ in BO, that thus satisfies Properties A1-A6. Hence, S satisfies also
these properties as they are expressed by universal sentences.

Now, we give an example of a structure U = (N,B) that satisfies Properties
A1-A6 but is not in IBOroot.

We let N := {a, b, c, d, e, f, g} and B such that B+(a, b, c), B+(c, b, d, e),
B+(e, d, f, g) hold, and nothing else. See Figure 12(a), with the conventions of
Figures 3 and 5. Assume that B = BT [N] where T is an O-tree (M,≤) such
that N ⊆M . We will consider several cases leading each to B ⊂ BT [N], hence
to a contradiction.

(1) We first assume that a, c, e, g are pairwise incomparable.
The joins a⊔ c, c⊔ e and e⊔ g must be defined (because (a, b, c), (c, b, e) and

(e, f, g) are in BT) and furthermore b ≤ a⊔ c, b ≤ c⊔ e, d ≤ c⊔ e, d ≤ e⊔ g and
f ≤ e ⊔ g. The joins a ⊔ c and c ⊔ e must be comparable and so must be c ⊔ e
and e ⊔ g.

(1.1) These joins are pairwise distinct, otherwise BT [N] contains triples not
in B, as we now prove.

(1.1.1) Assume a⊔ c = c⊔ e = e⊔ g = α. At least one of a⊔ e, c⊔g and a⊔g
is defined and equal to α.

If a ⊔ e = α = a ⊔ c = c ⊔ e, then either c < d ≤ α or e < d ≤ α because
(c, d, e) ∈ BT . Hence, we have (a, d, c) or (a, d, e) in BT [N] but these triples do
not belong to B. All other proofs will be of this type.

If c ⊔ g = α = c ⊔ e = e ⊔ g, then (c, f, e) or (c, f, g) is in BT [N] − B if,
respectively, e < f ≤ α or g < f ≤ α (because (e, f, g) ∈ BT).

If a ⊔ g = α = c ⊔ e = e ⊔ g, then (a, f, g) or (c, f, e) is in BT [N] − B, if,
respectively, g < f ≤ α or e < f ≤ α (because (e, f, g) ∈ BT).

(1.1.2) We now consider the cases where only two of a ⊔ c, c ⊔ e and e ⊔ g
are equal.

30

If a⊔c = c⊔e = α, then if α < e⊔g, then (a, b, g) or (c, b, g) is in BT [N]−B
(because (a, b, c) ∈ BT); if e ⊔ g < α, then (c, f, e) or (c, f, g) is in BT [N] − B
because α = c ⊔ e = c ⊔ g.

If c ⊔ e = e ⊔ g = α and a ⊔ c < α, then e < d ≤ α or c < d ≤ α which
gives (a, d, e) or (a, d, c) in BT [N]−B; if α < a ⊔ c, then (a, f, g) or (a, f, e) is
in BT [N]−B.

If a⊔ c = e⊔ g = α, then we have c⊔ e < α and a⊔ e = α. Hence, (a, d, c) or
(a, d, e) is in BT [N]−B. We cannot have α < c⊔e because then c, e < α < c⊔e.

(1.2) If a⊔ c and e⊔ g are incomparable, then a⊔ c < c⊔ e and e⊔ g < c⊔ e.
We have then c ⊔ e = c ⊔ g = a ⊔ g. Hence, we get that (a, b, g) or (c, b, g) is in
BT [N]−B.

(1.3) Hence, a⊔ c, c⊔ e and e⊔ g are pairwise different but comparable. We
have six cases to consider : a⊔c < c⊔e < e⊔g and five other ones, corresponding
to the six sequences of three objects.

If a ⊔ c < c ⊔ e < e ⊔ g then, a < b < a ⊔ c or c < b < a ⊔ c and (a, b, g) or
(c, b, g) ∈ BT [N]−B.

The verifications are similar in the five other cases.

(2) We consider cases where a, c, e, g are not pairwise incomparable.
Observation : If u < x, (x, y, z) ∈ BT and we do not have x > z, then

B+
T (u, x, y, z) holds. (If x > z, then x may not be the join of u and z).
If a > c, then we have a > b > c and c⊔ e > c. Hence c⊔ e ≥ b, or b > c⊔ e.

We get triples (e, b, c) or (a, b, e) in BT [N]−B.
If a < c, then we have a < b < c ≤ c ⊔ e. Hence (a, c, e) ∈ BT [N]−B.
Hence a⊥c. By the observation, we cannot have e < c, g < c, e < a or g < a.
If c < e, then, if a ⊔ c ≤ e we have (e, b, c) or (e, b, a) in BT [N] − B; if

e < a ⊔ c, then (a, e, c) ∈ BT [N]−B.
Hence, c⊥e. By the observation, we cannot have a < c, a < e, or g < e.
If e < g, then, either c ⊔ e ≤ g or g < c ⊔ e which gives (g, b, c), (g, b, e) or

(c, g, e) in BT [N]−B.
Hence, e⊥g. By the observation, we cannot have a < g or c < g.
All cases yield B ⊂ BT [N]. Hence, S is not in IBO.�

Remarks 3.23 : (1) If we modify U of the previous proof by replacing
B+(c, b, d, e) by B+(c, d, e) (but we keep b in the set of nodes), we get a modified
structure U ′ for which the same result holds, by a similar proof.

(2) If we delete g from U , we get a structure W that is in IBOroot. A
witnessing O-tree T is shown in Figure 12(b) where N and M represent two
copies of N ordered top-down as in the O-tree T2 of Figure 8 and the proof of
Proposition 2.15.

(3) For every finite structure H = (NH , BH), let ϕH be a first-order sentence
expressing that a given structure (N,B) has an induced substructure isomorphic
toH. Hence, every structure in IBO satisfies properties A1-A6 and ¬ϕU∧¬ϕU′ .

We do not know whether this first-order sentence axiomatizes the class IBO,
and more generally, whether there exists a finite set of "excluded" finite induced

31

structures like U and U ′, that would characterize the class IBO. The existence
of such a set would give a first-order axiomatization of IBO.

The construction of Theorem 3.21 does not extend to IBO because, as we
noted in the proof of Proposition 2.15 (point (3)), a finite structure in IBO may
not be an induced betweenness relation of any finite O-tree. No construction
like that of T (C) in the proof of Theorem 3.1 can produce an infinite structure
from a finite one. Nevertheless :

Conjecture 3.24 : The class IBO is characterized by a monadic second-
order sentence.

3.3 Logically defined transformations of structures

Each betweenness relation is a structure S = (N,B) defined from a marked

O-tree, a structure T = (P,≤, N) where (P,≤) is an O-tree and N ⊆ P , the set
of marked nodes, is handled as a unary relation. The different cases are shown
in Table 1. In each case a first-order formula can check whether the structure
(P,≤, N) is of the appropriate type, and another one can define the relation B
in (P,≤, N). Hence, the transformation of (P,≤, N) into (N,B) is a first-order
transduction (Definition 1.6).

Structure Axiomatization Source From (N,B) to a

(N,B) structure source structure

QT FO : A1-A7, Prop. 2.9 join-tree (N,≤, N) FOT
IBQT FO : A1-A6, A8, Thm 3.1 join-tree (P,≤, N) MSOT
BO MSO : Theorem 3.21 O-tree (N,≤, N) MSOT
IBO MSO ? : Conjecture 3.24 O-tree (P,≤, N) not MSOT

Table 1

The last colomun indicates which type of transduction, FO transduction
(FOT) or MSO transduction (MSOT) can produce, from a structure (N,B),
a relevant marked O-tree (P,≤, N). For QT, this follows from the proof of
Theorem 2.9(1) : if S = (N,B) satisfies A1-A7 and r ∈ N , then, the O-
tree T (S, r) = (N,≤r) is a join-tree and B = BT (S,r). For BO, the MSO
sentence that axiomatizes the class constructs a relevant O-tree (it guesses one
and checks that the guess is correct). For IBO, we observed that the source
tree may need to be infinite for defining a finite betweenness structure, which
excludes the existence of an MSO transduction, because these transformations
produce structures whose domain size is linear in that of the input structure.
(cf. Definition 1.6, and Chapter 7 of [8]).

It remains to prove that the transformation of S ∈ IBQT into a witnessing
marked O-tree (P,≤, N) is a monadic second-order transduction. This is the
content of the following statement.

Theorem 3.25 : A marked join-tree witnessing that a given structure S is
in IBQT can be defined from S by MSO formulas.�

32

We first describe the proof strategy. We want to prove that, for a given struc-
ture S = (N,B) that satisfies Axioms A1-A6 and A8, the tree T (C) of the proof
of Theorem 3.1 can be constructed by MSO formulas (of course independent of
S).

The first step is the construction of T (S, r) = (N,≤r) : one chooses a node
r from which the partial order ≤r is FO definable in S by using r as value of a
variable.

The nodes of T (C) (constructed from T (S, r)) are the sets in C (cf. the proof
of Theorem 3.1) and they are of two types :

either N≤(z), they are in C1,

or DirL(u) for u < L and L ∈ L such that DirL(u) is the union of at least
two directions (cf. Lemma 3.10); they are in C2.

A set N≤(z) is represented by its maximal element z in a natural way, and
T embeds in T (C) (cf. Definition 1.3(a)).

A setDirL(u) is a new node added to T . In order to make the transformation
of S *−→ T (C) into a transduction as in Definition 1.6(b), we define NT (C) as
(N×{1})⊎(M×{2}) where (x, 1) encodes N≤(x) and each w ∈M ⊆ N encodes

(bijectively) some set DirL(u) ∈ C2. An MSO formula will express that a node
z encodes U = DirL(u), for some L and u.

Lemma 3.10(2) has shown that each set DirL(u) in C2 can be defined from
three nodes x, y and u. We need a definition by a single node, in order to obtain
a monadic second-order transduction. The sets U in C2 are FO definable but
not pairwise disjoint. Hence, one cannot select arbitrarily an element of U to
represent it. We will use a notion of structuring of O-trees, similar to the one
defined in [5] for join-trees, that we will also use in Section 4. We will also have
to prove that the partial order ≤T (C) is defined by MSO formulas, but this will
be straightforward by means of the formula expressing that a node z encodes a
set in C2.

Definition 3.26: Strict upper-bounds.

Let (N,≤) be a partial order and X ⊆ N. A strict upper-bound of X is an
element y such that y > X. We denote by lsub(X) the least strict upper-bound

of X if it exists. If X has no maximum element but has a least upper-bound
m, then lsub(X) = m. If X has a maximum element m, its least strict upper-
bound if it does exist covers m, that is, lsub(X) > m and there is no x such
that lsub(X) > p > m.

Definition 3.27 : Structurings of O-trees.

In the following definitions, T = (N,≤) is an O-tree.
(a) If U and W are two lines (convex linearly ordered subsets of N), we say

that W covers U , denoted by U ≺W , if U < w for some w in W and, for such
w and any x ∈ N , if U < x < w, then x ∈ W . (See Example 3.28(1) below).
Note that lsub(U) may not exist, but if it does, it is in W .

(b) A structuring of T is a set U of nonempty lines that forms a partition of
N and satisfies the following conditions:

1) One distinguished line called the axis is upwards closed.

33

2) There are no two lines U,U ′ ∈ U such that U < U ′.
3) For each x in N , L≥(x) = Ik ⊎ Ik−1 ⊎ ... ⊎ I0 for nonempty intervals

I0, ..., Ik of (L≥(x),≤) such that:

3.1) x = min(Ik) and Ik < Ik−1 < ... < I0,

3.2) for each j, there is a line U ∈ U such that Ij ⊆ U, and it is
denoted by Uj ; U0 is the axis,

3.3) each Ij is upwards closed in Uj , that is, if x ∈ Uj and x > y ∈ Ij
then x ∈ Ij .

Hence, Uj �= Uj′ if j �= j′, and Uj ≺ Uj−1 for j = 1, ..., k. The sequence
I0, I1, ..., Ik is unique for each x, and k is called the depth of x and also of Uk.
We denote by U(x) the line that contains x ∈ N.

We say that T = (N,≤,U) is a structured O-tree. �

Examples 3.28 : (1) Let T = (N,≤) be the O-tree such thatN = {a, b}×Q
ordered such that (a, x) ≤ (a, y) and (b, x) ≤ (b, y) if and only if x ≤Q y, and
(b, x) ≤ (a, y) if and only if y >Q α where α is an irrational real number. Then,
the lines W := {a}×Q and U := {b}×Q form a structuring of T with axis W ,
and U ≺W.

(2) A structuring of the tree T3 of Figure 9(a) consists of the axis {a, b} ∪N
and two lines that are {c, d} and the set of negative integers.

(3) Let T be the join-tree of Example 1.2(4). We recall that T := (Seq+(Q),
�), where Seq+(Q) is the set of finite nonempty sequences of rational numbers
partially ordered as follows: (xn, ..., x0) � (ym, ..., y0) if and only if n ≥ m,
(xm−1, ..., x0) = (ym−1, ..., y0) and xm ≤Q ym. It has a structuring consisting of
{(x0) | x0 ∈ Q} as an axis and the lines {(xn, ..., x0) | xn ∈ Q}, for each n ≥ 1
and x0, ..., xn−1 ∈ Q. A node (xn, ..., x0) is at depth n.

(4) Figure 13 shows a structuring of a join-tree with axis U0 and lines U0,...,
U6 such that U1 ≺ U0, U3 ≺ U2 ≺ U0 U6 ≺ U2 and U5 ≺ U4 ≺ U0. We have
L≥(i) = I2 ⊎ I1 ⊎ I0 where I2 = U3 ∩L≥(i), I1 = U2 ∩L≥(g), I0 = U0 ∩L≥(e).�

Proposition 3.29 : Let U be a structuring of an O-tree T = (N,≤). Then,
T is a join-tree if and only if each U ∈ U that is not the axis has a least strict
upper-bound, and lsub(U) ∈W where W is the line in U that covers U .

Proof : Clear from Definition 3.27. �

Proposition 3.30 : Every O-tree has a structuring.
Proof : The proof is similar to that of [5] establishing that every join-tree

has a structuring. We give it for completeness. Let T = (N,≤) be an O-tree.
We choose an enumeration x0, x1, ..., xn, ... of N and a maximal line B0; it is
thus upwards closed.

For each i > 0, we choose a maximal line Bi containing the first node not in
Bi−1 ∪ ... ∪B0. We define U0 := B0 and, for i > 0, Ui := Bi − (Ui−1 ⊎ ... ⊎ U0)
= Bi − (Bi−1 ∪ ... ∪B0). We define U as the set of lines Ui. It is a structuring
of J . The axis is U0. Condition 2) is guaranteed because we choose a maximal
line Bi at each step. �

34

Figure 13: A structuring, Example 3.28(4).

Lemma 3.31 : If (N,≤,U) is a structured O-tree, we define S(N,≤,U) as
the relational structure (N,≤, N0,N1) such that N0 is the set of nodes at even
depth and N1 := N −N0.

(1) The class of structures (N,≤, N0, N1) that represent a structured O-tree
is MSO definable.

(2) There is a first-order formula ν(X,N0, N1) expressing in every structure
S(N,≤,U) representing a structured O-tree that a set X belongs to U .

Proof : (1) The proof is, up to minor details, that Proposition 3.7(1) in [5].
We let σ(N0, N1) be the corresponding MSO formula.

(2) We let ν(X,N0, N1) express that :

(i) X is nonempty, linearly ordered and convex,

(ii) X ⊆ N0 or X ⊆ N1,

(iii) if x ∈ N0 ∩X and [x, y] ⊆ N0 or [y, x] ⊆ N0 then y ∈ X,

(iv) the same holds for N1 instead of N0.

Let X ∈ U . Condition 3) of Definition 3.27 yields that, if x < y, then
[x, y] ⊆ N0 or [x, y] ⊆ N1 if and only if x and y belong to the same line in
U (in particular because if [x, y] ⊆ N0 or [x, y] ⊆ N1, then [x, y] ⊆ Ik ⊆ Uk).
Conditions (i)-(iv) hold.

Conversely, assume that ν(X,N0, N1) holds. Let x ∈ X. We have X ⊆ U(x):
let y ∈ X; if x < y, then [x, y] ⊆ N0 ∩X or [x, y] ⊆ N1 ∩X. Hence, y ∈ U(x)
by the above remark ; if y < x, then, x ∈ U(y) and so y ∈ U(x).

If there is z ∈ U(x)−X, then, as X is an interval, we have z < X or X < z.
The intervals [z, x] (or [x, z]) is contained in N0 or in N1, hence, z ∈ X by (iii).
Contradiction. Hence, X = U(x). The formula x ∈ X ∧ ν(X) expresses that
X = U(x). �

35

Some more notation : Let T = (N,≤,U) be a structured O-tree with axis
A. Let x ∈ N −A and L≥(x) = Ik ⊎ Ik−1 ⊎ ... ⊎ I0 as in Definition 3.27(b). We
define L+(x) := Ik−1 ⊎ ... ⊎ I0. We have Uk−1 =Wk−1 ⊎ Ik−1 for some interval
Wk−1 of Uk−1 such that Wk−1 < Ik−1. With these hypotheses and notation :

Lemma 3.32 : (1) The interval Wk−1 is not empty.
(2) For every y ∈↓ (Wk−1), we have L>(x, y) = L+(x).
(3) Every set L ∈ L is of the form L+(z) for some z.

Proof : (1) If Wk−1 is empty, then Uk < Ik−1 = Uk−1, contradiction with
Condition 2) of Definition 3.27(b).

(2) Clear from Condition 2) of Definition 3.27(b).
(3) Let L = L>(x, y). We have L≥(x) = Ik ⊎ Ik−1 ⊎ ... ⊎ I0 and L≥(y) =

Jℓ⊎Jℓ−1⊎ ...⊎J0 (cf. Condition 3) of Definition 3.27(b)). We have three cases:
Case 1 : Im−1 ⊎ ... ⊎ I0 = Jm−1 ⊎ ... ⊎ J0 for some m ≤ min(k,ℓ) such that

Im ∩ Jm = ∅.
Then L>(x, y) = L+(z) for any z in Im ∪ Jm (or even in Um ∪ U ′

m, where
Jm ⊆ U ′

m ∈ U). We have also :

L>(x, y) = L>(x′, y′) = L>(x′, u) = L>(y′, u)

for every x′ ∈↓ (Im),y′ ∈↓ (Jm)

and u ∈↓ (Um−1 − Im−1)) =↓ (Wm−1), (cf. (1) and (2)).

Case 2 : Im−1 ⊂ Jm−1 and Ip = Jp for every p < m− 1.
Then L>(x, y) = L+(z) for any z in Im (or even in Um). We have also

L>(x, y) = L>(x′, u) for every x′ ∈↓ (Im), and

u ∈↓ (Um−1 − Im−1) =↓ (Wm−1).

Case 3 : Similar to Case 2 by exchanging x and y. �

Example and remarks 3.33 : (1) In Case 1, the sets ↓ (Im), ↓ (Jm) and
↓ (Um−1 − Im−1) are three different directions relative to L. In Case 2, ↓ (Im)
and ↓ (Um−1 − Im−1) are similarly different directions.

(2) In the example of Figure 13, we have :
L>(i, n) = L>(h, n) = L+(i) = L+(n) = L≥(g) illustrating Cases 1 and 2,
L>(g,m) = L>(h,m) = L+(j) = L+(k) = L≥(d) and
L>(k,m) = L+(m) = L≥(j) illustrating Case 2.�

Lemma 3.34 : There exist FO formulas α(N0, N1, r, x, z) and β(N0, N1, r, x,
z) that express the following properties in a structure (N,B,N0, N1, r) that
satisfies A1-A6 and A8 and defines a structuring of the O-tree T ((N,B), r); the
corresponding set C2 is as in Definition 3.9.

(1) The formula α(N0, N1, r, x, z) expresses that x ∈ L+(z).
(2) The formula β(N0, N1, r,X, z) expresses that X = DirL+(z)(z) and X ∈

C2.
Proof : (1) The property x ∈ L+(z) is expressed by the following FO

formula α(N0, N1, r, x, z) defined as :

36

[z ∈ N0 ∧ ∃y.(z < y ≤ x ∧ y ∈ N1)]∨

[z ∈ N1 ∧ ∃y.(z < y ≤ x ∧ y ∈ N0)].

(2) Lemma 2.19(2) shows that X = DirL(z)∧X ∈ C2 is FO expressible pro-
vided x ∈ L is. Assertion (1) shows precisely that x ∈ L+(z) is FO expressible.
�

Proof of Theorem 3.25 : By using the previous lemmas, we now prove the
existence of MSO formulas that define in a structure S = (N,B) that satisfies
A1-A6 and A8, a marked join-tree T such that NT ⊇ N and B = BT [N]. In
the technical terms of [8] there is a monadic second-order transduction that
transforms a structure S = (N,B) into such a marked join-tree (NT ,≤T , N).

The formulas implement the following steps, assuming that S that satisfies
A1-A6 and A8.

First step: One chooses r ∈ N , there is no constraint on this choice. One
obtains an O-tree T (S, r).

Second step: One guesses a partition (N0, N1) of N that defines a structuring
of T (S, r), according to Lemma 3.31. As the order on T (S, r) depends on r, the
formula σ(N0, N1) of Lemma 3.31 is transformed into σ′(N0, N1, r), written with
r to define ≤r.

Third step : All this yields the set C = C1 ⊎ C2 and the associates notions
of Definition 3.9 and Lemma 3.32. We will encode each set in C2 by a unique
node z that defines a unique set DirL+(z)(z) ∈ C2. We may have DirL+(z)(z) =

DirL+(w)(w) where z �= w, but we wish to have each set in C2 encoded by a
unique node. For insuring this, we choose a set M of nodes such that each set
in C2 is DirL+(z)(z) for a unique node z ∈M . That a set M is correctly chosen
can be checked by using the formula β of Lemma 3.34.

We now have the set of nodes of T (C) defined as NT (C) := (N × {1})⊎
(M ×{2}) where (x, 1) encodes N≤(x) and each w ∈M in a pair (w, 2) encodes
a unique set in C2. Then T (C) = (NT (C),≤) where ≤ is the inclusion of the sets
encoded by the pairs in NT (C). This partial order is easy to define by means of
the formula β.

To sum up, the formulas will use the parameters r,N0 and M and check
they are correctly chosen by existential quantifications :

r to be the root of the O-tree T (S, r) = (N,≤r),

N0 ⊆ N such that the structure (N,≤r, N0, N − N0) represents a
structured O-tree,

M intended to be in bijection with C2.

First-order formulas can check that these parameters are correctly chosen.
However, the choices of N0 and M need set quantifications.

We obtain a join-tree T ′ with set of nodesNT ′ = (N×{1})⊎(M×{2}). Then
S = (N,B) is isomorphic to (N × {1}, BT ′ [N × {1}]) where (x, 1) corresponds
to x ∈ N . Hence, S is defined by (NT ′ ,≤T ′ , N × {1}) constructed by MSO
formulas. �

37

Remark 3.35 : About join-completion.
The join-completion builds an O-tree T from the sets U(x, y), cf. Definition

1.3(b). If x and y have no join, then U(x, y) defined as N≤(L≥(x, y)) is equal
to N≤(L>(x, y)). By means of a structuring of T , such a set is of the form
N≤(L

+(z)), hence can be encoded by a single node z. The technique of Theorem
3.25 is applicable to prove that join-completion is an MSO transduction.

4 Embeddings in the plane

In order to give a geometric characterization of join-trees and of induced be-
tweenness in quasi-trees (equivalently, in join-trees), we show how a structured
join-tree can be embedded in portions of straight lines in the plane that form a
topological tree.

Definition 4.1 : Trees of lines in the plane.
(a) In the Euclidian plane, let L = (Li)i∈N be a family of straight half-

lines17 (simply called lines below) with respective origins o(Li), that satisfies
the following conditions :

(i) if i > 0, then o(Li) ∈ Lj for some j < i,
(ii) for all i, j ∈ N, i �= j, the set Li ∩ Lj is {o(Li)} or {o(Lj)} or is empty.

(We may have o(Li) = o(Lj)).
We call L a tree of lines : the union of the lines Li is a connected set L# in

the plane. A path (resp. a cycle) in L# is a homeomorphism h of the interval
[0, 1] of real numbers (respectively of the circle S1) into L# such that h(0) = x
and h(1) = y in the case of a path. For any two distinct x, y ∈ L#, there is a
unique path from x to y (it "follows the lines"), and consequently, there is no
cycle. This path goes through lines Lk such that k ≤ max{i, j} where x ∈ Li and
y ∈ Lj , hence, through finitely many of them. This path uses a single interval
of each line it goes through, otherwise, there is a cycle.

(b) We obtain a ternary betweenness relation :

BL(x, y, z) :⇐⇒�= (x, y, z) and y is on the path between x and z.

(c) On each line Li, we define a linear order as follows :

x �i y if and only if y = x or y = o(Li) or y is between x and o(Li).

On L#, we define a partial order by :

x � y if and only if x = y or

x ≺ik o(Lik) ≺ik−1 o(Lik−1) ≺ik−2 ... ≺i1 o(Li1) ≺i0 y

for some i0 < i1 < ... < ik. If k = 0, then x ≺i0 y.

17One could equivalently usebounded segments of straight lines because on each such seg-
ment, one can designate countably many points.

38

It is clear that (L#,�) is an uncountable rooted O-tree : for each x in L#,
the set {y ∈ L# | x � y} is linearly ordered with greatest element o(L0).

Definition 4.2 : Embeddings of join-trees in trees of lines.
Let T = (N,≤,U) be a structured join-tree (cf. Definition 3.27). An em-

bedding of T into a tree of lines L is an injective mapping m : N → L# such
that:

for each U ∈ U , m is order preserving : (U,≤) → (Li,�i) for some
i ∈ N, and if U is not the axis, then m(lsub(U)) = o(Li).

Lemma 4.3 : If T is a structured join-tree embedded by m into a tree of
lines L, then, its betweenness satisfies :

BT (x, y, z)⇐⇒ [�= (x, y, z) ∧BL(m(x),m(y),m(z))].

Proof sketch : Let (x, y, z)∈ BT . Assume that x < y < x ⊔ z and let us
compare L≥(x) = Ik ⊎ Ik−1 ⊎ ...⊎ I0 and L≥(z) = Jℓ ⊎ Jℓ−1 ⊎ ...⊎ J0 (as in the
proof of Lemma 3.32(3)). There are three cases. In each of them, we have a path
in T between x and z, that goes through y and is a concatenation of intervals of
lines of the structuring of T . By concatenating the corresponding segments of
the lines in L, we get a (topological) path between m(x) and m(z) that contains
m(y). Hence, we have (m(x),m(y),m(z)) in BL. The proof is similar in the
other direction. �

Theorem 4.4 : If L is a tree of lines and N is a countable subset of L#,
then S := (N,BL[N]) is in IBQT, i.e. is an induced betweenness structure
in a quasi-tree. Conversely, every structure in IBQT is isomorphic to some
S = (N,BL[N]) of the above form.

Proof : If L is a tree of lines andN ⊂ L# is countable, then S := (N,BL[N])
is in IBQT. A witnessing join-tree T is built as follows. Its set of nodes is N ∪O
where O is the set of origins of all lines in L. Its order is the restriction to N ∪O
of the order � on L#. Then (N,BL[N]) = (N,BT [N]) hence belongs to IBQT.

Conversely, let S = (N,BT [N]) such that T is a structured join-tree. It is
isomorphic to (N,BL[N]) for some tree of lines by the following proposition.�

Proposition 4.5 : Every structured join-tree embeds into a tree of lines L.

The proof will use some notions of geometry relative to positions of lines in
the plane.

Definitions 4.6 : Angles and line drawings.

An orientation of the plane, say the trigonometric one is fixed.
(a) Let L,K be two lines with same origin. Their angle L△K is the real

number α, 0 ≤ α < 2π, such that L becomes K by a rotation of angle α.
If o(K) is in L−{o(L)}, we define L△K := L′△K where L′ is the unbounded

half-line included in L with origin o(K).

39

Figure 14: For the proof of Lemma 4.8.

(b) For a line L, an angle α such that 0 < α < π and O ∈ L, we define
S(L,O,α) as the union of the lines K with origin O such that 0 ≤ L△K < α.
We call sector such a set.

Lemma 4.7 : For given L and α as above, one can draw countably many
lines with origin o(L) inside the sector S(L, o(L), α).

Proof : We drawK1,K2, ...,Ki, ... such that L△K1 = α/2 andKi△Ki+1 =
α/2i+1 for each i. �

Lemma 4.8 : Let L, α be as above and X be a countable set enumerated
as {x1, x2, ..., xi, ...} ⊆ L− {o(L)}. One can draw lines K1,K2, ...,Ki, ... in the
sector S(L, o(L), α) in such a way that o(Ki) = xi for each i, no two lines are
parallel or meet except at their origins, and none is included in L.

Proof : We must have 0 < L △ Ki < α for each i. For each i, we let
γi := α/2i+1 and βi := Σ{γj | xj ≺ xi} < α where xj ≺ xi means that xi is
between o(L) and xj . Then, we draw K1,K2, ...,Ki, ... with respective origins
x1, x2, ..., xi, ... such that L△Ki = βi. �

For each i, the sector S(Ki, xi, γi) contains nothing else than Ki. By Lemma
3.8, one can draw inside S(Ki, xi, γi) countably many lines with origin xi.

Proof of Proposition 4.5 : Let U be a structuring of a join-tree T . Let
A be the axis. Hence, lsub(A) is undefined.

The depth ∂(U) of U ∈ U is defined in Definition 3.27 for O-trees. It satisfies
the following induction :

∂(A) = 0,

∂(U) = ∂(U ′)+1 if U ′ has the minimal depth such that lsub(U) ∈ U ′.
(Hence, lsub(U) �= lsub(U ′)).

We draw lines L0, L1, ... and define an embedding m such that the conditions
of Definition 4.2 hold. We first draw L0 and define m on A, as required. We
choose α such that 0 < α < π. All further constructions will be inside the sector

40

S(L0, o(L0), α).By Lemmas 4.7 and 4.8, we can draw the lines of depth 1. There
is space for drawing the lines of depth 2. We continue in this way18 . �

5 Conclusion

We have defined betweenness relations in different types of generalized trees,
and obtained first-order or monadic second-order axiomatizations. In Section
4, we have given a geometric characterization of join-trees and the associated
betweenness relations.

We have proved that the class IBQT of induced substructures of the first-
order class QT of quasi-trees is first-order axiomatizable. This is not an imme-
diate consequence of the FO axiomatization of QT as shown in the appendix.

We conjecture that betweenness in O-trees is not first-order definable (al-
though the class of O-trees is). We also conjecture that the class IBO of induced
betweenness relations in O-trees has a monadic second-order axiomatization.

In [5], we have defined quasi-trees and join-trees of different kinds from
regular infinite terms, and proved they are equivalently the unique models of
monadic second-order sentences. Both types of characterizations yield finitary
descriptions and decidability results, in particular for deciding isomorphism. In
a future work, we will extend these results to O-trees and to their betweenness
relations.

Other works on betweenness.

Betweenness in partial orders (of any cardinality) is axiomatized by J. Lihova
in [12] by an infinite set of universal first-order sentences. We prove in [7] that
this set cannot be replaced by a single first-order sentence but that it can be by
a single monadic second-order one.

Several betweenness notion in graphs are surveyed in [1]. Motivated by the
study of convex geometries, V. Chvatal studies in [2] the betweenness in finite
triangulated graphs, relative to induced paths: y is between x and z if it is an
intermediate vertex on a chordless path between x and z.

6 Appendix : Induced relational structures

The following example shows that the FO characterization of IBQT does not
follow from the FO characterization of the class QT.

Counter-example 6.1 : Taking induced substructures does not preserve

first-order axiomatizability.

We prove a little more. We define an FO class C of relational structures
such that Ind(C), the class of induced substructures of those in C, is not MSO
axiomatizable.

18The angles γi are of course very small as depth increases.

41

Figure 15: The ladder of Example 6.1.

Let R be a binary relation symbol and A,B,C be unary ones. We let C be
the class of structures S = (V,R,A,B,C) that satisfy the following conditions
(i) to (iv) :

(i) The sets defined by A,B,C form a partition of V ,

(ii) R is irreflexive.

Hence S can be considered as a loop-free directed graph whose vertices form
the set V and are "colored" by A,B or C. Further conditions are as follows :

(iii) each infinite connected component of S is a "horizontal ladder"
that is infinite in both directions, and a portion of which is shown in
Figure 15; the sets of A- and C-colored vertices form two biinfinite
horizontal directed paths.

(iv) Each finite connected component is a closed "ring", with two
directed cycles of A- and C-colored vertices ; Figure 15 shows a
portion of such a ring.

By a successor (or predecessor) of x, we mean a vertex y such that (x, y) ∈ R
(or (y, x) ∈ R respectively).

Conditions (iii) and (iv) can be expressed by an FO sentence saying in par-
ticular :

(a) Every vertex xA in A has a unique successor yA in A and a unique
successor xB in B ; xB has a unique successor xC in C ; yA has a unique
successor in yB in B; yB has a unique successor yC in C that is also the unique
successor of xC in C.

(b) Similar condition with predecessor instead of successor for A- and C-
colored vertices.

(c) There are no other edges than those specified by (a) and (b).
Let us assume that Ind(C) is characterized by an MSO sentence ψ. We will

derive a contradiction.

42

Let θ be an MSO sentence expressing that a structure S = (V,R,A,B,C)
consists of six vertices xA, zA, xB, zB, xC , zC , of directed edges xAxB, xBxC ,
zAzB and zBzC , of a directed path pA of A-colored vertices from xA to zA and of
a directed path pC of C-colored vertices from xC to zC. These conditions imply
that V is finite. The construction of θ is routine. In particular, the existence
of paths pA and pC can be expressed in MSO logic with set quantifications.
First-order logic cannot express transitive closures. cf. [8].

Then, the structures that satisfy θ ∧ ψ are exactly those that satisfy θ and
have paths pA and pC of equal lengths. But such an equality is not MSO
expressible (cf. [8]). Hence, no MSO sentence ψ can characterize Ind(C). �

This example shows that the first-order axiomatization of the class IBQT

(Theorem 3.1) is not an immediate consequence of the first-order axiomatiza-
tion of quasi-trees. To the opposite, the proof of Proposition 2.9 has used an
argument based on the structure of logical formulas.

References

[1] M. Changat, P. Narasimha-Shenoi, and G. Seethakuttyamma, Be-
tweenness in graphs: A short survey on shortest and induced
path betweenness, AKCE International Journal of Graphs and

Combinatorics, 16 (2019) 96-109. (Available on ScienceDirect.com,
https://doi.org/10.1016/j.akcej.2018.06.007)

[2] V. Chvatal, Antimatroids, betweenness, convexity, in Research Trends in

Combinatorial Optimization, Spriner, 2008, pp. 57-64.

[3] B. Courcelle, Regularity equals monadic second-order definability for quasi-
trees, in Fields of Logic and Computation II, Lec. Notes Comput. Sci. 9300

(2015) 129-141.

[4] B. Courcelle, Several notions of rank-width for countable graphs, J. Comb.

Theory, Ser. B. 123 (2017) 186-214.

[5] B. Courcelle, Algebraic and logical descriptions of generalized trees, Logical
Methods in Computer Science 13 (2017) Issue 3.

[6] B. Courcelle, Betweenness in order-theoretic trees, to appear in Fields of

Logic and Computation III, Lecture Notes in Computer Science, Springer
2020.

[7] B. Courcelle, Betweenness of partial orders, April 2020, submitted for pub-
lication, see https://hal.archives-ouvertes.fr/hal-02547130

[8] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order

logic, a language theoretic approach, Cambridge University Press, 2012.

43

[9] R. Fraïssé, Theory of relations, Studies in Logic, Volume 145, North-
Holland, 2000.

[10] W. Hodges, Model theory, Cambridge University Press, 1993.

[11] L. Libkin, Elements of finite model theory, Springer, 2004.

[12] J. Lihova, Strict-order betweenness, Acta Univ. M. Belii Ser. Math. 8

(2000) 27-33. Available from https://actamath.savbb.sk/acta0804.shtml.

[13] S. Oum, Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95 (2005)
79-100.

44

