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Abstract
We introduce a new model-based incremental
choice procedure for multicriteria decision support,
that interleaves the analysis of the set of alterna-
tives and the elicitation of weighting coefficients
that specify the role of criteria in rank-dependent
models such as ordered weighted averages (OWA)
and Choquet integrals. Starting from a prior distri-
bution on the set of weighting parameters, we pro-
pose an adaptive elicitation approach based on the
minimization of the expected regret to iteratively
generate preference queries. The answers of the
Decision Maker are used to revise the current dis-
tribution until a solution can be recommended with
sufficient confidence. We present numerical tests
showing the interest of the proposed approach.

1 Introduction
Designing efficient preference elicitation methods is one of
the major challenges of computer-aided decision support.
Various preference models have been proposed and studied in
Decision Theory for modeling individual values and generat-
ing personalized recommendations. These models use prefer-
ence parameters that must be tuned to the value system of the
Decision Maker (DM). In multicriteria decision support, the
key parameters that must be elicited to perform the preference
aggregation are weighting coefficients that specify the role of
criteria in the aggregation, in particular their relative impor-
tance and sometimes also their level of interaction, see e.g.,
[Tehrani et al., 2012]. Weighting coefficients can be elicited
in a preliminary step and used for several recommendation
tasks or can alternatively be elicited on the fly during the ex-
ploration of the set of alternatives. The latter approach, said
to be incremental, has been widely investigated in AI in or-
der to reduce the elicitation burden. Several utility elicitation
methods are now available, see e.g., [Ha and Haddawy, 1997;
Chajewska et al., 2000; Blythe, 2002; Wang and Boutilier,
2003; Braziunas and Boutilier, 2007]. The incremental ap-
proach makes it possible to concentrate the elicitation effort
on the part of the preferential information that is sufficient
to determine an optimal choice. It also makes it possible to
adapt the questionnaire to DM’s answers, to quickly dispel
the uncertainty attached to incomparable alternatives.

One key aspect of interactive preference elicitation is to
limit the number of preference queries without downgrad-
ing the quality of recommendations. To this end, efficient
adaptive elicitation strategies have been proposed allowing a
fast reduction of the space of possible parameters until it be-
comes sufficiently small to be able to determine the optimal
choice without ambiguity. For example, this is the case of
incremental elicitation methods based on the minimization of
the maximum regret proposed in [Wang and Boutilier, 2003;
Boutilier et al., 2006; Benabbou and Perny, 2015; Benabbou
et al., 2017]. Preference queries are generated to reduce the
imprecision of parameters and the regrets attached to the pos-
sible decisions. The responses are translated into hard con-
straints limiting the space of admissible parameters and al-
lowing sharper preferences to be derived. No opportunity is
nevertheless given to the DM to contradict herself. In these
approaches relying on a progressive and backtrack-free re-
duction of the uncertainty set, the efficiency comes at the cost
of a relative lack of robustness in recommendation tasks, as
illustrated by the following example.

Example 1 We consider a set A of alternatives in a bi-
criteria decision problem containing 101 elements charac-
terized by their performance vectors ai = (i, 100 − i), i =
0, . . . , 100. We assume here that the DM’s preferences can
be represented by an ordered weighted average (OWA) of
the form: uw(ai) = wmin{ai1, ai2}+(1 − w)max{ai1, ai2}
with w = 0.6. Hence, u0.6(ai) = 40+0.2i, ∀i ∈ J0, 50K and
u0.6(a

i) = 60−0.2i,∀i∈ J51, 100K and the u0.6-optimal so-
lution is a50 = (50, 50) with utility 50. We remark here the
interest of OWA aggregation that selects the better balanced
vector in A. Such a selection could not be performed with a
linear model. Assume now that w is unknown and must be
elicited. Hence the set of possible values for w is W =[0, 1].
Assume that the DM first declares that ak is at least as good
as ai for some i < k ≤ 50. From uw(a

k) ≥ uw(ai) we ob-
tain w≥0.5 and therefore W =[1/2, 1]. After this reduction,
the optimal solution in A is necessarily a50. We indeed have
uw(a

50)−uw(ak)=(50− k)(2w − 1)≥0 for all k∈J0, 50K
and w∈ [1/2, 1], and uw(a50)− uw(ak)=50− 100w+i≥0
for all k∈J51, 100K and w∈ [1/2, 1]. If the DM answers that
ai is strictly better than ak for some i < k ≤ 50, a similar
treatment would lead to conclude that W =[0, 1/2) and that
a0 and a100 are necessarily optimal in A. In both cases, an
optimum is found after one preference query.



This example shows the efficiency of incremental prefer-
ence elicitation in a simple case of bi-criteria decision mak-
ing using an OWA. The optimal choice can be determined
while the uncertainty about criteria weights remains very
large. This example also illustrates the high sensitivity of the
method to possible errors made by the DM in expressing her
preferences. If the DM unfortunately declares that she strictly
prefers ai to ak for some i < k ≤ 50 while its utility function
is u0.6, we may recommend a0 which is actually the worst
option. This lack of robustness is due to definitive reductions
of the uncertainty set W resulting from hard constraints de-
rived from the observed preferences at every step. In case of a
wrong answer, the uncertainty set will definitely exclude the
correct value of the hidden parameters and reduce the rele-
vance of recommendations. In this paper we keep unchanged
the uncertainty set, and maintain a probability density func-
tion over it. The distribution is updated in a Bayesian manner.

2 Preliminaries
2.1 Rank-dependent Aggregation Functions
Let A be the set of alternatives that need to be compared in
order to make a decision. Any alternative a ∈ A is eval-
uated with respect to a set of p criteria denoted by C =
{1, . . . , p}, and is characterized by a performance vector
a = (a1, . . . , ap), where ai ∈ [0, 1] represents the utility of
a with respect to criterion i. All utilities ai are expressed on
the same scale; the utility functions must be defined from the
input data (criterion or attribute values), as proposed by, e.g.,
Grabisch and Labreuche [2010]. From now on, for simplicity,
we will consider the image ofA in the criteria space, denoted
by abuse of notation A={a1, . . . ,an}, and indifferently use
the terms “alternative” and “performance vector”.

A standard way to model preferences between perfor-
mance vectors consists in using an aggregation function that
maps vectors to scalar values. The function is called rank-
dependent if the vector is sorted in nondecreasing order be-
fore being mapped into a scalar value. This enables to assign
weighting coefficients to components of the performance vec-
tor according to their ranks. Given a vector a, we denote by
(·) a permutation on C such that a(1)≤ . . .≤a(p).

We will consider two families of rank-dependent aggre-
gation functions, namely ordered weighted averages (OWA)
and Choquet integrals. These aggregation functions are
known to be monotonic with respect to weak Pareto domi-
nance (a weakly dominates b if ai ≥ bi for i∈{1, . . . , p}).

Ordered Weighted Averages
This family of aggregation functions has been introduced by
Yager (1988). Let λ = (λ1, . . . , λp) be a weighting vector
(
∑p

i=1 λi = 1 and λi ≥ 0 ∀i). The OWA defined by λ reads:
OWAλ(a) =

∑p
i=1 λia(i). (1)

Note that the OWA aggregator includes the min, the max and
the arithmetic mean as special cases. The OWA function is
concave if λ1 ≥ . . . ≥ λp. The subclass of concave OWA
functions is of particular interest in fair optimization because
OWA((a1, . . . , ai−ε, . . . , aj+ε, . . . , ap))≥OWA(a) for all
i, j, ε such that ai−aj ≥ ε > 0. It thus favors well-balanced
performances. While instances of OWA range from the min

(λ1 = 1 and λi = 0 ∀i > 0) to the max (λp = 1 and λi = 0
∀i < p) depending on the weights, instances of concave OWA
range from the min to the arithmetic mean (λi=1/p ∀i).
Example 2 Let a = (0.3, 0.5, 0.8) and b = (0.5, 0.6, 0.4).
For λ= (0.5, 0.3, 0.2), we have OWAλ(a) = 0.46< 0.47 =
OWAλ(b), thus b is preferred to a.

Choquet Integrals
The Choquet integral [Schmeidler, 1986; Grabisch et al.,
2009] is an aggregation function that generalizes the notion
of average, by defining a capacity on the criteria set. A ca-
pacity is a set function from 2C to R such that v(∅) = 0,
v(C)=1 and v(X)≤v(Y ) for all X⊆Y ⊆C. In multicrite-
ria analysis, v(X) represents the weight attached to coalition
X , for any X ⊆ C. The Choquet integral defined by v reads:

Cv(a) =
∑p

i=1(v(A(i))− v(A(i+1)))a(i) (2)

=
∑p

i=1[a(i) − a(i−1)]v(A(i)) (3)
where A(i) = {(i), . . . , (p)} (i.e., the criteria whose perfor-
mance is greater or equal to a(i)), v(A(p+1))=0 and a(0)=0.
Note that the Choquet integral includes the weighted sum
as a special case: if v is additive, i.e., v(X) =

∑
i∈X λi

for some positive coefficients λi, then Equation 2 leads to
Cv(a) =

∑
i λiai. The Choquet integral also includes the

OWA function as special case. Indeed, if we use a symmet-
ric capacity v in Equation 2, i.e., v(X) only depends on |X|,
then λi = v(A(i))−v(A(i+1)) only depends on i and not on
the elements in A(i) and A(i+1), thus we recognize an OWA.

Example 3 Let us come back to Example 2. Consider the
capacity v defined by v(∅) = 0, v(C) = 1 and:

X {1} {2} {3} {1, 2} {1, 3} {2, 3}
v(X) 0.1 0.2 0.3 0.5 0.5 0.6

The evaluations of a and b using Equation 3 are:
Cv(a) = 0.3 v(C) + 0.2 v({2, 3}) + 0.3 v({3}) = 0.51

Cv(b) = 0.4 v(C) + 0.1 v({1, 2}) + 0.1 v({2}) = 0.47

Thus Cv(a)>Cv(b) and a is preferred to b.

We now recall a useful representation of capacities in
terms of Möbius inverse. The Möbius inverse of a capac-
ity v is a mapping mv : 2C → R defined by mv(X) =∑

Y⊆X(−1)|X\Y |v(Y ) ∀X ⊆ C. The quantity mv(X) is
called the Möbius mass of X . The capacity can be derived
from its Möbius inverse as follows: ∀X ⊆ C, v(X) =∑

Y⊆X mv(X). The Möbius inverse yields an alternative
formulation of the Choquet integral:

Cv(a) =
∑

X⊆C mv(X)mini∈X ai

A capacity v is said to be k-additive if mv(X) = 0 for all
X ⊆C such that |X|>k and there exists at least one subset
X such that |X|=k and mv(X)>0. For instance, the capac-
ity v considered in Example 3 is at most 2-additive because:
m({1, 2, 3})=v({1, 2, 3})−

∑
i 6=j v({i, j})+

∑
i v({i})=0.

The main interest of Choquet integrals for multicriteria deci-
sion making stems from the fact that they can represent in-
teraction between criteria [Grabisch and Labreuche, 2010],
as can be witnessed by the Möbius masses. For instance, by
definition, mv({i, j}) = v({i, j})−v({i})−v({j}). There
is a positive interaction between i and j if mv({i, j}) > 0,



and negative if mv({i, j}) < 0. The k-additive capacities
for small values of k greater than 1 are very useful because
in practical situations, they offer a sufficient expressivity to
model positive or negative synergies between criteria with a
reduced number of parameters. For example, when k = 2
the capacity is completely characterized by (p2+p)/2 coeffi-
cients (one Möbius mass for every singleton and every pair).

The aggregation functions introduced above are intended
to be used to describe the preferences of the DM, thus their
parameters (i.e., the weighting vector or the capacity) must
be inferred from preference statements provided by the DM.

2.2 Related Works
Regarding the Bayesian incremental elicitation of an aggrega-
tion function from pairwise preference queries, the previous
works in the literature can be divided in two categories: non-
parametric approaches and parametric approaches.

Following a nonparametric approach, Chu and Ghahra-
mani [2005] proposed to use Gaussian Processes (GP) for
preference learning. To approximate any possible aggrega-
tion function, the idea is to assume that each overall utility
value follows a normal distribution. The joint distribution de-
fines a GP. This distribution is characterized by a mean func-
tion and a covariance matrix, and can be seen as an infinite-
dimensional extension of a multivariate Gaussian distribution
(the domain of the aggregation function can indeed be infi-
nite). The covariance matrix is used to ensure that alternatives
with similar performance vectors yield similar overall utility
values. Building on this work, Brochu et al. [2007] proposed
an active learning procedure that does not require to accu-
rately model the entire aggregation function to determine an
optimal alternative. Their approach is based on pairwise com-
parison queries. Zintgraf et al. [2018] recently extended it to
other query types, like asking the user to rank or cluster alter-
natives. In this paper, we investigate a parametric approach
where one imposes a rank-dependent aggregation function to
ensure appealing normative properties.

A parametric approach consists indeed in learning the pa-
rameters of a given aggregation function. This kind of ap-
proaches was well introduced and illustrated in [Chajewska
et al., 2000] for the adaptive elicitation of utility values over
a finite set of outcomes in decision making under uncertainty.
While their approach used standard gamble queries (pairwise
preference queries between probability distributions over out-
comes), Guo and Sanner [2010] proposed a variant that only
requires the users to state their preference under certainty, so
as to reduce the cognitive load. Recently, for the adaptive
elicitation of the parameters of a multiattribute utility func-
tion, Sauré and Vielma [2018] proposed an approach that up-
dates an ellipsoidal credibility region computed from a multi-
variate normal distribution over the space of parameters, and
showed how to use mixed integer programming to determine
queries that are likely to reduce the volume of the credibil-
ity region. Nonetheless, none of these works is concerned
with learning the parameters of a rank-dependent aggregation
function, which is the aim of the present paper.

Most of the works aiming at determining the parameters of
rank-dependent aggregation functions consider a static pref-
erence database as input, and focus on the determination of

parameter values that best fit the available preferences. For
learning the parameters of a Choquet integral, Marichal and
Roubens [2000] presented a linear programming formulation,
Tehrani et al. [2012] proposed a generalization of logistic re-
gression, and Rowley et al. [2015] used a principal compo-
nent analysis. Departing from these works, incremental elic-
itation procedures have recently been proposed [Benabbou et
al., 2017; Bourdache and Perny, 2019], but they assume no
response-error. Yet, as illustrated in Example 1, the recom-
mendation made can be severely impacted by errors in re-
sponses. To overcome this drawback, we introduce in the
next section some useful linear and compact reformulations
of OWA and Choquet aggregators in new multidimensional
spaces, that makes it possible to implement Bayesian linear
regression techniques with rank-dependent models.

3 Basis Functions for OWA and Choquet
A way to extend Bayesian linear regression to a nonlinear
function f is to reformulate f as a linear combination of (non-
linear) basis functions g1, . . . , gq [Bishop, 2006]. Formally:

f(a) =
∑q

i=1 wigi(a) = wTg(a)

where w= (w1, . . . , wq)
T is a weighting vector and g(a) =

(g1(a), . . . , gq(a))
T . Thus, f is a linear function in the space

of features g1, . . . , gq . We now introduce suitable basis func-
tions for the rank-dependent aggregators studied here.

Ordered Weighted Averages
Obviously, any OWA function is a linear combination of func-
tions gi(a) = a(i) for i= 1, . . . , p (see Equation 1). Given a
weighting vector λ for OWA, the corresponding parameters
for the basis functions are wi = λi for i= 1, . . . , p. For the
OWA function to be nondecreasing in every component, we
impose wi ≥ 0 for i = 1, . . . , p.

Concave Ordered Weighted Averages
In the context of fair optimization, the constraint w1≥ . . .≥
wp is required to favor solutions having balanced profile
[Weymark, 1981], which makes the linearization more tricky.
In this case we get a concave OWA function. To overcome
the problem, we shall use cumulative functions defined by
gi(a) =

∑i
k=1 a(k). It can easily be checked that:

OWAλ(a) =
∑p

i=1 wi

(∑i
k=1 a(k)

)
wherewi=λi−λi+1 for i<p andwp=λp. Conversely, given
parameters wk, the corresponding weights for OWA are λi =∑p

k=i wk. Note that to enforce constraint λ1≥ . . .≥λp≥ 0,
we only have to impose wi ≥ 0 for i = 1, . . . , p.

Example 4 For λ = (0.5, 0.3, 0.2) (as in Example 2), the
expression OWAλ(a) reformulates as 0.2g1(a)+0.1g2(a) +
0.2g3(a). If a=(0.3, 0.5, 0.8), we have g(a)=(0.3, 0.8, 1.6)
and OWAλ(a)=0.2×0.3+0.1×0.8+0.2×1.6=0.46.

2-additive Choquet Integrals
To express a Choquet integral as a linear combination of basis
functions, we consider a decomposition of v under the form
v=
∑q

i=1 wivi, where vi’s are basis capacity functions. In-
deed, if v=

∑q
i=1 wivi, then Cv(a)=

∑q
i=1 wiCvi(a) because

Cv is linear in v. For the class of at most 2-additive capacities,



a decomposition of v with q = p2 basis functions is known.
This class can be characterized by a polytope, the extreme
points of which are defined by two families of 0-1 capacities:
• the unanimity games for singletons and pairs defined by

vi(X) =

{
1 if Yi ⊆ X
0 otherwise for i ∈ J1,

p(p+ 1)

2
K

where Yi ⊆ C is any nonempty subset of size at most 2;
• the conjugates of unanimity games for pairs defined by

vi(X) =

{
1 if Yi ∩X 6= ∅
0 otherwise for i ∈ J

p(p+ 1)

2
+1, p2K

where Yi ⊆ C is any subset of size 2.
This characterization of extreme points directly follows from
[Grabisch, 2016, Theorem 2.65, p.89]. Hence, for any at most
2-additive capacity, there exists p2 coefficients wi≥0 adding
up to 1 such that Cv(a) =

∑
i wiCvi(a). Note that a similar

result, formulated in terms of Möbius inverse, has also been
used in [Hüllermeier and Tehrani, 2013].
Example 5 Any capacity v on three criteria can be written as
a convex combination of vi’s in the table below (the unanimity
games are v1, . . . , v6, the conjugates are v7, v8, v9).

X {1} {2} {3} {1, 2} {1, 3} {2, 3}
v1(X) 1 0 0 1 1 0
v2(X) 0 1 0 1 0 1
v3(X) 0 0 1 0 1 1
v4(X) 0 0 0 1 0 0
v5(X) 0 0 0 0 1 0
v6(X) 0 0 0 0 0 1
v7(X) 1 1 0 1 1 1
v8(X) 1 0 1 1 1 1
v9(X) 0 1 1 1 1 1

For a= (0.3, 0.5, 0.8), we have Cv1(a) = 0.3, Cv2(a) = 0.5,
Cv3(a) = 0.8, Cv4(a) = 0.3, Cv5(a) = 0.3, Cv6(a) = 0.5,
Cv7(a)=0.5, Cv8(a)=0.8, Cv9(a)=0.8. Besides, v=0.1v2
+0.3v3+0.3v4+0.1v5+0.1v6+0.1v7, thus Cv(a)=0.51.

4 Incremental Elicitation Process
We now introduce an incremental Bayesian elicitation proce-
dure taking advantage of the above linear reformulations. We
consider a non-linear aggregation function admitting a lin-
ear representation fw(a) =wTg(a), where values gi(a) are
computed as shown in Section 3. Incremental decision mak-
ing consists in implementing an adaptive elicitation proce-
dure based on fw to iteratively collect preference statements
so as to reduce the uncertainty about w until an alternative
can be recommended with sufficient confidence. We propose
a Bayesian approach where a prior density function over the
parameter space is iteratively updated with new preference
statements. The incremental decision process is based on the
progressive minimization of expected regrets attached to pos-
sible decisions. The expected regrets are defined as follows.
Definition 1 Given a density function p on the possible val-
ues of w, the pairwise expected regret of an alternative a with
respect to an alternative b is defined as follows:

PER(a,b, p) =

∫
max{0, fw(b)− fw(a)}p(w)dw

In other words, the pairwise expected regret of a with re-
spect to b represents the expected utility loss when recom-
mending a instead of b.

Definition 2 Given a setA of alternatives and a density func-
tion p on the possible values of w, the max expected regret of
a ∈ A and the minimax expected regret are defined by:

MER(a,A, p) = maxb∈A PER(a,b, p)

MMER(A, p) = mina∈AMER(a,A, p)
In other words, the max expected regret1 of a is the maxi-

mum expected utility loss incurred in selecting a in A.

Incremental Elicitation
We denote by a(k) an alternative achieving the MMER(A, p)
value at iteration k. This alternative is worth recommending
if no further preferential information can be obtained because
it minimizes the expect opportunity loss. Otherwise, we ask
the DM to compare a(k) and any adversarial choice b(k) in
argmaxb∈A PER(a(k),b, p), as suggested by Boutilier et
al. (2006) in the context of max regret minimization (cur-
rent solution strategy). The DM’s answer allows us to update
the current distribution p for the next iteration. This process
can be iterated until the MMER value drops below a given
acceptance threshold δ. The resulting incremental decision
procedure is more formally described in Algorithm 1.

Algorithm 1 Incremental decision making
Input: A: alternatives; δ: threshold; p(w): density function.
Output: a∗ : best recommendation in A.

1 i← 1;
2 repeat
3 a(i) ← argmina∈AMER(a,A, p)
4 b(i) ← argmaxb∈A PER(a(i),b, p)

5 Ask the DM if a(i) is preferred to b(i)

6 y(i) ← 1 if the answer is yes and 0 otherwise
7 p(w)← p(w|y(i)) ∀w (see Algorithm 2)
8 i← i+ 1
9 until MMER(A, p) ≤ δ

10 return a∗ selected in argmina∈AMER(a,A, p)

Bayesian Inference
In Line 7, the density function p(w) is updated using the la-
tent variable approach introduced by Albert and Chib (1993)
for binary probit regression. Let y(i) represent the answer to
a comparison query i between a(i) and b(i), with y(i) = 1 if
a(i) is preferred, y(i)=0 otherwise. In our setting, the probit
model is used to predict the value of y(i) based on the vector
d(i)=g(a(i))− g(b(i)) of explanatory variables. The answer
y(i) is assumed to depend on a latent variable z(i) represent-
ing preference intensity and defined by:

z(i) = wTd(i) + ε(i) (4)
where ε(i)∼N (0, 1) is a Gaussian noise accounting for pos-
sible errors in the answers and for descriptive limitations of
the preference model. If z(i)≥0, then y(i)=1, else y(i)=0.

Following the sequential Bayesian approach of Algo-
rithm 1, a prior density function p(w) is defined on the pa-
rameter space. In the probit model, p(w) is multivariate
Gaussian. After each query, the current density function p(w)

1Note that there exists similar definitions of expected regrets in
the literature (see, e.g., Guo and Sanner [2010]).



is revised according to answer y(i). The main interest of re-
sorting to the probit model is to obtain a computationally ef-
ficient procedure to estimate the posterior p(w|y(i)). The re-
vised density function p(w|y(i)) can indeed be formulated as
a marginal density of p(w, z|y(i)):

p(w|y(i))=
∫
p(w, z|y(i))dz=

∫
p(w|z)p(z|y(i))dz (5)

However, p(z|y(i)) depends, in turn, on p(w|y(i)) because:

p(z|y(i)) =
∫
p(w|y(i))p(z|w, y(i))dw (6)

We use an iterative method to approximate the density func-
tion p(w|y(i)) that solves the fixed point equation obtained
by replacing p(z|y(i)) by (6) in Equation (5), as suggested by
Tanner and Wong (1987). They proved that it should con-
verge to the true posterior p(w|y(i)). The method is detailed
in Algorithm 2, where the upper bound K on the number of
iterations depends on the compromise sought between speed
and accuracy. At each iteration k, an approximation pk(w) of
p(w|y(i)) is refined. The for loop in Line 3 aims at sampling
m values z1, . . . , zm from p(z|y(i)). The density function
p(z|ω, y(i)) used in line 5 is truncated Gaussian:

p(z|ω, y(i)) ∝
{
N (ωTd(i), I)1z≥0 if y(i) = 1
N (ωTd(i), I)1z<0 otherwise

From sampled values zj , a tighter approximation pk+1(w)
is computed in Line 6. Note that 1

m

∑m
j=1 pk(w|zj) is multi-

variate Gaussian because each pk(w|zj) is multivariate Gaus-
sian. It is indeed well-known (see e.g. Bishop, 2006) that if
pk(w)=N (µk,Sk), then pk(w|zj)=N (µj ,S) where:

S−1 = d(i)Td(i) + S−1k and µj = S(d(i)T zj + S−1k µk)

Thus 1
m

∑
j pk(w|zj)=

1
m

∑
j N (µj ,S)=N ( 1

m

∑
j µ

j ,S).
Coming back to the interpretation of w as weights in a lin-

ear reformulation fw, the conditions
∑

i λi = 1 (for OWA)
and v(C) = 1 (for Choquet) turn into normalisation con-
straints

∑
i i·wi =1 (for concave OWA) and

∑
i wi =1 (for

general OWA and Choquet). As functions fw are linear in w
(thus the induced preferences are invariant by rescaling of w),
the normalisation constraints can be dropped, which consid-
erably simplifies the sampling. In the calculation of regrets in
Algorithm 1, we use nonetheless normalised weights to com-
pare regrets from one iteration to another. Besides, we use a

Algorithm 2 Approximating density function
p(w|y(i))

Input: p(w): density function; m: sample size; K:
#iterations.

Output: p(w|y(i)): posterior density function.
1 k ← 0; p0(w)←p(w) ∀w
2 repeat /* pk(w) approximates p(w|y(i)) */
3 for j=1 to m do
4 draw ω from pk(w)

5 draw zj from p(z|ω, y(i))
6 pk+1(w)← 1

m

∑m
j=1 pk(w|zj) ∀w

7 k ← k + 1
8 until pk stabilizes or k=K
9 return pk

truncated normal density function p(w) to ensure wi≥0 ∀i.

5 Numerical Tests
Before coming to the results of numerical tests2 we conducted
on randomly generated instances to evaluate the behavior of
Algorithm 1, we illustrate this behavior on Example 1.

Example 1 (continued). Assume that Algorithm 1 is
launched with an acceptance threshold δ = 0.02. We first
obtain MMER=0.05>δ. The DM is then asked to compare
a24 and a50 (this is not necessarily a50, it may be a close
neighbor depending on the sample drawn for w). Assume
that the DM makes a mistake and declares that she prefers
a24 to a50. Using this information the probability density
function over weights is revised and MMER is recomputed.
Now, MMER = 0.04 > δ so a second query is generated.
The DM compares a11 and a50 and correctly declares that
she prefers a50. We obtain MMER = 0.05 > δ, and after-
wards four additional queries are needed to conclude. The
DM is asked to compare a28, a34, a43 and a46 to a0 respec-
tively and the DM never chooses a0. After the six answers,
we obtain MMER = 0.01 < δ and the algorithm stops rec-
ommending argmina∈AMER(a,A, p) = a47, which is very
close to the actual optimal solution a50.

We thus observe that a47 is now recommended while a0

or a100 was recommended using a deterministic approach
with the same wrong initial answer. For the hidden utility
u0.6 of the DM, we have u0.6(a50)= 40+0.2×50= 50 and
u0.6(a

47)=40+0.2×47=49.4. The actual regret in recom-
mending a47 instead of a50 is therefore 50−49.4=0.6, which
represents 1.2% of the utility value of an optimal alternative.

Random Generation of Instances
We generate instances with 5 criteria and 100 Pareto opti-
mal alternatives. Every alternative a in each generated set
A is drawn as follows: a first vector v of size p − 1 is
uniformly drawn in [0, 1]p−1, then a is obtained by setting
ai=v(i)−v(i−1) for i=1, . . . , p, where v(0)=0 and v(p)=1.
To avoid that all generated alternatives share the same hyper-
plane

∑
i ai=1 in the utility space, we apply the square root

function on all components ai of each performance vector
a ∈ A. Finally, for each instance, a hidden weight vector w is
uniformly drawn over the simplex. For the elicitation of OWA
parameters, the prior is set to N ((10, . . . , 10), 100I), where
I is the identity matrix. For Choquet parameters, the prior is
set to N (µ, 100I), where µi=10 if |Yi| = 1 and µi=0 oth-
erwise (we recall that Cv(a) =

∑
i wiCvi(a), where each vi

is attached to a subset Yi of size at most 2). In this way, the
prior density function is centered around a parameter vector
for which there is no interaction between criteria.

Simulation of the Interactions with the DM
To simulate the DM’s answers, we use the model given in
Equation 4 with ε(i)∼N (0, σ2) for σ∈{0, 0.1, 0.2}, in order
to test the tolerance of the approach to wrong answers (none

2Implementation in Python using the tmvtnorm R’s library to
draw vectors according to multivariate truncated normal densities,
running on an Intel(R) Core(TM) i7-4790 CPU with 15GB of RAM.



Figure 1: Mean MMER value (OWA) Figure 2: Mean rank of the recommendation (OWA)

Figure 3: Rank of the recommendation (OWA) Figure 4: Mean rank of the recommendation (Choquet)

for σ=0). Setting σ=0.1 (resp. 0.2) led to 19% (resp. 26%)
of wrong answers on the considered runs of the algorithm for
OWA, and 10% (resp. 17%) for 2-additive Choquet.

Analysis of the Results
We evaluated the efficiency of Algorithm 1 with respect to the
value of σ (results averaged over 50 instances).

We first observed the evolution of the MMER value in the
course of Algorithm 1, in percentage of the initial MMER
value (the curves for OWA and 2-additive Choquet are very
similar, thus only the former are provided), as well as the
evolution of the actual rank in A of the current MMER al-
ternative according to the hidden DM preference model. The
obtained curves for OWA and at most 2-additive Choquet in-
tegrals are represented in Figure 1, 2 and 4. We observe that
the mean MMER value drops below 3% of the initial MMER
value in a dozen queries. The value of σ mainly impacts the
quality of the recommendation, measured by the rank of the
recommended alternative in the hidden ranking of the DM,
that deteriorates when the value of σ increases. Nevertheless,
the average rank of the recommended alternative is never be-
yond 5 (over 100 alternatives), except for OWA with σ=0.2
where it is around 6.5. Regarding the computation times be-
tween two queries, it takes about 5 seconds for OWA, and
about 35 seconds for 2-additive Choquet. This difference can
be explained by the respective sizes of parameter spaces.

We next compared the performance of Algorithm 1 to a de-
terministic approach based on the minimization of the max re-
gret, that reduces the parameter space after each query instead

of updating a probability density function (see e.g., [Bour-
dache and Perny, 2019]). For both methods, we considered
two performance criteria: the number of queries for making
a recommendation, and the quality of the recommendation it-
self, measured in terms of actual rank of the recommended
solution at termination. Regarding the number of queries,
as can be seen in Figure 2 and 4, the quality of the recom-
mendation does not significantly improve after a dozen query,
which is similar to the number of queries in the determinis-
tic approach. Regarding the quality of the recommendation,
the histogram in Figure 3 shows the distribution of the ranks
of the recommendations over the 50 randomly generated in-
stances, for OWA with σ=0.2. The Bayesian approach rec-
ommends the best alternative in 50% of cases while it hap-
pens in 36% of cases for the deterministic approach.

6 Conclusion
Our work differentiates from previous works on incremental
decision making with OWA and Choquet integrals in propos-
ing a probabilistic approach that is tolerant to response-errors
of the DM. It also differentiates from previous work on active
preference learning with Bayesian methods in implement-
ing an approach that applies to well-known rank-dependent
decision criteria. Our contribution on the Choquet integral
concerns the case of 2-additive capacities, that are known to
provide sufficient flexibility to model very diverse preference
systems including positive and negative interactions between
criteria. However, it would be interesting to extend our ap-
proach to elicit larger classes of capacities to make even bet-



ter use of the descriptive possibilities offered by the Choquet
integral. This is a challenging problem because the polytope
of at most k-additive capacities for k > 2 admits many other
extreme points than 0-1 capacities [Miranda et al., 2006].
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[Sauré and Vielma, 2018] Denis Sauré and Juan Pablo
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