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44321 Nantes

Email: damien.chablat@cnrs.fr

Luc Rolland
School of Computing, Engineering and Physical Sciences

University of the West of Scotland,
Paisley, Scotland, UK

Email: luc.rolland@uws.ac.uk

ABSTRACT
This article presents a new variable actuation mechanism based on the 3-RPR parallel robot. This mechanism

is an evolution of the NaVARo robot, a 3-RRR parallel robot, for which the second revolute joint of the three
legs is replaced by a scissor to obtain a larger working space and avoid the use of parallelograms to operate the
second revolute joint. To obtain better spatial rigidity, the leg mechanism is constructed by placing the scissors
in an orthogonal plane to the plane of the manipulator displacement (3-RRR or even the 3-RPR). This geometric
property brings the significant consequence of allowing the scissors to directly substitute the prismatic chains in the
3-RPR and enjoy the same kinematics advantages for the overall robots as only one solution to the inverse kinematic
model. From the Jacobian expression, surfaces of singularity can be calculated and presented in a compact form.
The singularity equations are presented for a robot with a similar base and mobile platform. The properties of the
scissors are then determined to have a prescribed regular workspace.

1 INTRODUCTION
A major drawback of serial and parallel mechanisms is the inhomogeneity of kinetostatic performance in their workspace.

For example, dexterity, accuracy and stiffness are generally poor in the vicinity of the singularities that may appear within
the working space boundaries of these mechanisms. For parallel manipulators, their inverse kinematics problem often has
several solutions, which can be considered as “working mode” [1]. However, it is difficult to achieve a large workspace
without any singularity for any given working mode. Therefore, it is necessary to plan a trajectory change for the working
mode to avoid parallel singularities [2, 3]. In such a case, the initial trajectory would not be followed.

One solution to this problem is to introduce actuation redundancy, which could involve force control algorithms [4].
Another approach is to use the concept of joint coupling as proposed by [5]. Moreover, in each leg where actuation
reduncancy is implemented, it is possible to select the articulation which will be actuated in relation to the end-effector pose,
[6].

Practically, a first variable actuation mechanism (VAM) was introduced in 2008 [7], called NaVARo for Nantes Variable
Actuation Robot. This mechanism has eight actuation modes and is based on 3-RRR parallel topology, whereby the first or
second revolute joint can be actuated. As this mechanism has eight solutions to the inverse kinematic model, the singularity
determination and separation according to the current working mode is very difficult problem algebraically [8]. In addition,
the volume swept by the robot’s kinematics chain is large but the parallelograms reduce the workspace. A control framework
has been developed to drive the robot prototype [9]. The main problem comes from the localization of the position sensor on
the motor, which is not always connected to the robot base. Additional sensors may separate assembly modes, but a slight
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2 MECHANISM ARCHITECTURE OF THE NAVARO II
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Fig. 1. Isometric view of NaVARo II

slip in the couplings may disturb the location of the mobile platform. Another problem is the compliance errors according to
the actuation modes and the posture of the robot when the forces and torques applied on the mobile platform are not in the
plane [10].

The aforementioned solutions add between one and three actuators which require the hardware addition such as con-
troller outputs, PWM amplifiers and cables which increase material requirements, increasing the complexity and capital
costs. The proposed solution will virtually comprise six actuators but only connects three simultaneously through clutches
driven by a digital output. As a result, the robot controller will only drive three actuators. The proposed solution will limit
the driven actuators to three actuators including the PWM amplifiers and related analog elements thereby keeping the analog
hardware to a minimum comparable to the original 3-RPR. The added requirements will be six clutches and their related
digital hardware. Three encoders will determine the angular position of the fixed base revolute joints and three more will be
fitted on the actuating screws to determine the displacement of the scissors. The scissor actuating screws will be selected
reversible by either selecting the appropriate pitch or using ball screws allowing higher accelerations. This concept will be
utilized and examined in this article.

The aim of this article is to propose a new mechanism, based on the 3-RPR parallel topology for which singularities are
easier to calculate then the 3-RRR for all actuation modes. The possibility to change actuation mode will allow singularity
avoidance. Among the other advantages, the actuated scissors provide linear displacements with less encumbrance then with
prismatic or linear actuators. Finally, the perpendicularly located scissors offer increased rigidity in the third dimension
perpendicular to the planar robot displacement plane.

The outline of this article is as follows. The first section presents the architecture of the NaVARo II robot with its
eight actuation modes. The second section examines kinematics modeling and presents the algebraic equations of parallel
singularities as well as the limits of the workspace. The displacement ranges of the scissor mechanisms are determined to
include a regular workspace inside. Depending on workspace limits, the singular surfaces are reduced to present only the
significant singularities, the ones within the workspace.

2 Mechanism architecture of the NaVARo II
The VAM concept was examined in [5, 6]. They derived a VAM from the architecture of the 3-RPR planar parallel

manipulator by actuating either the first revolute joint or the prismatic joint of its kinematics chains. The same concept was
introduced in [7] based on the 3-RRR and a first prototype was reported in [11].

The newly proposed 3-RPR manipulator concept with variable actuation is shown in Fig. 1. The use of scissors makes
it possible to limit the space requirement and encumbrance during movements in contrast to previous designs where the
prismatic actuators can bring signiciant encumbrance problems. Moreover, scissors are parallel mechanisms which improve
rigidity. The number of scissors can be optimized according to the possible height of the mobile platform, the desired
stiffness or the desired maximum length of the equivalent prismatic joint [12–14].

This mechanism can be represented on a projection like all 3-RPR mechanisms. The pose of the mobile platform is
determined by the Cartesian coordinates (x, y) of the end-effector P expressed in the basic frame Fb and the angle α, i.e. the
angle between the reference frames Fb and Fp (Figure 2). To illustrate this manipulator, the following dimensions have been
fixed, A1A2 = A1A3 = A2A3 = 90, B1B2 = B1B3 = B2B3 = 30, ε = π/3 and rmin ≤ ρi ≤ rmax for i = 1,2,3 where ε is the
angle formed by B2,B1,B3.

A new transmission system has been designed, developed and installed in each kinematics chain of the NaVARo II so
that the robot controller can select one actuation mode or the other and easily switch between them through a dual clutch
system. As for NaVARo I, it consists of one motor with a shaft where two clutches can provide motor torque to either
the revolute joint or to the scissor mechanism for changing its length. The motor will drive either the revolute connection
between the base and the kinematic chain or the specific prismatic joint displacing the scissor mechanism.
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Fig. 2. 3-RPR with variable actuation where the first revolute joint (θi) or the prismatic joint (ρi) is actuated
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Fig. 3. The NAVARO II transmission system with two clutches and two gear trains for changing the actuation mode

Figure 3 shows an actuation diagram of the NaVARo II. This mechanical system contains: (i) an electric motor (green),
(ii) a main shaft (red), (iii) a base (blue), (iv) the first axis of the kinematics chain (magenta), (v) a prismatic link shaft
(yellow), and (vi) two electromechanical clutches (orange) which connects the motor axis to the main shaft or the first axis
of the kinematics chain thanks to two gear trains. The gear ratios can be similar or defined according to the pitch of the ball
screw to have similar maximum speed for the mobile platform when the actuation mode is changed.

In each kinematics chain, through the appropriate clutches, the robot controller will select the first actuation mode by
connecting the motor to the revolute joint or the second actuation mode by connecting the motor to the scissor. Note that the
scissor operates with either a ball screw or machine screw where the pitch allows reversibility.

Two position sensors (preferably encoders) provide for the angular position of the leg relative to the base (sensor 1: θi)
and the angular position of the ball screw driving the scissor mechanism acting as the prismatic actuator (sensor 2: µi). The
values of the two sensors, combined with the joint limits, allow us to determine the current assembly mode of the robot. The
length of the scissor ρi is computed thanks to the position of prismatic link shaft µi and the length l of the scissors.

The actuation modes are slightly different from the NaVARo I. Each transmission system has four actuation schemes,
that are defined thereafter:

1. None of clutches 1 and 2 are active. The main shaft can move freely in relation to the base. In this case, neither the
pivot joint nor the prismatic joint is actuated. The kinematics chain can move freely, i. e. θi or ρi are passive, i = 1,2,3.
This mode allows the user to take and freely move the robot end-effector around the workspace.
2. Clutch 1 is active while clutch 2 is not. The first kinematics chain axis (green) is driven by the rotation of the motor

JMR-18-1364, D. Chablat, Page 3/10



3 KINEMATIC MODELING OF THE NAVARO II MANIPULATOR

Table 1. The eight actuating modes of the 3-RRR VAM

Actuating mode number active joints

1 RPR1-RPR2-RPR3 θ1, θ2, θ3

2 RPR1-RPR2-RPR3 θ1, θ2, ρ3

3 RPR1-RPR2-RPR3 θ1, ρ2, θ3

4 RPR1-RPR2-RPR3 ρ1, θ2, θ3

5 RPR1-RPR2-RPR3 θ1, ρ2, ρ3

6 RPR1-RPR2-RPR3 ρ1, ρ2, θ3

7 RPR1-RPR2-RPR3 ρ1, θ2, ρ3

8 RPR1-RPR2-RPR3 ρ1, ρ2, ρ3

shaft. In this case, the angle θi is active while ρi is passive, i = 1,2,3.
3. Clutch 2 is active while clutch 1 is not. The first kinematics chain joint is free but the rotation of the motor shaft
leads to a slider displacement, which activates the scissor. In this case, the θi is passive and ρi is active, i = 1,2,3.
4. Both clutches 1 and 2 are active. Both joints are are actuated by the same motors through some gear trains cause
one displacement which would require synchronized rotation and translation. The end of the kinematics chain will make
an almost spiral-like motion; however, the coupled leg constraints would limit the workspace and therefore will not be
implemented.

The latter actuation mode differs from the NaVARo I. During path planning, only the second and third actuation modes will
be implemented in the control algorithms and thereby examined in our study. Thus, NaVARo II has eight actuation modes, as
shown in Table 1. For example, the first actuation mode corresponds to the 3-RPR mechanism, also referred to as the RPR1-
RPR2-RPR3 mechanism, since the first revolute joint (located at point Ai) of its kinematics chain are actuated. Similarly, the
eighth actuation mode corresponds to the 3-RPR manipulator, also known as the RPR1-RPR2-RPR3 mechanism, since the
prismatic joints of its kinematics chains are actuated.

3 Kinematic modeling of the NaVARo II manipulator
In this section, we present the kinematic model that is commonly used to geometrically define the constraint equations,

singular configurations, the workspace boundaries and surfaces that define the singularity loci.

3.1 Kinematic modeling
The velocity ṗ of point P can be obtained in three different forms, depending on which kinematics chain is traversed :

ṗ = θ̇iE(bi−ai)+ ρ̇i
bi−ai

||bi−ai||
+ α̇E(p−bi) (1)

with matrix E defined as

E =

[
0 −1
1 0

]
(2)

Thus, p, bi, ai are the position vectors of points P, Ai and Bi, respectively, and α̇ is the rate of angle α.
To compute the kinematic model, we have to eliminate the idle joints θi or ρi as a function of the actuation mode. We

have to left multiply Eq. 1 by hT
i defined, for θ̇i as

hi = (bi−ai) (3)

and for ρ̇i as

hi = E
bi−ai

||bi−ai||
. (4)
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3.2 Constraint equations 3 KINEMATIC MODELING OF THE NAVARO II MANIPULATOR
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The kinematic model of the VAM can now be expressed in vector form, namely,

At = Bq̇ with t = [ṗT
α̇]T and q̇ = [q̇1 q̇2 q̇3]

T (5)

with q̇i thus being the vector of actuated joint rates where q̇i = θ̇i when the first revolute joint is driven and q̇i = ρ̇i when
the prismatic joint is driven, for i = 1,2,3. A and B are respectively, the direct and the inverse Jacobian matrices of the
mechanism, defined as

A =

hT
1 −hT

1 E(p−b1)
hT

2 −hT
2 E(p−b2)

hT
3 −hT

3 E(p−b3)

 B = diag[ρ1 ρ2 ρ3] (6)

The geometric conditions for parallel singularities are well known in the literature for the first and eighth actuation modes.
For the first actuation mode, it is when the lines Li, normal to the axis (AiBi) are intersecting at one point, see Fig. 4.

For the eighth actuation mode, it is when the lines Mi, passing through the axis (AiBi) are intersecting at one point, see
Fig. 5. For the other modes, it is just necessary to consider either the Li or Mi lines according to the actuated joints, i.e. Li
when the ith revolute joint is actuated and Mi when the ith prismatic joint is actuated.

3.2 Constraint equations
To maintain the robot symmetry, the end-effector position is located in the center of the mobile platform. The constraint

equations for all actuation modes can be determined by traversing the closed loops of the mechanism. Equations 7-10
describe the two closed loops and Eqs. 11-12 define the position and orientation of the mobile platform.

ρ1Cθ1 +30Cα−ρ2Cθ2 −90 = 0 (7)
ρ1Sθ1 +30Sα−ρ2Sθ2 = 0 (8)

ρ1Cθ1 +15(Cα−
√

3Sα−3)−ρ3Cθ3 = 0 (9)

ρ1Sθ1 +15(Sα +
√

3Cα−3
√

3)−ρ3Sθ3 = 0 (10)

x−ρ1Cθ1 −15Cα +5
√

3Sα = 0 (11)

y−ρ1Sθ1 −15Sα−5
√

3Cα = 0 (12)

with Cα = cos(α), Sα = sin(α), Cθi = cos(θi), Sθi = sin(θi) for i = 1,2,3. To make these equations algebraic, we use a
substitution of all trigonometric functions as well as the square root function with

√
3 = S3 and S32 = 3

cos(β) = Cβ and sin(β) = Sβ for any angles β.

We obtain a system with eleven equations, four for loop closures, two for the position and orientation of the mobile platform,
four for trigonometric functions and one for the square root function with 14 unknowns. This equation system is under-
determined. In this case, the equation manipulation remains challenging and powerful algebraic tools must be used like the
Siropa library implemented in Maple [15, 16].
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3.3 Workspace boundaries 3 KINEMATIC MODELING OF THE NAVARO II MANIPULATOR
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Fig. 7. Workspace of the NaVARo II in isometric view and three projections onto the planes (xy), (xα) and (yα)

3.3 Workspace boundaries
If the revolute joints have no limits, the boundary of the workspace is given by the minimum and maximum extension

of the scissor mechanisms as shown in Fig. 6. The minimum value of ρi permits to avoid serial singular configuration where
ρi = 0. Using the constraint equations and ranges limits of prismatic joints, (rmin ≤ ρi ≤ rmax), which correspond to the
scissor mechanisms, we find three surface equations that describe the boundary of the working space. These limits mean that
there is no collision between the kinematic chains and the mobile platform.

10
√

3xsin(α)−10
√

3ycos(α)− r2
max + x2−30xcos(α)+ y2−30ysin(α)+300 = 0 (13)

(−10ycos(α)+10 sin(α)(x−90))
√

3+(30x−2700)cos(α)+ x2 + y2 +30ysin(α)− r2
max−180x+8400 = 0 (14)

(20ycos(α)+(−20x+900)sin(α)−90y)
√

3+ x2 + y2− r2
max−90x−2700 cos(α)+8400 = 0 (15)

For example, Fig. 7 depicts the boundaries of the workspace where rmin = 8 and rmax = 59. One function of the Siropa
library displays surfaces that can be limited by inequality equations. The surfaces are shown in blue, red and green represent
the minimum and maximum limits of leg one, two and three, respectively in Fig. 7. The projections onto the (xy), (xα) and
(yα) planes are used to estimate the main dimensions of the workspace. A cylindrical algebraic decomposition (CAD) can
also be performed to have a partition of the workspace for each actuation mode [17].

3.4 Definition of a regular workspace
Due to the selected symmetrical architecture, the simple regular workspace can be defined as a disc of radius r whose

centre is located at the barycentre of the triangle (A1A2A3). For each position of the mobile platform, the orientation can
vary over the following interval, [αmin αmax]. As a numerical application, we choose the following parameters for our regular
workspace, rw = 25, αmin = −π/2 and αmax = π/2. From Eqs. 13-15, we can observe that the minimum values of r are
reached for α = 0 and the maximal value of r are reached for α = αmin or α = αmax.

For α = π/2 : 10
√

3x+300− r2
max + x2 + y2−30y = 0 (16)

For α = π/2 : (−900+10x)
√

3+8400+ x2 + y2 +30y− r2
max−180x = 0 (17)
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Fig. 8. Minimum and maximum lengths of the scissors for rw = 25

For α = π/2 : (900−20x−90y)
√

3+ x2 + y2− r2
max−90x+8400 = 0 (18)

For α = 0 : 300−10
√

3y− r2
min + x2−30x+ y2 = 0 (19)

For α = 0 :−10
√

3y−150x+5700+ x2 + y2− r2
min = 0 (20)

For α = 0 :−70
√

3y+ x2 + y2− r2
min−90x+5700 = 0 (21)

For α = −π/2 :−10
√

3x+300− r2
max + x2 + y2 +30y = 0 (22)

For α = −π/2 : (900−10x)
√

3+8400+ x2 + y2−30y− r2
max−180x = 0 (23)

For α = −π/2 : (−900+20x−90y)
√

3+ x2 + y2− r2
max−90x+8400 = 0 (24)

The r range is defined when there is no intersection with the regular workspace. Finding intersections with the workspace
boundary allows to determine the values of r. By expressing x as a function of y, we can examine the number of intersections
using the coupling curves shown in the figures 8. We obtain six equations which have the following shape for the intersection
of the kinematic chain workspace which is fixed in A1

10
√

3
(

45+
√
−50+30

√
3y− y2

)
+300− r2 +

(
45+

√
−50+30

√
3y− y2

)2

+ y2−30y = 0 (25)

10
√

3
(

45−
√
−50+30

√
3y− y2

)
+300− r2 +

(
45−

√
−50+30

√
3y− y2

)2

+ y2−30y = 0 (26)

To find the maximum or minimum value of r on these curves, it is sufficient to study the sense of variation by deriving
with respect to y. In our case study, we find rmin = 9.64 and rmax = 79.77.

From Fig. 6, the length of each scissor bar and its height allow to define, for n scissors, the minimum and maximum
length, rmin and rmax respectively, as well as a relationship between height and length

rmin = nh (27)

rmax = n
√

l2−h2 (28)
l > 3h (29)

We can make a numerical application from the previous results according to the number of scissors.

h = 9/n l =
√

6481/n (30)

The graphics in Figure 9 show the length l and height h of the scissors as a function of the n number of scissors. The inequality
constraint is always checked but the bar cross-sections decrease with n, so the rigidity of the structure is conjectured to
decrease. A stiffness study is therefore necessary to choose the maximum number of scissors that can be used. This could
lead to an interesting optimisation problem left for further research.

4 Singular configurations
From the constraint equations, it is possible to write the determinant of matrix A. These determinants depend on the

positions of the mobile platform, the passive joints and the active joints. Only an elimination method based on Groebner’s
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Fig. 12. Singularity surfaces for actuation modes 1

basis can successfully obtain the singularity representation in the Cartesian workspace. Note that for only the first and
eighth actuation modes, the determinant of A is factorized to form two parallel planes. For the eighth actuation mode, an
unrepresented singularity exists for α = π. The equations of the singularities for the eight actuation modes are given in the
Appendix. As there is only one working mode, the equations of these surfaces are simpler than for the NAVARO I robot for
which it is not possible to simply describe these equations in a sufficiently compact format for publication.

Figures 10 and 11 show all singularities for the eight actuation modes without and with the joint limit conditions respec-
tively. As none of them are superposed, it is possible to completely move through the workspace by choosing a non singular
actuation mode for any pose of the mobile platform. The identical trajectory planning algorithm, which was introduced for
the NaVARo I manipulator, can be used to select the actuation mode able to avoid singular configurations [18].

As an example, Figures 12 represents the singularities of the first actuation mode with, on the left, the singularities
without joint limits and, on the right, those included in the workspace.
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6 APPENDIX

5 Conclusions
In this article, a new version of the NaVARo manipulator was introduced and was derived from the well-known 3-RPR

or even 3-RRR manipulators. Taking advantage of the actuation mode change, the entire Cartesian workspace can be used.
By eliminating the parallelograms that allowed the first NaVARO robot to have an actuation on the second pivot joint which
has the disadvantage of carrying mass, the Cartesian workspace is significantly increased. In addition, it is possible to install
sensors on both actuated joints of each kinematic chain and to easily locate the mobile platform end-effector by solving
the direct kinematic problem. The use of scissor mechanisms makes it possible to have a greater rigidity in the transverse
direction of the robot movement as well as a prismatic-like displacement which can be increased largely according to the
number of scissors. Unlike the NaVARo I, which is based on a 3-RRR robot, the NaVARo II is based on the architecture of
the 3-RPR, which has only one solution with the inverse kinematic model for any actuation mode. This property allows a
complete writing of singularity equations whereas for the robot 3-RPR. In the literature, for the 3-RRR, these equations can
only be written for a given orientation of the mobile platform. Future works will be carried out to evaluate the stiffness of the
robot based on the size and the number of scissors and the number of solutions to the direct kinematic model to determine
if there are actuation modes for which the robot is cuspidal. This problem can be expanded into an optimization problem
where the scissor mechanisms will be tailored to the workspace requirements.
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6 APPENDIX

Actuation mode 1
−3(−30

√
3y+ x2 + y2 +1800Cα−90x−300)(Cα−1/3) = 0 (31)

Actuation mode 2
((−240x+5400)yC2

α +((120x2−120y2−5400x)Sα +360y(x−50))Cα +

(360y2 +1800x)Sα +120y(x+45))
√

3+(−120x2 +120y2 +16200x)C2
α +

((−240x+16200)ySα +(−4x+180)y2 −
4x3 +540x2−18000x)Cα−4y(x2 + y2−90x+8550)Sα−60x2−180y2−5400x = 0 (32)

Actuation mode 3
(−160y(x+45)C2

α +((80x2−80y2 +7200x−648000)Sα−4y(x2 + y2−180x−600))Cα +

(4x3 +4xy2−720x2 +30000x+108000)Sα +80y(x−90))
√

3 +

(−240x2 +240y2 +21600x)C2
α +(−480y(x−45)Sα−4(x−90)(x2 + y2−180x−600))Cα −

4y(x2 + y2−180x+7500)Sα +120x2−120y2−21600x+972000 = 0 (33)
Actuation mode 4

(−160y(x−135)C2
α +((80x2−80y2−21600x+648000)Sα +4x2y+4y3−34800y)Cα +

(−4x3 +360x2 +(−4y2 +2400)x+360y2−108000)Sα +80xy)
√

3+(240x2−240y2−21600x)C2
α +

(480y(x−45)Sα−4x3−4xy2 +34800x)Cα +(−4x2y−4y3 +2400y)Sα−120x2 +120y2 = 0 (34)
Actuation mode 5

((1680xy−70200y)C2
α +((−840x2 +840y2 +70200x)Sα−12x2y−12y3−2100y)Cα +

(12x3 +12xy2−95100x)Sα−840xy+32400y)
√

3+(840x2−840y2−210600x+6804000)C2
α +

((1680xy−210600y)Sα−36x3 +3240x2 +(−36y2−6300)x+3240y2 +1323000)Cα −
36y(x2 + y2−7925)Sα +180x2 +1020y2 +97200x−6902000 = 0 (35)

Actuation mode 6
((80x2−80y2−7200x+324000)C2

α +(160y(x−45)Sα +360y2−54000)Cα −
360y(x−45)Sα−60x2 +20y2 +5400x−156000)

√
3 −

4y(x2 + y2−90x+8100)Cα +4(x−45)(x2 + y2−90x)Sα +5400y = 0 (36)
Actuation mode 7

(480y(x−45)C2
α +((−240x2 +240y2 +21600x)Sα +4y(x2 + y2−180x+8100))Cα −

4(x−90)(x2 + y2−180x)Sα−240y(x−45))
√

3+(1944000−240x2 +240y2−21600x)C2
α +

(−480y(x+45)Sα−324000−12x3 +2160x2 +(−12y2−97200)x)Cα−12y(x2 + y2−180x)Sα −
240y2 +32400x−936000 = 0 (37)

Actuation mode 8
−Sα(30

√
3y− x2− y2−1800Cα +90x+300) = 0 (38)
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