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Introduction

The role of information is of fundamental importance for the economic theory.

It is well known that even small dierences in information may lead to signicant dierences in the behavior [START_REF] Rubinstein | The Electronic Mail Game: Strategic Behavior under "Almost Common Knowledge[END_REF]). A recent literature on the strategic (dis)-continuities has studied this observation very intensively and in full generality.

The approach is to typically consider all possible information structures, modeled as elements of an appropriately dened universal information structure, and study the dierences in the strategic behavior across all games.

A similar methodology has not been applied to study the relationship between the information, and the agent's bottom line, their payos. There are perhaps few reasons for this. First, following [START_REF] Dekel | Topologies on types[END_REF], [START_REF] Weinstein | A structure theorem for rationalizability with application to robust predictions of renements[END_REF] and others, the literature has focused on the interim rationalizability as the solution concept. Compared with the equilibrium, this choice has several advantages: it is easier to analyze, it is more robust from the decision-theoretic perspective, it can be factorized through the Mertens-Zamir hierarchies of beliefs [START_REF] Dekel | Topologies on types[END_REF], [START_REF] Ely | Hierarchies of belief and interim rationalizability[END_REF]), and, it does not suer from the existence problems (unlike the equilibrium -see [START_REF] Simon | Games of incomplete information, ergodic theory, and the measurability of equilibria[END_REF]). However, the value of information is typically measured in the ex ante sense, where solution concepts like the Bayesian Nash equilibrium being more appropriate. Second, the multiplicity of solutions Date: July 31, 2019. necessitates that the literature takes the set-based approach. This, of course, makes the quantitative comparison of the value of information dicult. Last but not least, the freedom in choosing games without any restriction makes the payo comparison between information structures useless (see Section 7.1 for a detailed discussion of this point).

Nevertheless, we nd the questions about the value of a general-formulated information as important and fascinating. How to measure the value of information on the universal type space? How much a player can gain (or lose) from an additional information? Which information structures are similar, in the sense that they always lead to the same payos? In order to address these questions, we propose to restrict the analysis to zero-sum games. It is a natural restriction for both conceptual and methodological reasons. The question of the value of information is of special importance when the players' interests are opposing. With zero-sum games, the information has natural comparative statics: a player is better o when her information improves and/or the opponent's information worsens [START_REF] Peski | Comparison of information structures in zero-sum games[END_REF]).

Such comparative statics are intuitive, they hold in the single-agent decision problems [START_REF] Blackwell | Equivalent comparisons of experiments[END_REF]), but they do not hold for general games, where better information may worsen a player's strategic position. Moreover, the restriction avoids some of the problems mentioned in the previous paragraph. Finite zero-sum games have always an equilibrium on common prior information structures [START_REF] Mertens | Repeated games[END_REF]) that depends only on the distribution over hierarchies of beliefs. The equilibrium has decent decision-theoretic foundations [START_REF] Brandt | Justifying optimal play via consistency[END_REF]). Even if the equilibrium is not unique, the ex ante payo always is and it is equal to the value of the zero-sum game. Finally, the restriction leads to novel issues comparing to the earlier literature, where many of the results rely on either coordination games, or betting games [START_REF] Rubinstein | The Electronic Mail Game: Strategic Behavior under "Almost Common Knowledge[END_REF], [START_REF] Morris | Typical Types[END_REF], [START_REF] Ely | Critical types[END_REF], Chen and Xiong (2013) among others).We believe that it is important to reconsider various phenomena to clarify their relevance for dierent classes of games.

We dene the distance between two information structures as the largest possible dierence in the value across all zero-sum payo functions that are bounded by a constant. This has a straightforward interpretation as a tight upper bound on the gain or loss from moving from one information structure to another. The rst result provides a characterization of the distance as the total variation distance between two sets of information structures: those that are better for player one than one of the original information structures and those that are worse than the other one. This distance can be computed as a solution to a nitely dimensional convex optimization problem.

The characterization is tractable in applications. In particular, we use it to describe the conditions under which the distance between information structures is maximized in single-agent problems (which are special class of zero-sum games). We recover the characterization of a comparison of information structures from Peski (2008), which generalized to 2 players the Blackwell's comparison of experiments via garblings. We also discuss the role of the marginal distribution over the state.

An important aspect of our approach is its natural and simple interpretation. It allows us to dene the value of an additional piece of information as the distance between two type spaces, in one of which one or two players have an access to new information. The above characterization of the distance allows us to prove numerous results about the value. We give conditions when the value of new information is maximized in the single-agent problems. Next, we describe the situations when the value of one piece of information decreases when the other piece of information becomes available, in other words, when the two pieces of information are substitutes. Similarly, we show that, under some conditions, the value of one piece of information increases when the other player gets an additional information, or in other words, that the two pieces of information, one for each player, are complements. Finally, we show that the new information matters only if it is valuable to at least one of the players individually. The joint information contained in the correlation between player's signals is in itself not valuable in the zero-sum games.

Apart from its quantitative metric aspect, our distance contains interesting topological information. In a striking example, we show that any information structure in which with a large (close to 1) probability, each player assigns a large (close to 1) probability to some state is similar to a structure in which the state is publicly revealed. In other words, the distinction between approximate knowledge and approximate common knowledge [START_REF] Monderer | Approximating common knowledge with common beliefs[END_REF]) is not relevant for the value-based distance. There is a simple intuition for this. The common knowledge is a statement about the joint information. In order to benet from it, the players' interests need to be somehow aligned, like in coordination games. That is of course impossible in a situation of conict.

More generally, we show that any sequence of countable information structures converges to a countable structure if and only if the associated hierarchies of beliefs converge in the induced weak topology of [START_REF] Mertens | Formulation of bayesian analysis for games with incomplete information[END_REF]. Thus, at least in the neighborhoods of countable structures, the higher order beliefs matter less and less in zero-sum games. This leads to a question whether the higher order beliefs matter at all. Perhaps surprisingly in the light of the above results, the answer is armative. We demonstrate it by constructing an innite sequence of information structures u n , such that all the information structures n ≥ n have the same n-the order hierarchies of beliefs. We show that there exists ε > 0 such that the value-based distance between each pair of structures is at least ε. In the proof, we construct a Markov chain with the rst element of the chain is correlated with the state of the world. We construct an information structure µ n so that player 1 observes the rst n odd elements of the sequence and the other player observes the rst n even elements. Our construction implies that in information structure µ n+1 each player gets an extra signal. Thus, having more and more information may lead... nowhere. This is unlike the single-player case, where more and more signals is a martingale and the value converges for each decision problem. We conclude that our distance is not robust with respect to the correct specication of higher order beliefs.

The last result sounds similar to the results from the strategic (dis)continuities literature. However, we emphasize that our result is entirely novel. In particular, and it has to deal with at least two major diculties. The rst diculty is that all earlier constructions heavily relied on non-zero sum games: with either coordination games, or betting elements. Such constructions do not work in zero-sum games.

Another diculty is that when we construct games in which the players' payos depend on their higher-order beliefs, we are constrained by an uniform payo bound. [START_REF] Hellwig | Knowing what others know: Coordination motives in information acquisition[END_REF] study when the information acquisition decisions are complements or substitutes in a beauty contest game).

Finally, this paper contributes to a recent but rapidly growing eld of information design [START_REF] Kamenica | Bayesian Persuasion[END_REF], [START_REF] Ely | Beeps[END_REF], [START_REF] Bergemann | Bayes Correlated Equilibrium and the Comparison of Information Structures in Games[END_REF], to name a few). In that literature, a principal designs an information structure which the agents use to play a game with incomplete information. The objective is to maximize the principal's payo from the equilibrium outcome of some game.

Sometimes, the design of information may be divorced from the game itself. For example, a bank may acquire a software to process and analyze large amounts of nancial information before knowing what stock they are going to trade on, or, a spy master allocates resources to dierent tasks or regions before she understands the nature of future conicts. Our result shows that the choice space of information structures is large: there is no natural way in approximating the space of choices with a nite set of structures.

Section 2 denes the value-based distance. Section 3 provides and discusses the characterization of the distance as a total variation distance between two sets of measures. Section 4 lists various results about the value of additional information.

We discuss the topological content of the value-based distance in Section 5. Section 6 shows that the space of countable information structures is not totally bounded for the value-based distance. Section 7 discusses the relation to other topologies on the space of hierarchies of beliefs. The last section concludes. The proofs are contained in the Appendix.

Model

Let K be a nite set, |K| ≥ 2. A (countable) information structure is an element u ∈ ∆ (K × N × N) of the space of probabilities over tuples (k, c, d) ∈ K × N × N, with the interpretation that k is a state of the world, and c and d are the signals of, respectively, player 1 and player 2. In other words, an information structure is a 2-player common prior Harsanyi type space over K with at most countably many types. The set of information structures is denoted by U = ∆(K × N × N).

We will identify any probability over K ×C ×D where C, D are at most countable sets with an element of U, where we interpret C and D as subsets of N 5 . For L = 1, 2, ..., let U (L) be the subset of information structures where each player receives a signal smaller or equal to L -1 with probability 1, so that each player has at most L dierent signals.

Whereas previous papers in the literature restrict attention 6 to a particular sub- set of U (independent information, lack of information on one side, xed support...), we will study the general case of information structures in U.

We evaluate information structures via the values of associated zero-sum Bayesian games. A payo function is a map g :

K × I × J → [-1, 1]
, where I, J are nite sets of actions. The set of payo functions with action sizes of cardinality ≤ L 5 More precisely, we associate with every set C which is at most countable an enumeration, i.e. a bijective map φ C between C and {0, ..., |C| -1|} when C is nite or N when C is innite and identify the information structure u ∈ ∆ (K × C × D) with the distribution of (k, φ C (c), φ D (d)) induced by u. All our results are independent of the choice of these enumerations is denoted by G(L), and let G = L≥1 G(L) be the set of all payo functions. A information structure u and a payo function g together dene a zero-sum Bayesian game Γ(u, g) played as follows: First, (k, c, d) is selected according to u, player 1 learns c and player 2 learns d. Then simultaneously player 1 chooses i ∈ I and player 2 chooses j ∈ J, and nally the payo of player 1 is g(k, i, j). The zero-sum game Γ(u, g) has the value (the unique equilibrium, or the minmax payo of player 1) which we denote by val(u, g). We sometimes refer to player 1 as the maximizer, and to her opponent as the minimizer.

We dene the value-based distance between two information structures as the largest possible dierence in the value across all payo functions:

(2.1) d(u, v) = sup g∈G | val(u, g) -val(v, g)|.
The distance (2.1) satises two axioms of a metric: the symmetry, and the triangular inequality. However, it is possible that d(u, v) = 0 for u = v. For instance, if we start from an information structure u and relabel the signals of the players, we obtain an information structure u which is formally dierent from u, but equivalent to u. Say that u and v are equivalent, and write u ∼ v, if for all game structures g in G, val(u, g) = val(v, g). We let U * = U / ∼ be the set of equivalence classes. Thus, d is a pseudo-metric on U and a metric on U * .

In order to state our main results, we will also use the total variation norm given for each u, v ∈ U by:

u -v = k,c,d |u(k, c, d) -v(k, c, d)|.
Since all payos are in [-1, 1] it is easy to see that d(u, v) ≤ u -v ≤ 2. It is also convenient to always identify I and J with the sets {0, ..., |I| -1} and {0, ..., |J| -1} using some enumeration and to extend g on K × N × N by letting g(k, i, j) = -1 if i ≥ |I| and g(k, i, j) = 1 if i < |I| and j ≥ |J|. Note that the value of the game Γ(u, g) is not modied and that optimal strategies remain optimal if we allow the players to take any action in N. With this convention, each set G(L) and thus also G is identied with a subset of the set of maps from K × N × N to [-1, 1].

Computing d(u, v)

We give here a tractable characterization of d(u, v) and we illustrate it with some applications.

Characterization of d (u, v).

We start with the notion of garbling, used by Blackwell to compare statistical experiments [START_REF] Blackwell | Equivalent comparisons of experiments[END_REF]. A garbling is an element q : N → ∆(N), and the set of all garblings is denoted by Q. Given a garbling g and an information structure u, we dene the information structures q.u and u.q so that for each k, c, d,

q.u(k, c, d) = c u(k, c , d)q(c |c), and u.q(k, c, d) = d u(k, c, d )q(d |d).
We also denote by Q(L) the subset of garblings q : N → ∆({0, ..., L-1}). There are two interpretations of a garbling. First, the garbling can be seen as an information loss: suppose that (k, c, d) is selected according to u, c is selected according to the probability q(c), and player 1 learns c (and player 2 learns d). The new information structure is exactly equal to q.u, where the signal received by player 1 has been deteriorated through the garbling q. Similarly, u.q corresponds to the dual situation where the signal of player 2 has been deteriorated. Further, the garbling q can also be seen as a behavior strategy of a player in a Bayesian game Γ(u, g): if the signal received is c, play the mixed action q(c). The relation between the two interpretations plays an important role in the proof of Theorem 1 below.

Theorem 1. For each

u, v ∈ U for sup g∈G (val(v, g) -val(u, g)) = min q1∈Q,q2∈Q q 1 .u -v.q 2 . (3.1)
If u, v ∈ U (L) for L ∈ N, then all the optima can be attained by L-based structures (games and garblings). Hence,

d(u, v) = max min q1∈Q,q2∈Q q 1 .u -v.q 2 , min q1∈Q,q2∈Q
u.q 1 -q 2 .v .

The Theorem provides a characterization of the value-based distance between two information structures u and v for each player as a total variation distance between two sets obtained as garblings of the original information structures {q.u : q ∈ Q} and {v.q : q ∈ Q}. If the two information structures are in U(L), then all the suprema in the rst line can be achieved by payos functions in G(L), and garblings in Q(L).

The Theorem simplies the problem of computing the value-based distance in two ways. First, it reduces the dimensionality of the optimization domain from payo functions and strategy proles (to compute value) to a pair of garblings.

More importantly, notice that the solution to the original problem (2.1) is typically a saddle-point as it involves nding optimal strategies in a zero-sum game. On the other hand, the function q 1 .u -v.q 2 is convex in garblings (q 1 , q 2 ), and the domains Q are convex compact sets. Thus, the right-hand side of ( 

d 1 (u, v) := sup g∈G 1 |val (u, g) -val (v, g)| ≤ d (u, v) .
Analogously, we can dene d 2 (u, v) as the distance measured using only player 2 single agent problems.

A simple consequence of the denition is that the single-agent distance depends only on the distribution of the posterior beliefs of player 1 about the state. For each u ∈ U, let ũ ∈ ∆(∆(K)) denote the distribution of the posterior beliefs of player 1 about the state induced by u, and D be the set of suprema of ane functions from ∆(K) to [-1, 1]. Then, one shows that

(3.3) d 1 (u, v) = sup f ∈D p∈∆(K) f (p)dũ(p) - p∈∆(K)
f (p)dṽ(p) .

A natural question is when the two distances are equal, or, alternatively, when the maximum in (2.1) is attained by the single-agent problems. The next result

provides a partial answer to this question. For any structure u ∈ ∆ (K × C × D),

we say that the players information is conditionally independent, if under u, signals c and d are conditionally independent given k.

Proposition 2. Suppose that u, v ∈ ∆ (K × C × D) are two information structures with conditionally independent information such that marg K×D u = marg K×D v.

Then,

d (u, v) = d 1 (u, v) .
Proposition 2 says that, given two conditionally independent structures, if the information of player 2 is the smae, the distance is equal to value of the dierence between the information of player 1. The proof of the Proposition relies on the characterization from Theorem 1 and it shows that the minimum in the optimization problem is attained by the same pair of garblings as in the single-agent version of the problem.

3.2.2. Comparison of information structures. We partially order the information structures by how good they are for player 1: given u, v in U, say that player 1 prefers u to v, write u v, if for all g in G, val(u, g) ≥ val(v, g). The order is reexive and transitive (and it is also antisymmetric on U * ). One shows that the value is monotonic in the information of the players: for any garbling q, player 1 always weakly prefers u to q.u, and u.q to u.

Theorem 1 implies that u v ⇐⇒ ∃ q1,q2∈Q q 1 .u = v.q 2 .
(To see why, notice that u v is equivalent to the left-hand side of the rst equality in (3.1) must be weakly negative, which is equivalent to the second claim above.) This characterization was initially obtained in [START_REF] Peski | Comparison of information structures in zero-sum games[END_REF] who generalized the Blackwell characterization of more informative experiment to the multi-player setting.

Additionally, we obtain the following Corollary to Theorem 1:

Corollary 3. For all information structures u, v,

(3.4) sup g∈G (val(v, g) -val(u, g)) = inf u u,v v u -v .
This observation provides an additional interpretation to the characterization from Theorem 1: the maximum gain from replacing information structure u by v is equal to the minimum total variation distance between the set of information structures that are worse than u and those that are better than v.

3.2.3. The impact of the marginal over K. Among many ways that two information structures can dier, the most obvious one is that they may have dierent distributions over the states k. In order to capture the impact of such dierences, the next result provides tight bounds on the distance between two type spaces with a xed distribution of a state: Proposition 4. For each p, q ∈ ∆K, min

u,v:marg K u=p,marg K v=q d (u, v) = k |p k -q k | , (3.5) max u,v:marg K u=p,marg K v=q d (u, v) = 2 1 -max p ,q ∈∆K k min (p k q k , p k q k ) .
If p = q, the upper bound is equal to

max u,v:marg K u=marg K v=p d(u, v) = 2(1 -max k p k ).
The lower bound in (3.5) is reached when the two information structures do not provide any information to none of the players. The upper bound is reached with information structures where one player knows the state perfectly, and the other player does not know anything.

Example 5. Suppose that K = {0, 1}. Fix p, q ∈ ∆K. In such a case, one easily checks that the maximum in the right hand side is attained by either p = q = (1, 0), or p = q = (0, 1), or p = p, q = q. It follows that for any two information structures u, v, d (u, v) ≤ 2 (1 -max (min (p 0 , q 0 ) , min (p 1 , q 1 ) , p 0 q 0 + p 1 q 1 )) .

The bound is attained when, for example, u = ū, v = v and ū (k, c, d) = p k 1 c=k 1 d=0 and v (k, c, d) = q k 1 c=0 1 d=k for each k, c, d ∈ {0, 1}.

3.2.4. Optimal strategies. Another useful property of the characterization is that the garblings that solve (3.1) can be used to transform optimal strategies in one structure to approximately optimal strategies on another structure. More precisely, we say that strategy σ of player 1 is ε-optimal in game g on structure u if for any strategy τ of player 2, the payo of σ against τ is no smaller than val (u, g) -ε. We similarly dene ε-optimal strategies for player 2.

For a strategy σ ∈ Q and a garbling q 1 ∈ Q, dene σ.q 1 in Q by σ.q 1 (c) = c q 1 (c |c)σ(c ) for each signal c: player 1 receives signal c, then selects χ according to q 1 (c) and plays σ(χ). We have Proposition 6. Fix nite u, v and suppose that q 1 and q 2 are solutions to (3.1).

Then, if σ is an optimal strategy in g on v, then σ.q 1 is a 2d (u, v)-optimal strategy in g on u. Similarly, if τ is optimal for player 2 in g on u, then τ.q 2 is 2d (u, v)optimal for player 2 in g on v.

Value of additional information

An important advantage of our approach is that the distance d (u, v) has a straightforward interpretation as the maximum willingness to pay to move from one information structure to another. This allows us to discuss the value of additional information, which we dene as the the distance between structures with or without an extra piece of information. 

u ∈ ∆ (K × (C × C ) × D) , v = marg K×C×D u.
The structure u is the same as v, but where player 1 can observe an additional signal c . Because u represents more information, u is (weakly) more valuable, and the value of the additional information is dened as d (u, v) , i.e., the tight upper bound on the gain from the additional signal. A corollary to Proposition 2 shows that if the signals of the two players ate independent conditionally on the state, the gain from the new information is the largest in the single-agent problems.

Corollary 7. Suppose that information in u (and therefore in v) is conditionally independent. Then,

d (u, v) = d 1 (u, v) .
The next example illustrates that the thesis of Proposition 7 does not hold without a conditional independence.

Example 8. Suppose that C = { * } , K = D = C = {0, 1}, and u (k, d, c ) = 1 4 k+c 2 , if d = 1, 1 4 1 -k+c 2 , if d = 0.
Then, the new information c is independent from k, but d is both correlated with k and c . Because c is independent from the state, the value of new information in player 1 single-agent problem is 0:

d 1 (u, v) = 0.
However, signal c provides non-trivial information about the signal of the other player, hence it is valuable in some games. It is easily seen from 1 that d(u, v) > 0. Indeed, since u gives player 1 more information, we have

d(u, v) = min q1,q2 u.q 2 -q 1 .v ,
where q 2 : {0, 1} → ∆{0, 1} and q 1 ∈ ∆{0, 1}. The existence of a pair (q 1 , q 2 ) such that u.q 2 -q 1 .v = 0 is equivalent to the system of equations

∀(k, d, c ) ∈ {0, 1} 3 , u.q 2 (k, d, c ) = v.q 1 (k, d, c ),
where the unknowns are q 1 , q 2 , and one can check that this system does not admit any solution. In other words, the information that would be useless in a single-agent decision problem is valuable in a strategic setting.

A special case of the conditionally independent information is where players receive multiple samples of independent Blackwell experiments. In an online Appendix, we show how to compute the value of additional Blackwell experiments.

4.2. Informational substitutes. Next, we ask two questions about the impact of a piece of information on the value of another piece of information. Suppose that

u ∈ ∆ (K × (C × C 1 × C 2 ) × D) , v = marg K×(C×C1)×D u, u = marg K×(C×C2)×D u, v = marg K×C×D u.
When moving from v to u or v to u, player 1 gains an additional signal c 2 . The dierence is that in the latter case, player 1 has more information that comes from signal c 1 . The next result shows the impact of an additional signal on the value of information.

Proposition 9. Suppose that, under u, c 1 is conditionally independent from (c, c 2 , d)

given k. Then, d (u , v ) ≥ d (u, v) .
Given the assumptions, the marginal value of signal c 2 decreases when signal c 1 is also present. In other words, the two pieces of information are substitutes.

The conditional assumption is equivalent to two simpler assumptions (a) c 1 is conditionally independent from (c, 

u ∈ ∆ (K × (C × C 1 ) × (D × D 1 )) , v = marg K×C×(D×D1) u, u = marg K×(C×C1)×D u, v = marg K×C×D u.
When moving from v to u or v to u, in both cases, player 1 gains an additional signal c 1 . However, in the latter case, player 2 has an additional information that comes from signal d 1 . The next result shows the impact of the opponent's signal on the value of information.

Proposition 12. Suppose that (c, c 1 ) and d are conditionally independent given k.

Then,

d (u , v ) ≤ d (u, v) .
Given the assumptions, signal c 1 becomes more valuable when the opponent has also an access to additional information. Hence, the two pieces of information are complements.

Example 13. The independence assumptions are important. Suppose that C =

{ * } and K = D = D 1 = C 1 = {0, 1}.
The state is drawn uniformly. Signal d is equal to the state with probability 2 3 and signal d 1 is equal to the state for sure. Finally, c 1 = 1 i d = k. In other words, player 2's signal d is an imperfect information about the state. Signal c 1 carries information about the quality of the signal of player 1. Such signal is valuable in some games, hence d (u , v ) > 0. In the same time, if player 2 learns the state perfectly, signal c becomes useless, and d (u, v) = 0. (The last claim can be formally proven using Proposition 14 below.) 4.4. Value of joint information. Finally, we consider a situation where two players receive additional information simultaneously. We ask when the joint information contained in signals of two players is (not) valuable. We need the following denition. Consider a distribution µ ∈ ∆ (X × Y × Z) over countable spaces. We say that random variables x and y are ε-

conditionally independent given z if z µ (z) x,y |µ (x, y|z) -µ (x|z) µ (y|z)| ≤ ε. Let u ∈ ∆ (K × (C × C 1 ) × (D × D 1 )) , v = marg K×C×D u. Proposition 14. Suppose that d 1 is ε-conditionally independent from k × c given d, and c 1 is ε-conditionally independent from (k, d) given c. Then, d (u, v) ≤ ε.
Suppose that the new signal of each player is not providing any signicant information about the state of the world and original information of the other player. Such a signal would be useless in a single-decision problem. In principle, the new signals could be useful in a strategic setting as the new signals may be correlated with each other, and jointly correlated with the old information. (In fact, it is possible that the new signals, if learned by both players, would completely reveal the original information. See the example below.) Nevertheless, the Proposition says that the information that is jointly shared by the two players is not valuable in the zero-sum games.

Example 15. Let K = {0, 1}. Consider a sequence of information structures

u n ∈ ∆ (K × {0, ..., n} × {0, ...n + 1}) and structure u ∈ ∆ (K × {0} × {0}) such that u n (0, l, l) = u n (1, l, l + 1) = 1 2 (n + 1)
for each l = 0, ..., n,

u (k, 0, 0) = 1 2 for each k = 0, 1.
This is illustrated on the Figure below (all lines have equal probability; the dashed line corresponds to state 0 and the solid line corresponds to state 1).

-
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The idea is that when n is large, with high probability the players will receive signals far from 0 and n. These signals convey very little information to the players and only dier for high-order beliefs.

Notice that the signal of each player is 1 n+1 -independent from the state of the world. The Lemma implies that d (u n , u) ≤ 2 n+1 → 0. In particular, the information structures u n converge to the structure u, where no player receive any information.

Value-based topology

The two previous sections discussed the quantitative aspect of the value-based distance. Now, we analyze its qualitative aspect: the topological information contained in the distance.

5.1. Universal space of information structures. We begin with recalling relevant facts about the universal type spaces. A (Mertens-Zamir) universal type space is a pair of compact metric spaces Θ 1 and Θ 2 with respect to the following property: for each i, there exists a homeomorphism φ i : Θ i → ∆ (K × Θ -i ). The universal type space is unique (up to homeomorphism). The spaces Θ i are constructed as sets of coherent sequences of nite hierarchies of beliefs. The topology on the universal type space is also is referred to as the product topology; the latter name comes from the fact that it can be dened as the Tichonof 's topology on the sequences of nite hierarchies.

For each Harsanyi type space (even uncountable), there is a belief-preserving mapping that uniquely maps the types into the associated hierarchies. And so, if u ∈ ∆ (K × C × D) is an information structure, the signals c and d are mapped into hierarchies c ∈ Θ 1 and d ∈ Θ 2 . The mapping induces a probability distribution ũ ∈ ∆Θ 1 over the hierarchies of beliefs of player 1 (and an analogous object for player 2). Let Π 0 = {ũ : u ∈ U} be the space of all such distributions. The closure of Π 0 (in the weak topology) is denoted as Π. Using the Mertens-Zamir's terminology, Π is the set of consistent (Borel) probabilities over the universal type space, and Π 0 is the subset of elements of Π with at most countable support. The space Π is compact metric and Π 0 is dense in Π (see corollary III.2.3 and theorem III. On the other hand, each P ∈ Π can be treated as a common prior type space with types in sets Θ i . The common prior is generated as follows. First, a type θ 1 of player 1 is drawn from distribution P . Then, a state k and a type θ 2 of player 2 is drawn from distribution φ 1 (θ 1 ). For each zero-sum game g ∈ G, Proposition III.4.2 in Mertens et al. (2015) shows that one can nd its value on P that we denote as val (P, g). In particular, we can dene the value based distance (2.1) over elements of Π.

There are two fundamental observations. First, by Proposition III. The result says that a convergence in value-based topology to a countable structure is equivalent to the convergence in distribution of nite-order hierarchies of beliefs. Informally, at least around countable structures, the higher-order beliefs have diminishing importance.

We describe the idea of the proof when u is nite. In such a case, we surround the hierarchies c for c ∈ C by suciently small and disjoint neighborhoods, so that all hierarchies in the neighborhood of c have similar beliefs about the state and the opponent. We do alike for the other player. The weak convergence ensures that the converging structures assign large probability to the neighborhoods. Finally, we show that any information about players hierarchy beyond the neighborhood to which it belongs is almost conditionally independent (in the sense of Section 4) from the information about the state and the opponents neighborhoods. This allows us to utilize Proposition 14 (or, more precisely, a part of its proof ) to show that only the information about neighborhoods matter, and the latter is similar to the information in the limit structure u. If u is countable, we also show that it can be appropriately approximated by nite structures.

A reader may nd such a result surprising, given the message of the strategic discontinuities literature [START_REF] Rubinstein | The Electronic Mail Game: Strategic Behavior under "Almost Common Knowledge[END_REF], [START_REF] Dekel | Topologies on types[END_REF], [START_REF] Weinstein | A structure theorem for rationalizability with application to robust predictions of renements[END_REF], Ely and Peski (2011), etc.). In that literature, the convergence of nite-order hierarchies does not imply strategic convergence even around nite structures (for instance, see Example 18 below). There are multiple ways in which our setting diers. First, we rely on ex ante equilibrium concept, rather than interim rationalizability. We are also interested in the payo comparison rather than the behavior. Second, we restrict attention to common prior type spaces. Finally, we restrict attention to zero-sum games.

We believe that the last restriction makes the key dierence. As we explain in Section 7.1 below, the ex ante focus and payo comparison but without restriction to zero-sum games lead to a topology that is signicantly ner than the weak topology. The role of common prior is less clear. On one hand, [START_REF] Lipman | Finite order implications of common priors[END_REF] imply that, at least from the interim perspective, common prior does not generate signicant restrictions on nite order hierarchies. On the other hand, we rely on the ex ante perspective, and common prior is denitely important for Proposition 14 that plays an important role in the proof.

Finally, we want to emphasize that Theorem 16 does not mean that the higherorder beliefs do not matter at all. In fact, this result does not hold anymore if the limit u is an uncountable information structure, as illustrated in Section 6. 5.2.1. Approximate knowledge and approximate common knowledge. Here, we describe an important application of Theorem 16. Recall that one of the initial impulses of the literature on the higher-order beliefs was the realization of the dierence between the approximate knowledge and the approximate common knowledge.

Here, we are going to show that, at least when it comes to the knowledge of the payo state, the dierence is not important for zero-sum games.

An information structure u ∈ ∆ (K × C × D) exhibits ε-knowledge of the state if there is a mapping κ : C ∪ D → K such that u {u({k = κ(c)}|c) ≥ 1 -ε} ≥ 1 -ε and u {u({k = κ(d)}|d) ≥ 1 -ε} ≥ 1 -ε.
In other words, the probability that any of the player player assigns at least 1 -ε to some state is at least 1 -ε.

Proposition 17. Suppose that u exhibits ε-knowledge of the state and that v ∈

∆ (K × K C × K D ), where K C = K D = K and marg K v = marg K u, and v (k = k C = k D ) = 1.
(In other words, v is a common knowledge structure with the only information about the state.) Then,

d (u, v) ≤ 20ε.
Thus, approximate knowledge structures are close to common knowledge structures. The convergence of approximate knowledge type spaces to the approximate common knowledge is a consequence of Theorem 16. The metric bound stated in the Proposition requires a separate (simple) proof based on Proposition 14.

Example 18. Consider a Rubinstein email-game information structures u p,α dened as follows: The state is k = 1 with probability p and k = 0 with the remaining probability. If the state is 0, both players receive signal 0. If the state is 1, player 1 learns that and sends a message to the opponent, who after receiving it, immediately sends it back. The message travels back and forth. Each round, the message may get lost before reaching the target with probability α, in which case the process stops. The signal of the player is the number of the times she sends a message away.

Player 1 always knows the state. Player 2's rst order belief attach the probability of at least 1 1+α p 1-p to one of the states. Proposition 17 implies that, when α → 0, the Rubinstein's information structures converge to the common knowledge of the state.

Large space of information structures

In this section, we show that the value-based distance does not have a compact completion, or more precisely, it is not totally bounded on U * . Informally, the space of information structures is large: it cannot be approximated by nitely many structures. We use this result to provide a negative answer to a problem posed by J.F. Mertens.

6.1. (U * , d) is not totally bounded. To focus attention, we assume that K = {0, 1}. This is without loss of generality, as our negative result for K = {0, 1} clearly implies a negative result for larger K.

The next result nds ε > 0 and an innite sequence of (nite) information structures such that all of them are at least ε-away from each other in the valuebased distance.

Theorem 19. There exists ε > 0, even N < ∞, and a Markov chain of distribution

µ over sequences k, c 1 , d 1 , c 2 , d 2 , c 3 , ... where C l = D l = {1, ..., N } and c l ∈ C l , d l ∈ D l for each l ≥ 1, such that, if we dene sets of signals C l = l p=1 C p , D l = l p=1 D p and information structures u l = marg K×C l ×D l µ,
then, for any p = l, d u l , u p > ε.

Recall that a consistent probability over the universal type space is a probability distribution over hierarchies of beliefs that can be induced by some (potentially uncountable) common prior type space, and that the set Π of consistent probabilities over the universal belief space is compact under the topology of the weak convergence. Theorem 19 implies that (Π 0 , d) and therefore (Π, d) are not totally bounded metric spaces, so that (Π, d) is not a compact metric space. It follows that the value-based topology on Π is dierent from the weak topology, even if these topologies coincide on Π 0 by Theorem 16. (We elaborate further on this point in section 7.2.)

The proof, with an exception of one step that we describe below, is constructive.

The rst part of the theorem describes the properties of the construction. We dene a Markov chain that starts with a state followed by alternating signals for each player. In structure u n , player 1 observes signals (c 1 , c 2 , ...., c n ) and player 2 observes (d 1 , d 2 , ...., d n ). Thus, the sequence of structures u n can be understood as fragments of a larger information structure, where progressively, more and more information is revealed to each player. The Theorem shows that the larger structure is not the limit of its fragments in the value-based distance. In particular, there is no analog of the martingale convergence theorem for the value-based distance for such sequences. This has to be contrasted with two other settings, where the martinagle convergence holds. First, in the 1-player case, any sequence of information structures in which the player is receiving more and more signals converges for the distance d 1 (which can be proved using formula (3.3)). Second, using martingale convergence theorems and arguing in the proof of the denseness of Π 0 in Π for the weak topology The Markov property means that (a) the state is independent from all players information conditionally on c 1 , and (b) each new piece of information is independent from the previous pieces of information conditionally on the most recent information of the other player. As we show in the Appendix D.2, this ensures that the n-th level hierarchy of beliefs of any type in structure u n is preserved by all consistent types in structures u m for m ≥ n. Theorem 19 exhibits therefore a situation in which higher-order beliefs do not have diminishing importance for the value-based distance. In particular, it shows that the knowledge of the n-th level hierarchy of beliefs for any arbitrarily high n is not sucient to play ε-optimally in any nite zero-sum game g ∈ G.

6.2. Comments on the proof. We briey sketch the main ideas behind the proof. We x α < 1 25 . We show that we can nd even N high enough and a set S ⊆ {1, ..., N } 2 with certain mixing properties:

|{j : (i, j) ∈ S}| = N 2 , for each i, |{i : (i, j) ∈ S}| ∼ N 2 , for each j, |{i : (i, j) , (i, j ) ∈ S}| ∼ N 4
, for each j, j , |{i : (i, j) , (i, j ) , (l, i) ∈ S}| ∼ N 8 , for each j, j , l, etc. The ∼ means that the left-hand side is within α-related distance to the right-hand side. Altogether, there are 8 properties of this sort (see Appendix D.4

for details.) The properties essentially mean that various sections of S are uncorrelated with each other.

Although it might be possible to directly construct S with the required properties, we are unable to do so. Instead, we show the existence of set S using the probabilistic method of P. Erd®s (for a general overview of the method, see Alon and Spencer (2008)). Suppose that the sets S (i) for i = 1, ..., N are chosen independently and uniformly from all N 2 -element subsets of {1, ..., N }. We show that if N is suciently large, then the set S = {(i, j) : j ∈ S (i)} satises the required properties with positive probability, proving thus that a set satisfying these properties exists. Our method of the proof is not particularly careful about the optimal N and a rough estimate suggests that it needs N ≥ 10 8 .

Given S, we construct the Markov chain of distribution µ. To provide a lower bound on the distance between dierent information structures, we construct a sequence of games. In game g n , player 1 is supposed to reveal the rst n pieces of her information; player 2 reveals the rst n -1 pieces. The payos are such that it is a dominant strategy for player 1 to precisely reveal his rst order belief about the state, which amounts to report truthfully c 1 . Further than that, we verify whether the sequence of reports ĉ1 , d1 , ..., ĉn-1 , dn-1 , ĉn belongs to the support of the distribution of the Markov chain µ. If it does, then player 1 receives payo ε ∼ 1 10(N +1) 2 . If it doesn't, we identify the rst report in the sequence that deviates from the support. The responsible player is punished with payo -5ε (and the opponent receives 5ε).

The payos and the mixing properties of matrix S ensure that players have incentives to report their information truthfully. We check it formally, and we show that that if l > p, then d u l , u p ≥ val u l , g p+1 -val u p , g p+1 ≥ 2ε.

6.

3. An open problem raised by Mertens. Because the n-th level hierarchies of beliefs become constant as we move along the sequence u n , it must be7 that the sequence ũn converges weakly in Π to the limit ũn → μ. In particular, the family of functions (u → val(u, g)) g∈G is not equicontinuous on Π for the weak topology.

This answers negatively the second of the three problems 8 posed by [START_REF] Mertens | Repeated games[END_REF] in his Repeated Games survey from ICM: This equicontinuity or Lispchitz property character is crucial in many papers.... Precisely, if this family was equicontinuous, a direct application of Ascoli's theorem would have implied that the family (u → val(u, g)) g∈G is totally bounded in the space of bounded functions over Π endowed with the uniform norm.

The importance of the Mertens question comes from its application to limit theorems in the repeated games. Consider a general zero-sum repeated game (stochastic game, with incomplete information, and imperfect monitoring), given by a transi-

tion q : K × I × J -→ ∆(K × C × D), a payo function g : K × I × J -→ [-1, 1]
and an initial probability u 0 in ∆(K × C × D), where K, I, J, C and D are nite sets. Before stage 1, an initial state k 1 in K and initial private signals c 1 ∈ C for player 1, and d 1 ∈ D for player 2, are selected according to u 0 . Then at each stage t, simultaneously player 1 chooses an action i t in I and player 2 chooses and action j -t in J, the stage payo is g(k t , i t , j t ), an element (k t+1 , c t+1 , d t+1 ) is selected according to q(k t , i t , j t ), the new state is k t+1 , player 1 receives the signal c t+1 , player 2 the signal d t+1 , and the play proceeds to stage t + 1.

An appropriate state variable is u t ∈ ∆ K × I t-1 × C t × J t-1 × D t , representing the current state in K and the nite sequence of private actions and signals previously received by each player. As a consequence, a recursive formula can be explicitly written as follows: for all discount factors δ < 1 and all u ∈ ∆ (K × C 0 × D 0 ), v δ (u; g, q) = max σ1:C0→∆(I) min σ2:D0→∆(J)

(1 -δ) γ u,g (σ 1 , σ 2 ) + δv δ (F (u, σ 1 , σ 2 ; q); g, q), = min σ2:D0→∆(J) max σ1:C0→∆(I)

(1 -δ) γ u,g (σ 1 , σ 2 ) + δv δ (F (u, σ 1 , σ 2 ; q); g, q), where σ 1 , σ 2 are strategies in the game, γ u,g (σ 1 , σ 2 ) is the stage game payo, and

F (u, σ 1 , σ 2 ; q) ∈ ∆ (K × (C 0 × I × C) × (D 0 × J × D))
is the information structure obtained tomorrow, given today's strategies, the state transition and signal function q. Formally,

F (u, σ 1 , σ 2 ; q) (k, c 0 , i, c, d 0 , j, d) = k ∈K u (k , c 0 , d 0 ) σ 1 (i|c 0 ) σ 2 (j|d 0 ) q (k|k , i, j) .
Proposition 20. Suppose that the family of information structures U 0 ⊆ U is totally bounded for the value-based distance d. Suppose that for some stochastic game (g, q), any strategies σ 1 , σ 2 , we have

u ∈ U 0 =⇒ F (u, σ 1 , σ 2 ; q) ∈ U 0 .
Then, the family (v δ (.; g, q)) δ∈[0,1) is totally bounded in the space of bounded functions on U 0 endowed with the uniform norm. Proof. Let U * 0 ⊂ U * be the set of equivalence classes of information structures in U 0 . The metric space (U * 0 , d) being totally bounded, its completion (U * 0 , d) is a compact metric space. The functions v δ are, by construction, 1-Lipschitz from (U * 0 , d) to [-1, 1]. Hence any function v δ admits a unique 1-Lipschitz extension on U * 0 . Ascoli's theorem implies that the family (v δ ) δ∈[0,1) is totally bounded in the space of bounded functions on (U 0 , d) endowed with the uniform norm, which implies the result.

The above result might seem quite weak, but it is the rst necessary step for proving that v δ converges uniformly when δ goes to 1. This condition was shown to be sucient for general Markov Decision Problems in Renault (2011), and his main theorem (together with the Tauberian theorem of Lehrer and Sorin (1992)) implies quite directly the following corollary.

Corollary 21. In addition to the assumptions of Proposition 20, assume that the transition q of the stochastic game does not depend on the action of player 2, then the family v δ converges uniformly to a limit v on U 0 as δ goes to 1.

The existence of a limit value attracted a lot of attention since the rst results by [START_REF] Aumann | Repeated Games with Incomplete Information[END_REF] and [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF] for repeated games, and by [START_REF] Bewley | The asymptotic theory of stochastic games[END_REF] for stochastic games. Once the fact that the family of value functions is totally bounded is established, the existence of the limit value is typically obtained by showing that there is at most one accumulation point of the family (v δ ), e.g. by showing that any accumulation point satises a system of variational inequalities admitting at most one solution (see e.g. the survey Laraki and Sorin (2015) and footnote 2 for related works).

Even if the answer to Mertens' problem is negative, identifying totally bounded subsets of (U * , d) might have applications for limit theorems for repeated games for which the hypothesis of Proposition 20 applies. The next section illustrate with our notation several known such subsets. 6.4. Totally bounded subsets. In the 1-player case, the characterization 3.3 implies that the set of equivalence classes in U inducing the same distribution of rst order belief of player 1, equipped with the distance d 1 can be identied with the subset of (∆(∆(K)), d1 ) of probabilities with countable support, where d1 is the distance given by right-hand side of (3.3), which metricizes the weak topology on ∆(∆(K)). The latter being weakly compact, we deduce that (U, d 1 ) is totally bounded.

For 2 players, every particular subspace U i for i = 1, ..., 4 listed below has been shown to be totally bounded, each time by identifying U * i with a subset of a weakly compact space of probabilities. We only mention the relevant variables used for the identication and the corresponding space of probabilities.

• Set U 1 of information structures where both players receive the same signal: U * 1 can be identied with ∆ c (∆(K)) 9 . Here given u in U 1 , what matters is the induced law on the common a posteriori of the players on K. Another characterization of d(u, v) has been obtained in [START_REF] Venel | Long-term values in markov decision processes and repeated games, and a new distance for probability spaces[END_REF]. let D 1 be the subset of 1-Lipschitz functions from ∆(K) to R satisfying ∀p, q ∈ ∆(K), ∀a, b ≥ 0, af (p) -bf (q) ≤ ap -bq 1 .

We have :

∀u, v ∈ U 1 , d(u, v) = sup f ∈D1 p∈∆(K) f (p)dũ(p) - p∈∆(K)
f (p)dṽ(p) .

• Set U 2 of information structures u ∈ ∆(K × C × D) where player 1 knows the signal of player 2, i.e. there exists a map κ : C → D such that u({d = κ(c)}) = 1: U * 2 can be identied with ∆ c (∆ c (∆(K))) (see [START_REF] Mertens | Repeated games[END_REF], Gensbittel et al. ( 2014)). Given u ∈ U 2 , the relevant variable is the induced distribution of the second order beliefs of player 2.

• Set U 3 of independent information structures: U 3 is the set of u ∈ U with conditionally independent information. U * 3 can be identied with ∆ c (∆(K) × ∆(K)). Given u in U 3 , the relevant variable is the pair of rst order beliefs of the players. 7. Relation to other topologies on U 7.1. Payo-based distance with non-zero-sum games. It seems natural to ask about a version of distance (2.1) where we take supremum over all bounded games, not necessarily zero-sum. In this subsection, we are going to show that such an approach cannot be useful because so dened measure is equal to its maximum possible value for almost every pair of information structures.

Formally, a non-zero sum payo function is a map g :

K × I × J → [-1, 1] 2
where I, J are nite sets. Let Eq (u, g) ⊆ R 2 be the set of Bayesian Nash payos in 9 We use the notation ∆c(X) for the probabilities with at most countable support on X game g on information structure u. Assume that the space R 2 is equipped with the maximum norm d max (x, y) = max i=1,2 |x i -y i | and the space of compact subsets of R 2 with the induced Hausdor distance d H max . Let

d N ZS (u, v) = sup
g is a non-zero-sum payo function d H max (Eq (u, g) , Eq (v, g)) .

Then, clearly as in our original denition (2.1), 0 ≤ d N ZS (u, v) ≤ 2.

Contrary to the value in the zero-sum game, the Bayesian Nash Equilibrium payos on information structure u cannot be factorized through the distribution ũ ∈ ∆(Θ has a representation as a convex combination of (non-redundant) simple information structures u = α p α u α , where p α = 1, p α ≥ 0, and p α > 0 for at most nitely many α.

Theorem 22. Suppose that u, v are nite and non-redundant information structures. If u and v are simple, then

d N ZS (u, v) = 0, if ũ = ṽ, 2 otherwise.
More generally, suppose that u = p α u α and v = q α v α are the decompositions into simple information structures. We can always choose the decompositions so that ũα = ṽα for each α. Then,

d N ZS (u, v) = α |p α -q α | .
The distance between the two non-redundant simple information structures is binary, either 0 if the information structures are equivalent, or 2 if they are not. In particular, the distance between most of the simple information structures is equal to its maximum possible value 2. The distance d N ZS between two non-redundant, but not necessarily simple information structures depends on how similar is their decomposition into the simple components.

The proof in the case of two non-redundant and simple structures u and v is very simple. Let ũ = ṽ. First, it is well-known that there exist a nite game g : that the supports of distributions ũ and ṽ must be disjoint (it is also a consequence of 10 An alternative approach would be to take an equilibrium solution concept that can be fac- torized through the hierarchies of beliefs. An example is Bayes Correlated Equilibrium from [START_REF] Bergemann | Bayes Correlated Equilibrium and the Comparison of Information Structures in Games[END_REF].

K × I × J → [-1, 1]
the result by [START_REF] Samet | Iterated expectations and common priors[END_REF]). Thus, we can construct a game, in which, additionally to the rst game, player 2 chooses between two actions {u, v} which inuences her payo only, in such a way that it is optimal for her to match the information structure to which player 1's reported type belongs. Finally, we multiply the so obtained game by ε > 0 and construct a new game, in which, additionally, player 1 receives payo 1 -ε if player 2 chooses u and a payo of -1 + ε if player 2 chooses v. Hence, the payo distance between the two information structures is at least 2 -ε, where ε is arbitrary small. 7.2. Pointwise topology. An alternative way to dene the topology (but not the distance) on the space of information structures would be through the convergence of values. Say that a sequence of information structures u n converges to u pointwise if for all payo structures g ∈ G, lim n→∞ val(u n , g) = val(u, g). Note that pointwise convergence is also well-dened on Π.

The topology of pointwise convergence is the weakest topology that makes the value mappings continuous. This property is not as easy to interpret and it does not seem to be as useful as the value-based metric induced topology. The next result provides its characterization.

Theorem 23. G (with payos bounded in norm by 1), the set of actions that are 0-ICR at type t in game G is equal to the set of actions that are ε-ICR at type t n for n ≥ N .

The two topologies dier by the order of quantiers; the uniform topology corresponds more to the value-based distance topology and the weak topology corresponds to the topology introduced in Section 7.2. Both topologies are metric. Chen et al. ( 2016) provide a full characterization of the two topologies directly in terms of hierarchies of beliefs. In particular, it is well-known that the two topologies are strictly ner than the product topology on the universal type space.

It is not entirely obvious how to compare the value-based and the strategic topologies as, due to the dierence between ex ante and interim approaches, their domains are dierent.

One way to do is to equip Θ 1 with the strategic or uniform strategic topology, and to consider the induced weak topology (i.e. of convergence in distribution) on Π ⊂ ∆(Θ 1 ).

One can easily see that the two topologies are strictly ner than the weak topology on Π 0 (this is demonstrated by, for instance the Rubinstein's email gamesee Example 18). Given Theorem 16, the two strategic topologies are strictly ner than the value-based topology on Π 0 . We do not know whether the two topologies remain ner when the value-based topology is extended to Π.

Conclusion

In this paper, we have introduced and analyzed the value-based distance on the space of information structures. The main advantage of the denition is that it has a simple and useful interpretation as the tight upper bound on the loss or gain from moving between two information structures. This allows us to directly apply it to numerous questions about the value of information, the relation between the games and single-agent problems, comparison of information structures, etc. Additionally, we show that the distance contains an interesting topological information. On one hand, the topology induced on the countable information structures is equivalent to the topology of weak convergence of consistent probabilities over coherent hierarchies of beliefs. On the other hand, the set of countable information structures is not totally bounded for the value-based distance, which solves negatively the last open question raised in [START_REF] Mertens | Repeated games[END_REF], with deep implications for stochastic games.

By restricting our attention to zero-sum games, we were able to re-examine the relevance of many phenomena observed and discussed in the strategic discontinuities literature. On one hand, the distinction between the approximate knowledge and the approximate common knowledge is not important in situations of conict. On the other hand, the higher order beliefs matter on some, potentially uncountably large structures. More generally, we believe that the discussion of the strategic phenomena on particular classes of games can be fruitful line of future research.

It is not the case that each problem must involve coordination games. Interesting classes of games to study could be common interest games, potential games, etc. 11 Part 1. We start with general considerations. Recall that any g ∈ G(L) is (identied with) a map from K × N × N → [-1, 1] such that g(k, i, j) = -1 if i ≥ L and g(k, i, j) = 1 if i < L and j ≥ L. For u ∈ U and g ∈ G(L), we denote by γ u,g (q 1 , q 2 ) the payo of player 1 in the zero-sum game Γ(u, g) when player 1 plays q 1 ∈ Q and player 2 plays q 2 ∈ Q. Extending as usual g to mixed actions, we have:

γ u,g (q 1 , q 2 ) = k,c,d u(k, c, d)g(k, q 1 (c), q 2 (d)). For u ∈ U and g ∈ G, the scalar product g, u = k,c,d g(k, c, d)u(k, c, d
) is well dened, and corresponds to the expectation of g with respect to u, and to the payo γ u,g (Id, Id), where Id ∈ Q is the strategy which plays with probability one the signal received. The map g ∈ G(L) has been extended to K × N × N in such a way that

∀q 1 ∈ Q(L), min q2∈Q(L) γ u,g (q 1 , q 2 ) = min q2∈Q γ u,g (q 1 , q 2 ),
and a similar result for player 1. Therefore, we have for all g ∈ G(L)

val(u, g) = max σ1∈Q(L) min σ2∈Q(L) γ u,g (σ 1 , σ 2 ) = min σ2∈Q(L) max σ1∈Q(L) γ u,g (σ 1 , σ 2 ) = max σ1∈Q min σ2∈Q γ u,g (σ 1 , σ 2 ) = min σ2∈Q max σ1∈Q γ u,g (σ 1 , σ 2 )
Let us now compute the payo γ u,g (q 1 , q 2 ), for any q 1 , q 2 :

γ u,g (q 1 , q 2 ) = k,c,d u(k, c, d)g(k, q 1 (c), q 2 (d)) = k,c,d u(k, c, d) c ,d ) q 1 (c)(c )q 2 (d)(d )g(k, c , d ) = k,c ,d g(k, c , d ) c,d u(k, c, d)q 1 (c)(c )q 2 (d)(d ) = k,c ,d g(k, c , d ) ((q 1 .u.q 2 ) (k, c , d )) = g, q 1 .u.q 2 .
Consequently, val(u, g) = max q1∈Q min q2∈Q g, q 1 .u.q 2 = min q2∈Q max q1∈Q g, q 1 .u.q 2 . Since both players can play the Id strategy in Γ(u, g), we obtain for all u ∈ U and g ∈ G(L) : inf q2∈Q g, u.q 2 ≤ val(u, g) ≤ sup q1∈Q g, q 1 .u .

Notice also that for all u, v in U, u -v = sup g∈G g, u -v .

Part 2. We now prove Theorem 1. Take g ∈ G and q 1 , q 2 ∈ Q. Then, val(v.q 2 , g) ≥ val(v, g) and val(u, g) ≥ val(q 1 .u, g), which implies val(v, g) -val(u, g) ≤ val(v.q 2 , g) -val(q 1 .u, g) ≤ q 1 .u -v.q 2 .

Because g and q 1 , q 2 are arbitrary, we obtain

sup g∈G (val(v, g) -val(u, g)) ≤ inf q1∈Q,q2∈Q q 1 .u -v.q 2 .
Thus, it remains to prove that

(A.1) inf q1∈Q,q2∈Q q 1 .u -v.q 2 ≤ sup g∈G (val(v, g) -val(u, g))
and that the minimum is achieved in the left-hand side. We have inf q1∈Q,q2∈Q

q 1 .u -v.q 2 = inf q1∈Q,q2∈Q
sup g∈G g, v.q 2 -q 1 .u .

The sets Q are convex and compact in the product topology, the set G is a convex subset of some linear vector space, the map (g, (q 1 , q 2 )) → g, v.q 2 -q 1 .u , is bilinear and continuous with respect to (q 1 , q 2 ) ∈ Q 

sup g∈G g, v.q 2 -q 1 .u = sup g∈G min q1∈Q,q2∈Q
g, v.q 2 -q 1 .u .

Inequality (A.1) now follows from :

sup g∈G inf q1∈Q,q2∈Q g, v.q 2 -q 1 .u = sup g∈G inf q2∈Q g, v.q 2 -sup q1∈Q g, q 1 .u ≤ sup g∈G (val(v, g) -val(u, g)) .
Finally, if u, v ∈ G(L) for some L ∈ N, the argument of part 2 can be repeated by replacing Q by Q(L) and G by G(L) since for any q 1 , q 2 ∈ Q(L), we have q 1 .u-v.q 2 = sup g∈G(L) g, q 1 .u-v.q 2 . Moreover, G(L) is compact for the topology of pointwise convergence on K ×{0, ..., L-1} 2 , and the map (g, (q 1 , q 2 )) → g, v.q 2q 1 .u is continuous with respect to g ∈ G(L) for any xed (q 1 , q 2 ) ∈ Q(L), implying that (A.2)

max g∈G(L) (val(v, g) -val(u, g)) = min q1∈Q(L),q2∈Q(L) q 1 .u -v.q 2 .
Clearly,

sup g∈G(L) (val(v, g) -val(u, g)) ≤ sup g∈G (val(v, g) -val(u, g)) , and inf q1∈Q,q2∈Q q 1 .u -v.q 2 ≤ inf q1∈Q(L),q2∈Q(L) q 1 .u -v.q 2 .
and using (3.1) and (A.2), these inequalities are equalities, which concludes the proof.

A.2. Proof of Proposition 2. Let us start with general properties of d 1 . Let us dene the set of single agent information structures as U 1 = ∆(K × N) using the same convention that countable sets are identied with subsets of N. Note that

given u ∈ ∆(K × C × D), marg K×C u ∈ U 1 . Let G 1 = {g : K × N → [-1, 1], ∃L s.t.∀i ≥ L, g (k, i) = -1}
be the set of single-agent decision problems, and dene for u , v

∈ U 1 , d 1 (u , v ) = sup g ∈G 1 | val(v , g ) -val(u , g )|. It is easily seen that for any u, v ∈ ∆(K × C × D), (A.3) d 1 (u, v) = d 1 (u , v ) = max{min q∈Q u -q.v , min q∈Q q.u -v } where u = marg K×C u, v = marg K×C v, q.u (k, c) = s∈C u (k, s)q(s)(c) and
where the last equality can be obtained by mimicking (and simplifying) the arguments of the proof of Theorem 1.

We now prove Theorem 1.

Using the assumptions, we have u

(k) = v(k), u (c, d|k) = u (c|k) u (d|k) and v (c , d|k) = v (d|k) v (c |k) = u(d|k)v (c |k). For any pair of garblings q 1 , q 2 u.q 2 -q 1 .v = k,c,d β u (k, c, β) q 2 (d|β) - α v (k, α, d) q 1 (c|α) = k,c u (k) d u (c|k) β u (β|k) q 2 (d|β) - α v (α|k) q 1 (c|α) u (d|k) = k,c u (k) d |u (d|k) Γ (k, c) + ∆ (k, d) u (c|k)| , where ∆ (k, d) = u (d|k) - β u (β|k) q 2 (d|β) , Γ (k, c) = α v (α|k) q 1 (c|α) -u (c|k) . Because |x + y| ≥ |x| + sgn(x)y for each x, y ∈ R, we have d |u (d|k) Γ (k, c) + ∆ (k, d) u (c|k)| ≥ d u (d|k) |Γ (k, c)| + sgn (Γ (k, c)) u (c|k) d ∆ (k, d) = d u (d|k) |Γ (k, c)| .
where the last equality comes from the fact that

d ∆ (k, d) = 0. Thus, we obtain u.q 2 -q 1 .v ≥ k,c,d u (k) |u (d|k) Γ (k, c)| = k,c,d u (k) u (d|k) u (c|k) - α u (d|k) v (α|k) q 1 (c|α) = u -q 1 .v . We deduce that min q1,q2 u.q 2 -q 1 .v = min q1 u -q 1 .v .
Inverting the roles of the players, we also have

min q1,q2 v.q 2 -q 1 .y = min q1 v -q 1 .u . We conclude that d(u, v) = max{min q1,q2 u.q 2 -q 1 .v ; min q1,q2 v.q 2 -q 1 .y } = max{min q1 u -q 1 .v ; min q1 v -q 1 .u } = d 1 (u, v),
where the last equality follows from (A.3) together with the fact that marg K×D u = marg K×D v.

A.3. Proof of Corollary 3. By Theorem 1, sup g∈G (val(v, g) -val(u, g)) = min q1∈Q,q2∈Q q 1 .u -v.q 2 .
Since q 1 .u u and v.q 2 v, we have sup g∈G (val(v, g) -val(u, g)) ≥ inf u u,v v uv . Consider now u u and v v. We have for all g ∈ G:

u -v ≥ val(v , g) -val(u , g) ≥ val(v, g) -val(u, g), so sup g∈G (val(v, g) -val(u, g)) ≤ inf u u,v v u -v . Hence sup g∈G (val(v, g) -val(u, g)) = inf u u,v v u -v A.4.
Proof of Proposition 4. We prove the lower bound of (3.5). Let g (k) =

1 p k >q k -1 p k ≤q k . Then, d (u, v) ≥ val (u, g) -val (v, g) = k∈K (p k -q k ) g (k) = k∈K |p k -q k | .
Let us prove the upper bound of (3.5). Dene ū and v in ∆(K

× K C × K D ) with K = K C = K D such that ū(k, c, d) = p k 1 c=k 1 d=k0
for some xed k 0 ∈ K (complete information for player 1, trivial information for player 2, and the same prior about k as u) and v(k, c, d) = q k 1 c=k0 1 d=k for all (k, c, d) (trivial information for player 1, complete information for player 2, and the same beliefs about k as v).

Since the value of a zero-sum game is weakly increasing with player 1's information and weakly decreasing with player 2's information, we have u ū and v v.

Therefore,

sup g∈G (val(u, g) -val(v, g)) ≤ sup g∈G (val(ū, g) -val(v, g)) = min q1∈Q,q2∈Q ū.q 2 -q 1 .v ,
where, according to Theorem 1, the minimum in the last expression is attained for garblings with values in ∆K. Since player 2 has a unique signal in ū, only q 2 (.|k 0 ) ∈ ∆K matters. We denote it by q = q 2 (.|k 0 ). Similarly, we dene p = q 1 (.|k 0 ) ∈ ∆(K). Then,

ū.q 2 -q 1 .v = (k,c,d)∈K 3 |p k 1 c=k q d -q k 1 d=k p c | = k∈K |p k q k -q k p k | + p k (1 -q k ) + q k (1 -p k ) = 2 + k∈K |p k q k -q k p k | -p k q k -q k p k = 2 1 - k∈K min (p k q k , q k p k ) .
A similar inequality holds by inverting the roles of u and v, and the upper bound follows from the fact that one can choose arbitrary p , q . If p = q, then k∈K

min (p k q k , q k p k ) = k∈K p k min (q k , p k ) ≤ k∈K p k p k ≤ max k∈K p k ,
where the latter is attained by

p k = q k = 1 {k=k * } for some k * ∈ K such that p k * = max k∈k p k .
A.5. Proof of Proposition 6. We prove the rst claim. Consider any strategy τ of player 2 in Q. Notice that (σ.q 1 ).u = σ.(q 1 .u) and (v.q 2 ).τ = v.(τ.q 2 ). Using the notation of the proof of theorem 1, we have γ u,g (σ.q 1 , τ ) = g, (σ.q 1 ).u.τ = g, σ.(q 1 .u).τ ≥ g, σ.(v.q 2 ).τ -q 1 .u -v.q 2 ≥ g, σ.v.(τ.q 2 ) -d(u, v)

≥ val(v, g) -d(u, v) ≥ val(u, g) -2d(u, v), so σ.q 1 is 2d(u, v)-optimal in g on u. u.q 2 -q 1 .v , where in the second inequality we use a restricted set of player 1's garblings that do not depend on c 1 . Further, for any such q 1 and an arbitrary garbling q 2 , we have

u.q 2 -q 1 .v = k,c,c1,c2,d β u (k, c, c 1 , c 2 , β) q 2 (d|β) - α u (k, c, c 1 , d) q 1 (c, c 2 |α) = k,c,c1,c2,d u (k, c 1 ) β u (c, c 2 , β|k, c 1 ) q 2 (d|β) - α u (c, d|k, c 1 ) q 1 (c, c 2 |α) . lim n |val (ũ, g) -val (ũ n , g)| = |val (ũ, g) -val (ũ * , g)| > 0. But this contradicts d (u n , u) = d (ũ n , ũ) → 0.
C.2. Theorem 16: the value-based topology is contained in the weak topology. Because the weak topology is metrisable, it is enough to show that if

u n ∈ ∆ (K × C n × D n ) and u ∈ ∆ (K × C × D)
are information structures such that ũn converges to ũ in the weak topology, then d (u n , u) → 0. We will show that for each ε > 0, Because we can switch the roles of players, this will suce to establish our claim.

Partitions of unity. Because all hierarchies c, c ∈ C are distinct, for each m, there exists p m < ∞ and ε m ∈ 0, 1 m such that for any c, c

∈ C m such that c = c , k∈K p m d=0 E φ1(c) [1 {k} κ p m d ] -E φ1(c ) [1 {k} κ p m d ] ≥ 2ε m . Let h m c (θ 1 ) = k p m d=0 E φ1(θ1) [1 {k} κ p m d ] -E φ1(c) [1 {k} κ p m d ] .
Then, h m c is a continuous function such that h m c (c) = 0, and such that if h m c (θ 1 ) ≤ ε m for some c ∈ C m , then h m c (θ 1 ) ≥ ε m for any c ∈ C m such that c = c. Dene continuous functions for 0 ≤ c ≤ m + 1,

κ m c (θ 1 ) = max 1 - 1 ε m h m c (θ 1 ) , 0 for c ∈ C m , κ m c ≡ 0 if c / ∈ C, and κ m m+1 (θ 1 ) = 1 - m c=0 κ m c (θ 1 ) .
Then, for each m, Conditional independence. For each information structure v ∈ ∆ (K × C × D ), dene an information structure

K m v ∈ ∆ (K × C × {0, ..., m + 1} × D × {0, ..., p m }) so that K m v k, c , ĉ, d , d = v (k, c , d ) κ m ĉ (c ) κ p m d d . Let δ m v = 2ε m + K m v (ĉ = m + 1) .
We are going to show that, under

K m v, signal c is δ m v-conditionally indepen- dent from k, d given ĉ. Notice rst that, if K m v k, d , d, c , ĉ > 0 for some ĉ ∈ C m , then h m ĉ (c ) ≤ ε m . It follows that k p m d=0 K m v k, d|ĉ, c -E φ1( c) [1 {k} κ p * d ] = k p m d=0 K m v k, d|c -E φ1( c) [1 {k} [κ p m d ] = k p m d=0 E φ1(c ) [1 {k} κ p m d ] -E φ1( c) [1 {k} κ p m d ] = h m ĉ (c ) ≤ ε m .
On the other hand

k p m d=0 K m v k, d|ĉ -E φ1( c) [1 {k} κ p * d ] = k p m d=0 1 K m v(ĉ) c ∈C K m v(c , ĉ)K m v k, d|ĉ, c -E φ1( c) [1 {k} [κ p m d ] ≤ c ∈C K m v(c , ĉ) K m v(ĉ) k p m d=0 K m v k, d|ĉ, c -E φ1( c) [1 {k} [κ p m d ] = h m ĉ (c ) ≤ ε m . Hence, m+1 ĉ=1 c K m v (ĉ, c ) k, d K m v k, d|ĉ, c -K m v k, d|ĉ ≤2ε m m ĉ=1 K m v (ĉ) + K m v (ĉ = m + 1) ≤ δ m v.
Dene the information structure

L m v = marg K×{0,...,p m }×{0,...,m+1} K m v. Then, because d (K m v, v) = 0, Lemma 24 implies that sup g∈G (val (v, g) -val (L m v, g)) ≤ δ m v.
Proof of claim (C.1). Observe that for each k, ĉ, d,

(L m u n ) k, ĉ, d = E ũn κ m ĉ (θ 1 ) E φ1(θ1) [1 {k} κ p m d ] .
Because all the functions in the brackets above are continuous, the weak convergence ũn → ũ implies that Thus,

(L m u n ) k, ĉ, d → (L m u) k, ĉ, d .
d (L m u, u) ≤ L m u -u ≤ 2 u (C\C m ) + u D\D p m -→ n→∞ 0.
It follows that

δ m u n = (K m u n ) (ĉ = m + 1) -→ n→∞ (L m u) (ĉ = m + 1) ,
and

(L m u) (ĉ = m + 1) = 1-(L m u)(C m ×D p m ) ≤ 1-u(C m ×D p m ) ≤ u (C\C m )+u D\D p m .
Together, we obtain for each m, n does not have any new information, we verify (for instance using Lemma 14) that d (u, u ) = 0. We are going to show that C is 16ε-conditionally independent from K × K D given K C . Notice that because u exhibits ε-knowledge,

u {k C = k or k D = k} ≤ u {k C = k} + u {k D = k} ≤ 2ε + 2ε = 4ε. Thus, k,k C ,k D u (k C ) c |u (k, k D , c|k C ) -u (k, k D |k C ) u (c|k C )| = k,k C ,k D u (k, k C , k D ) c u (c|k, k C , k D ) - k ,k D u (c|k , k C , k D ) u (k , k D |k C ) ≤ k u (k, k, k) c u (c|k, k, k) - k ,k D u (c|k , k C = k, k D ) u (k , k D |k C = k) + 2u {k C = k or k D = k} ≤ k u (k, k, k) c u (c|k, k, k) -u (c|k, k, k) u (k, k, k) u (k C = k) + k u (k, k, k) c k =k, or k D =k |u (c|k, k C = k, k D ) u (k , k D |k C = k)| + 2u {k C = k or k D = k} ≤ k u (k, k, k) 1 - u (k, k, k) u (k C = k) + 3u {k C = k or k D = k} ≤ k |u (k C = k) -u (k, k, k)| + 3u {k C = k or k D = k} ≤4u {k C = k or k D = k} ≤ 16ε.
Because an analoguous result applies to the information of the other player, Lemma 14 shows that

d (u , v ) ≤ 16ε, where v = marg K×K C ×K D . Because d (v, v ) ≤ k,k C ,k D |v (k, k C , k D ) -v (k, k C , k D )| ≤2v {k C = k or k D = k} = 2u {k C = k or k D = k} ≤ 4ε, the triangle inequality implies that d (u, v) ≤ d (u, u ) + d (u , v ) + d (v, v ) ≤ 20ε.
The following interpretation of u l holds: rst select (a 1 , a 2 , ..., a 2l ) = (c 1 , d 1 , ..., c l , d l ) in A 2l according to the Markov chain ν (i.e. uniformly among the nice sequences of length 2l), then tell (c 1 , c 2 , ..., c l ) (the elements of the sequence with odd indices) to player 1, and (d 1 , d 2 , ..., d l ) (the elements of the sequence with even indices) to player 2. Finally choose the state k = 1 with probability c 1 /(N + 1), and state k = 0 with the complement probability 1 -c 1 /(N + 1).

Notice that the denition is not symmetric among players, the rst signal c 1 of player 1 is uniformly distributed and plays a particular role. The marginal of u l on K is uniform, and the marginal of u l+1 over (K × C l × V l ) holds : condition 2 ) of theorem 19 is satised.

A sequence (a 1 , ..., a l ) of length l ≥ 1 is said to be nice it it is in the support of the Markov chain: ν(a 1 , ..., a l ) > 0. For instance any sequence of length 1 is nice, and N 2 /2 sequences of length 2 are nice. Consider a sequence (a 1 , ..., a l ) of elements of A which is not nice, i.e. such that ν(a 1 , ..., a l ) = 0. We say that the sequence is not nice because of player 1 if min{t ∈ {1, ..., l}, ν(a 1 , ..., a t ) = 0} is odd, and not nice because of player 2 if min{t ∈ {1, ..., l}, ν(a 1 , ..., a t ) = 0} is even.

A sequence (a 1 , ..., a l ) is now either nice, or not nice because of player 1, or not nice because of player 2. A sequence of length 2 is either nice, or not nice because of player 2.

For p ≥ 1, dene the payo structure g

p : K × C p × D p-1 → [-1, 1] such that for all k in K, c = (c 1 , ..., c p ) in C p , d = (d 1 , ..., d p-1 ) in D p-1 : g p (k, c , d ) = g 0 (k, c 1 ) + h p (c , d ), with g 0 (k, c 1 ) = -k - u 1 N + 1 2 + N + 2 6(N + 1) , h p (c , d ) =    ε if (c 1 , d 1 , ..., c p ) is nice, 5ε if (c 1 , d 1 , ..., c p ) is not nice because of player 2, -5ε if (c 1 , d 1 , ..., c p ) is not nice because of player 1.
One can check that |g p | ≤ 5/6 + 5ε ≤ 8/9. Regarding the g 0 part of the payo, consider a decision problem for player 1 where: c 1 is selected uniformly in A and the state is selected to be k = 1 with probability c 1 /(N + 1) and k = 0 with probability 1 -c 1 /(N + 1). Player 1 observes c 1 but not k, and he choose c 1 in A and receive payo g 0 (k, c 1 ). We have c1

N +1 g 0 (1, c 1 ) + (1 -c1 N +1 )g 0 (0, c 1 ) = 1 (N +1) 2 (c 1 (2c 1 -c 1 ) + (N + 1)((N + 2)/6 -c 1 )
). To maximize this expected payo, it is well known that player 1 should play his belief on k, i.e. c 1 = c 1 . Moreover, if player 1 chooses c 1 = c 1 , its expected loss from not having chosen c 1 is at least 1 (N +1) 2 ≥ 10ε. And the constant N +2 6(N +1) has been chosen such that the value of this decision problem is 0.

Consider now l ≥ 1 and p ≥ 1. By denition, the Bayesian game Γ(u k , g p ) is played as follows: rst, (c 1 , d 1 , ..., c l , d l ) is selected according to the law ν of the Markov chain, player 1 learns (c 1 , ..., c l ), player 2 learns (d 1 , ..., d l ) and the state is k = 1 with probability c 1 /(N + 1) and k = 0 otherwise. Then simultaneously player 1 chooses c in C p and player 2 chooses d in D p-1 , and nally the payo to player 1 is g p (k, c , d ). Notice that by the previous paragraph about g 0 , it is always strictly dominant for player 1 to report correctly his rst signal, i.e. to choose c 1 = c 1 . We will show in the next section that if l ≥ p and player 1 simply plays the sequence of signals he received, player 2 can not do better than also reporting truthfully his own signals, leading to a value not lower than the payo for nice sequences, that is ε. On the contrary in the game Γ(u l , g l+1 ), player 1 has to report not only the l signals he has received, but also an extra-signal c l+1 that he has to guess. In this game we will prove that if player 2 truthfully reports his own signals, player 1 will incur the payo -5ε with probability at least (approximately) 1/2, and this will result in a low value. These intuitions will prove correct in the next section, under some conditions U I1 and U I2. D.2. Higher order beliefs. Recall that n-order beliefs are dened inductively as conditional laws. Precisely, the rst order beliefs θ i 1 of player i is the conditional law of k given her signal. The n-order belief θ i n of player i is the conditional law of (ω, θ -i n-1 ) given her signal. In this construction, conditional laws are seen as random variables taking values in space of probability measures.

Lemma 25. For all l > p, the joint distribution of (ω, θ 1 2p , θ 2 2p ) induced by the information structure u l is independent of l.

Proof. We use the notation L(X|Y ) for the conditional law of X given Y , and the identication (a 1 , ..., a 2l ) = (c 1 , d 1 , ...., c l , d l ). At rst, note that by construction k and (a 2 , ...., a 2l ) are conditionally independent given a 1 , so that the sequence (k, a 1 , a 2 , ..., a 2l ) is a Markov process. It follows that θ 1 1 = L(k|c 1 , ..., c l ) =L(k|c 1 ).

The Markov property implies that

θ 2 1 = L(k|d 1 , ...., d l ) = L(k|d 1 ), θ 2 2 = L(d, θ 1 1 (c 1 )|d 1 , ...., d l ) = L(k, θ 1 1 (c 1 )|d 1 ),
and therefore we have

θ 1 2 = L(k, θ 2 1 (d 1 )|c 1 , ...., c l ) = L(k, θ 2 1 (d 1 )|c 1 , c 2 ).
By induction, and applying the same argument (future and past of a Markov process are conditionally independent given the current position), we deduce that for all n ≥ 1,

θ 1 2n = L(k, θ 2 2n-1 |c 1 , ...., c min(l,n+1) ), θ 1 2n+1 = L(k, θ 2 2n |c 1 , ...., c min(l,n+1) ), θ 2 2n-1 = L(k, θ 1 2n-2 |d 1 , ...., d min(l,n) ), θ 2 2n = L(k, θ 1 2n-1 |d 1 , ...., d min(l,n)
). As a consequence, for all n ≤ p, these conditional laws do not depend on which u l we are using as soon as l > p. D.3. Conditions UI and values. To prove that the intuitions of the previous paragraph are correct, we need to ensure that players have incentives to report their true signals, so we need additional assumptions on the Markov chain. 

Notations and denition:

Let l ≥ 1, m ≥ 0, c = (c 1 , ..., c l ) in C l and d = (d 1 , ..., d m ) in D m . We write : a 2q (c, d) = (c 1 , d 1 , ...., c q , d q ) ∈ A 2q for each q ≤ min{l, m}, a 2q+1 (c, d) = (c 1 , d 1 , ...., c q , d q , c q+1 ) ∈ A 2q+1 for each q ≤ min{l -1, m}.
u l c 2l+1 d c = c, c 2l d ∈ [1/2 -α, 1/2 + α]
and for all m ∈ {1, ..., l} such that c m = c m , for r = 2m -2, 2m -1,

(D.2) u l c r+1 d c = c, c r d ∈ [1/2 -α, 1/2 + α].
We say that the conditions U I2 are satised if for all 1 ≤ p ≤ l, for all d ∈ D l , for all d ∈ D p-1 , for all m ∈ {1, ..., p -1} such that d m = d m , for r = 2m -1, 2m

(D.3) u l c r+1 d | d = d, c r d ∈ [1/2 -α, 1/2 + α].
To understand the conditions U I1, consider the Bayesian game Γ(u l , g l+1 ), and assume that player 2 truthfully reports his sequence of signals and that player Proof. Assume l > p, then d(u l , u p ) ≥ val(u l , g p+1 ) -val(u p , g p+1 ) ≥ ε -(-ε).

Proof of proposition 27. We assume that U I1 and U I2 hold. We x l ≥ 1, work on the probability space K × C l × D l equipped with the probability u l , and denote by c and d the random variables of the signals received by the players.

1) We rst prove (D.4), and consider the game Γ(u l , g p ) with p ∈ {1, ..., l}. We assume that player 1 chooses the truthful strategy. A n = {c n d }.

We will prove by backward induction that: ≥ ε.

P N i∈S X i,a - 1 2 |S| ≥ γN ≤ 2e -2γ 2 N 2 |S| ≤ 2e -2N γ 2 .
For the second inequality, let Z i = X i,a X i,b . Notice that all variables Z i are i.i.d. Bernoulli random variables with parameter p = 1 Case m = 1, r = 1. 

u l c 2 d | d = d, c 1 d = u l c 2 d | d = d , = u l X c1,d 1 = 1|X c1,d1 = 1 , = i∈U X i,d 1 X i,d1 i∈U X i,d1
= i∈V X c m ,i X cm,i X i,cm+1 i∈V X cm,i X i,cm+1 , = 1 2 Y c m ,cm cm+1 Y cm cm+1 ∈ [1/2 -α, 1/2 + α].
Case r = 2m -2. Appendix E. Proofs of Section 7 E.1. Proof of Theorem 22. Suppose that u and v are two simple, and nonredundant information structures. Let ũ and ṽ be the associated probability distributions over belief hierarchies of player 1. It is easy to show that if two nonredundant information structures induce the same distributions over hierarchies of beliefs ũ = ṽ, then they are equivalent from any strategic point of view, and, in particular, they induce the same set of ex ante BNE payos. Hence, we assume that ũ = ṽ.

Let H u = suppũ and H v = suppṽ. Lemma III.2.7 in [START_REF] Mertens | Repeated games[END_REF] implies that the sets H u and H v are disjoint.

It is well known that there exists a non-zero sum payo function g (0) : K × (I × I 0 )×J → [-1, 1] 2 such that I 0 = H u ∪H v and such that the set of rationalizable actions for player 1 of type c ∈ C with hierarchy h (c) is contained in the set I × {h (c)}. In particular, in a Bayesian Nash equilibrium, each type of player 1 will
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4. 1 .

 1 Value of additional information: games vs. single agent. Consider two information structures

c 2 )

 2 given (k, d), and (b) c 1 and d are conditionally independent given k. Both (a) and (b) are important as it is illustrated in the two subsequent examples. Example 10. Violation of (a). Suppose that C = D = { * }, K = C 1 = C 2 = {0, 1}, c 1 and c 2 are uniformly and independently distributed, and k = c 1 + c 2 mod 2. Then, signal c 2 is itself independent from the state, hence useless without c 1 . Knowing c 1 and c 2 means knowing the state, which is, of course, very valuable. Thus, the value of c 2 increases when c 1 is also present. Example 11. Violation of (b). Suppose that C = { * }, K = C 1 = C 2 = D = {0, 1}, c 1 and d are uniformly and independently distributed, c 2 = d, and k = c 1 + d mod 2. Notice that part (a) of the assumption holds (given (k, d), both signals c 1 and c 2 are constant, hence, independent), but part (b) is violated. Again, signal c 2 is useless alone, but together with c 1 it allows the determine the state and the information of the other player. 4.3. Informational complements. Another question is about the impact of an information of the other player on the value of information. Suppose that

  3.1 in Mertens et al. (2015)).

  4.4 in Mertens et al. (2015),val(u, g) = val(ũ, g) for each u ∈ U .In particular, the value on information structure u depends only on the induced distribution over hierarchies of beliefs. Second, by lemma 41 in[START_REF] Gossner | The value of information in zero-sum games[END_REF]), the value separates the elements of Π: we have d (P, Q) > 0 for any P, Q ∈ Π, P = Q.The two fundamental observations imply that there is a bijection between the set of Π 0 and the set U * of equivalence classes of information structures. 5.2. The weak vs. the value-based topology. The next result says the spaces Π 0 and the set U * have the same topologies. Theorem 16. A sequence (u n ) in U * converges to u ∈ U * for the value-based distance if and only if the sequence (ũ n ) converges weakly to ũ in Π 0 .

(

  see e.g. Thm III.3.1 and Lemma III.3.2 in Mertens et al. (2015)), one shows that ũn converges μ in Π in the weak topology.

First, c 1

 1 is chosen from the uniform distribution on {1, ..., N }. Next, we choose k = 1 with probability c1 N +1 and k = 0 with the remaining probability. Next, inductively, for each l ≥ 1, we choose • d l uniformly from set S (c l ) = {j : (c l , j) ∈ S} and conditionally independently from k, ..., d l-1 given c l , and • c l+1 uniformly from set S (d l ) and conditionally independently from k, ..., c l given d l .

(

  The limit is the consistent probability obtained from the type space over innite sequences with common prior µ.) Despite the convergence, our Theorem shows that lim sup n sup g∈G |val (µ, g) -val (u n , g)| = lim sup n d(ũ n , μ) ≥ ε.

Appendix A. Proofs of Section 3 A. 1 .

 31 Proof of Theorem 1. The proof of Theorem 1 relies on two main aspects: the two interpretations of a garbling (deterioration of signals, and strategy), and the minmax theorem.

Appendix B. Proofs of Section 4 B. 1 .

 41 Proof of Proposition 9. Because u has more information than v,d (u, v) = min q2∈Q min q1∈Q u.q 2 -q 1 .v ≤ min q2∈Q min q1:C→∆(C×C1×C2)

  u n , g) -val (u, g)) ≤ 0.

, and m d=0 κ m d (θ 2 ) = 1 for each θ 2 ∈ Θ 2 .E

 222 For each c ∈ C and d ∈ D, we denote the corresponding hierarchies under u as c and d. Also, let C m = C ∩ {0, ..., m} and D m = D ∩ {0, ..., m}. Because Θ 2 is Polish, for each m ∈ N and each d ∈ D m , we can nd continuous functions κ m d : Θ 2 → [0, 1] for m ∈ N, d ∈ {0, ..., m} such that κ m d d = 1 for each d ∈ D m , κ m d ≡ 0 if d / ∈ DIn other words, for each m, {κ m d } 0≤d≤m is a continuous partition of unity on space Θ 2 with the property that for each d ∈ D m , κ m d peaks at hierarchy d. Notice that for each c ∈ C, each d ∈ D p , we have E φ1(c) [1 {k} (.)κ p d (.)] ≥ u (k, d|c) , φ1(c) [1 {k} (.)κ p d (.)] -u (k, d|c) = u(D \ D p |c).

m+1 c=0 κ m c ≡ 1 ,

 1 and κ m c (θ 1 ) ∈ [0, 1] for each c = 0, ..., m + 1, which implies that {κ m c } 0≤c≤m+1 is a continuous partition of unity on space Θ 1 such that for each c ∈ C m , κ m c (c) = 1.

  for each k, ĉ, d. Because the information structures L m u n and L m u are described on the same and nite spaces of signals, the pointwise convergence impliesd (L m u n , L m u) ≤ L m u n -L m u → 0 as n → ∞.Moreover, if ĉ ∈ C m and d ∈ D p m , the denitions imply that (L m u) k, ĉ, d ≥ u k, ĉ, d .

  u n , g) -val (u, g))≤ sup g∈G (val (u n , g) -val (L m u n , g)) + sup g∈G (val (L m u n , g) -val (L m u)) + sup g∈G (val (L m u) -val (u, g)) ≤δ m u n + L m u n -L m u + u (C\C m ) + u D\D p m . v, g) -val (L m v, g)) ≤ 3 u (C\C m ) + u D\D p m .When m → ∞, the right hand side converges to 0 as well. C.3. Proof of Proposition 17. Let u ∈ ∆ (K × (K C × C) × (K D × D)) be dened so that u = marg K×c×D u and u ({k C = κ (c) , k D = κ (d)}) = 1. Because u

  For r ≤ min{2l, 2m + 1}, we say that c and d are nice at level r, and we write c r d, if a r (c, d) is nice. In the next denition we consider an information structure u l ∈ ∆(K × C l × D l ) and denote by c and d the respective random variables of the signals of player 1 and 2. Denition 26. We say that the conditions U I1 are satised if for all l ≥ 1, all c = (c 1 , ..., c l ) in C l and c = (c 1 , ..., c l+1 ) in C l+1 such that c 1 = c 1 , we have (D.1)

(D. 4 )

 4 ∀l ≥ 1, val(u l , g l+1 ) ≤ -ε.(D.5)As a consequence of this proposition, under conditions U I1 and U I2 we easily obtain condition 1) of theorem 19 : Corollary 28. If l = p then d(u l , u p ) ≥ 2ε.

  Fix d = (d 1 , ..., d l ) in D l and d = (d 1 , ..., d p-1 ) in D p-1 , and assume that player 2 has received the signal d and chooses to report d . Dene the non-increasing sequence of events:

(D. 6 )

 6 ∀n = 1, ..., p, E[h p (c, d )| d = d, A 2n-1 ] ≥ ε. If n = p, h p (c, d ) = ε on the event A 2p-1 , implying the result. Assume now that for some n such that 1 ≤ n < p, we have : E[h p (c, d )| d = d, A 2n+1 ] ≥ ε. Since we have a non-increasing sequence of events, 1 A2n-1 = 1 A2n+1 + 1 A2n-1 1 A c 2n + 1 A2n 1 A c 2n+1 ,so by denition of the payos, h p (c, d) 1 A2n-1 = h p (c, d ) 1 A2n+1 +5ε 1 A2n-1 1 A c 2n -5ε 1 A2n 1 A c 2n+1 . First assume that d n = d n . By construction of the Markov chain, u l (A 2n+1 |A 2n-1 , d = d) = 1, implying that u l (A c 2n+1 |A 2n-1 , d = d) = u l (A c 2n |A 2n-1 , d = d) = 0. As a consequence, E[h p (c, d )| d = d, A 2n-1 ] = E[h p (c, d ) 1 A2n+1 | d = d, A 2n-1 ] = E[E[h p (c, d )| d = d, A 2n+1 ] 1 A2n+1 | d = d, A 2n-1 ]

2 N 2 ≤ 2e -2γ 2 N 2 |S| ≤ 2e - 1 2 N γ 2 , 2 . 1 4N - 4 .because 1 2 2 ≤ e 4

 22212214124 where we used that |S||p -1 4 | ≤ N 4N -4 ≤ γN 2 for the rst inequality.Denition 32. For each a = b and c = d, each γ > 0, dene :Y a = 2 i∈A X i,a , Y c = 2 i∈A X c,i = N , Y a,b = 4 i∈A X i,a X i,b , Y c a = 4 i∈A X i,a X c,i , Y c,d = 4 i∈A X c,i X d,i , Y c a,b = 8 i∈A X i,a X i,b X c,i , Y c,d a = 8 i∈A X i,a X c,i X d,i , Y c,d a,b = 16 i∈A X i,a X i,b X c,i X d,i .Lemma 33. For each a = b and c = d, each γ ≥ 64/N, each of the variablesZ ∈ {Y a , Y c , Y a,b , Y c,d , Y c a , Y c a,b , Y c,d a , Y c,d a,b }, P N (|Z -N | ≥ γN ) ≤ e 4 Ne -N 32 ( γ 10 ) Proof. In case Z = Y a or Y a,b , the bound follows from Lemma 31 (for S = A). If case Z = Y c , the bound is trivially satised. If Z = Y c,d , the bound follows from Lemma 30.In caseZ = Y c,d a,b , notice that Y c,d a,b = 16 i∈Sc∩S d Z i , where Z i = X i,a X i,b . All variables Z i are i.i.d. Bernouilli random variables with parameter p = 1 4 -Moreover, {Z i } i =c,d are independent of S c ∩S d . Up to enlarge the probability space, we can construct a new collection of i.i.d. Bernoulli random variables Z i such that Z i = Z i for all i = c, d and such that {(Z i ) i∈A , S c ∩ S d } are all independent. Then, Y c,d a,b -16 i∈Sc∩S d Z i ≤ 32, and, γN ≥ 32, we haveP N Y c,d a,b -N ≥ γN ≤ P N i∈Sc∩S d probability can be further bounded by ≤ P N (A) + P N (B) N e -N γ 2 3200 where the rst bound comes from Lemma 30, and the second from the second bound in Lemma 31. The remaining bounds have proofs similar (and simpler) to the case Z = Y c,d a,b . Finally, we describe an event E that collects these bounds. Recall that α = 1/25, and dene for each a = b and c = d, E a,b,c,d = Y d -1 ≤ 2α .

2 Y∈

 2 ,c,d:a =b and c =d E a,b,c,d . if d m-1 = d m-1 , and to 1 if d m-1 = d m-1 . In both cases, E implies (D.3). Case r = 2m. We have u l c 2m+1 d | d = d, c 2m d = u l X d m ,cm+1 = 1| d = d, c 2m d , and by the Markov property :u l c 2m+1 d | d = d, c 2m d = u l X d m ,cm+1 = 1|X dm,cm+1 = 1, X cm+1,dm+1 = 1 , = i∈U X d m ,i X dm,i X i,dm+1 i∈U X dm,i X i,dm+1 [1/2 -α, 1/2 + α].

= 1 2 YY 2 YY 1 2 Y

 2212 d1,d 1 Y d1 ∈ [1/2 -α, 1/2 + α].Let us now consider condition U I1: we require that for all l ≥ 1, all c = (c 1 , ..., c l ) in C l and c = (c 1 , ..., c l+1 ) in C l+1 such that c 1 = c 1 , we haveu l c 2l+1 d c = c, c 2l d ∈ [1/2 -α, 1/2 + α] (D.1)and for all m ∈ {1, ..., l} such that c m = c m , for r = 2m -2, 2m -1,u l c r+1 d c = c, c r d ∈ [1/2 -α, 1/2 + α]. (D.2)We start with (D.1).u l c 2l+1 d|c = c, c 2l d = u l X dl ,c l+1 = 1|c = c, c 2l d , = u l X dl ,c l+1 = 1|X c l , dl = 1, X c l , dl = 1 , = i∈V X i,c l+1 X c l ,i X c l ,i i∈V X c l ,i X c l ,i. c l ,c l if c l = c l , and 1 c l if c l = c l . In both cases, (D.1) holds.We nally consider (D.2) and distinguish several case.Case r = 2m -1 and m = l.u l c 2l d|c = c, c 2l-1 d = u l X c l , dl = 1|c = c, c 2l-1 d , = u l X c l , dl = 1|X c l , dl = 1 , = i∈V X c l ,i X c l ,i i∈V X c l ,i , = c l ,c l Y c l ∈ [1/2 -α, 1/2 + α].Case r = 2m -1 and m < l.u l c 2m d|c = c, c 2m-1 d = u l X c m , dm = 1|c = c, c 2m-1 d , = u l X c m , dm = 1|X cm, dm = 1, X dm,cm+1 = 1 ,

u l c 2m- 1 2 Y

 12 d|c = c, c 2m-2 d = u l X dm-1,c m = 1|c = c, c 2m-1 d , = u l X dm-1,c m = 1|X c m-1 , dm-1 = X cm-1, dm-1 = X dm-1,cm = 1 , = i∈V X i,c m X i,cm X c m-1 ,i X cm-1,i i∈V X i,cm X c m-1 ,i X cm-1,i . if c m-1 = c m-1 ,and1 if c m-1 = c m-1 .In both cases, it belongs to [1/2 -α, 1/2 + α], concluding the proofs of lemma 35, proposition 29 and theorem 19.

  1 ) over the hierarchies of beliefs induced by u. For this reason, we only restrict our analysis to information structures that are non-redundant, or equivalently information structures induced by a coherent probability with countable support in Π 0 . That is not because we think that the redundant information is not relevant (it is relevant for Bayesian Nash equilibrium, see multiple examples in

	Dekel et al. (2006), Ely and Peski (2006)), but because the dependence of the BNE on the redundant information is not yet well-understood (see Sadzik (2008)) 10 .

Let u ∈ ∆ (K × C × D) be an information structure. A subset A ⊆ K × I × J is a proper common knowledge event if u (A) ∈ (0, 1) and for each signal s ∈ C ∪ D, u (A|s) ∈ {0, 1}. An information structure is simple if it does not have a proper common knowledge component. Each nite non-redundant information structure u

  2 in which each type of player 1 in the support of ũ and ṽ

	reports her hierarchy of beliefs as the unique rationalizable action. Second, Lemma
	III.2.7 in Mertens et al. (2015) (or corollary 4.7 in Mertens and Zamir (1985)) shows

  Following Dekel et al. (2006), the literature studies the robustness of the behavior with respect to beliefs in a systematic way. A typical approach is to dene the ε-ICR as the outcome of the iterated elimination procedure, where, at each stage of the elimination, players actions must be ε-best responses to the conjectures that allow for arbitrary correlations with the state of the world and that assign probability 1 to actions that survived the previous stage.• sequence of types (i.e., hierarchies of beliefs) t n converges to t in the weak strategic topology if and only if ::: for :::: each ::::: game : G, the set of actions that are 0-ICR at type t in game G is equal to the set of actions such that

	This solution concept depends only on the hierarchy of beliefs. One denes two
	topologies (see Chen et al. (2016)):

Sequence u n of information structures converges pointwise to u if and only if d (u n , u) → 0. In other words, the topology of pointwise convergence and the value-based topology coincide on U * and they are homeomorphic to the weak topology on Π 0 . The topology of weak convergence on Π coincides with the topology of pointwise convergence. Proof. The Theorem follows from the observations made in Section 5.1. On one hand, lemma 41 of

[START_REF] Gossner | The value of information in zero-sum games[END_REF] 

implies that the weak topology on Π is coarser than the topology of weak convergence. On the other hand, because the value is continuous (Lemma 2 in

[START_REF] Mertens | Repeated games[END_REF] 

or Proposition III.4.3. in Mertens et al. (2015)), the two topologies are equivalent. Theorem 23 suggests a possible alternative construction of the set Π of consistent probability over the universal belief space. The alternative construction is simply based on the values of nite zero-sum Bayesian games. 7.3. Strategic topologies. ::: for :::: each ε > 0, ::::: there :::::: exists : N such that for each n ≥ N , the action is ε -ICR at type t n in game G, and • sequence of types (i.e., hierarchies of beliefs) t n converges to t in the uniform strategic topology if and only if :: for ::::: each ε > 0 : , ::::: there ::::: exists : N such that :: for :::: each ::::: game :

  2 for any xed g ∈ G, and by Sion's theorem (see e.g. Sorin Sorin (2002) Proposition A.8):

	min q1∈Q,q2∈Q

  We can without loss of generality assume that u is nonredundant and all signals c and d have positive probability. We can associate signals c ∈ C ⊆ N and d ∈ D ⊆ N with the corresponding hierarchies of beliefs in Θ 1 and Θ 2 . In other words, we identify C ⊆ Θ 1 as the (countable) support of ũ and D ⊆ Θ 2 as the smallest countable set such that for each c ∈ C, φ 1 (K × D|c) = 1 (i.e., D is the union of countable supports of all beliefs of hierarchies in C).

  1 has received the signals (c 1 , ..., c l ) in C l . (D.1) states that if the sequence of reported signals (c by construction (c 1 , d1 , ..., c l , dl ) is nice and u l c r+1 d c = c, c r d = u l c r+1 d c = c = 1 for each r = 1, ..., 2l -1. Assume now that for some m = 1, ..., l, player 1 misreports his m th -signal, i.e. reports c m = c m . (D.2) requires that given that the reported signals were nice so far (at level 2m -2), the conditional probability that the reported signals are not nice at level 2m -1 (integrating c m ) is close to 1/2, and moreover if the reported signals are nice at this level 2m -1, adding the next signal dm of player 2 has probability close to 1/2 to keep the reported sequence nice. Conditions U I2 have a similar interpretation, considering the Bayesian games Γ(u l , g p ) for p ≤ l, assuming that player 1 reports truthfully his signals and that player 2 plays d after having received the signals d. Proposition 27. Conditions U I1 and U I2 imply : ∀l ≥ 1, ∀p ∈ {1, ..., l}, val(u l , g p ) ≥ ε.

1 , d1 , ..., c l , dl ) is nice at level 2l, then whatever the last reported signal c l+1 , the conditional probability that (c 1 , d1 , ..., c l , dl , c l+1 ) is still nice is in [1/2 -α, 1/2 + α], i.e. close to 1/2. Regarding (D.2), rst notice that if c = c, then

[START_REF] Dekel | Topologies on types[END_REF] focus mostly on the weaker notion of strategic topology that diers from the uniform strategic in the same way that the pointwise convergence diers from uniform convergence.

For instance, one can read in De Meyer et al. (2010) We leave open the question of whathappens when the components of the state on which the players have some information fail to be independent.... In this situation the notion of monotonicity is unclear, and the duality method is not well understood."

Thus, the Markov chain becomes time-homogenuous after the choice of state k and c 1 . This nishes the construction of the information structures.

As mentioned earlier, this convergence can also be proved by using martingale convergence theorems.

Problem 1 asked for the convergence of the value functions (v λ ) λ and (vn)n in a general zero- sum repeated game with nitely many states, actions and signals, and was disproved in Ziliotto (2016). Problem 3 asks if the existence of a uniform value follows from the uniform convergence of (v λ ), and was disproved in[START_REF] Lehrer | Discounting versus Averaging in Dynamic Programming[END_REF] for 1-player games, see also[START_REF] Monderer | Asymptotic properties in dynamic programming[END_REF].

As an example of work in this direction, Kunimoto and Yamashita (2018) studies an order on hierarchies and types induced by payos in supermodular games.

[START_REF] Mertens | Repeated games[END_REF] or Proposition III.4.3. in Mertens et al. (2015)). It follows that

e -n ≤ n! ≤ en n+ 1 2 e -n for each n.

Because of the conditional independence assumption, the above is equal to u .q 2 -q 1 .v = d (u , v ) .

B.2. Proof of Proposition 12. We have

The rst equality comes from Proposition 7, and the second from the fact that u and u (resp. v and v ) induce the same distribution on player 1 rst order beliefs, and the inequality from the denition of the two distances.

B.3. Proof of Proposition 14. We have the following Lemma: Lemma 24. Suppose that c 1 is ε-conditionally independent from (k, d) given c.

Then, sup g∈G val (u, g) -val (v, g) ≤ ε.

Proof. Let q 2 : D × D 1 → D be dened as q 2 (d, d 1 ) (d ) = 1 d =d . Let q 1 : C → C × C 1 be dened as q 1 (c, c 1 |c) = u (c 1 |c). Then, u.q 2 -q 1 .v = The claim follows from Theorem 1.

An analogous argument shows that, if N is a very large even integer to be xed later, and we write A = C = D = {1, ..., N }, with the idea of using C while speaking of actions or signals of player 1, and using D while speaking of actions and signals of player 2. We x ε and α, to be used later, such that 0 < ε < 1 10(N + 1) 2 , and α = 1 25 .

We will consider a Markov chain on A, satisfying:

• the law of the rst state of the Markov chain is uniform on A,

• for each a in A, there are exactly N/2 elements b in A such that ν(b|a) = 2/N : given that the current state of the Markov chain is a, the law of the next state is uniform on a subset of states of size N/2,

• and few more conditions, to be be dened later.

The rest of the proof is split in 4 parts: we rst dene the information structures (u l ) l≥1 and some payo structures (g p ) p≥1 . Next, we show that the Markov property of the construction ensures that the hierarchies of beliefs are preserved. Then we dene two conditions U I1 and U I2 on the information structures and show that they imply the conclusions of theorem 19. Finally, we show, via the probabilistic method, the existence of a Markov chain ν satisfying all our conditions. D.1. Information and payo structures (u l ) l≥1 and (g l ) l≥1 . For l ≥ 1, dene the information structure u l ∈ ∆(K × C l × D l ) by: for each state k in K, signal c = (c 1 , ..., c l ) in C l of player 1 and signal d = (d 1 , ..., d l ) in D l for player 2,

Assume now that d n = d n . Assumption UI2 implies that :

It follows that :

And (D.6) follows by backward induction.

Since A 1 is an event which holds almost surely, we deduce that

Hence the truthful strategy of player 1 guarantees the payo ε in Γ(u l , g p ).

2) We now prove (D.5) and consider the Bayesian game Γ(u l , g l+1 ), assuming that player 2 chooses the truthful strategy. Fix c = (c 1 , ..., c l ) in C l and c = (c 1 , ..., c l-1 ) in C l-1 , and assume that player 1 has received the signal c and chooses to report c . We will show that the expected payo of player 1 is not larger than -ε, and assume w.l.o.g. that c 1 = c 1 . Consider the non-increasing sequence of events :

We will prove by backward induction that:

, and h l+1 (c , d)

2 | ≤ α , and it follows that :

Assume now that for some n = 1, ..., l -1,

2n+2 , and by denition of

Assume on the contrary that c n+1 = c n+1 , assumption UI1 implies that :

It follows that : 1) the law of the rst state of the Markov chain is uniform on A, 2) for each a in A, there are exactly N/2 elements b in A such that ν(b|a) = 2/N , 3) U I1 and U I2.

Denoting by P = (P a,b ) (a,b)∈A 2 the transition matrix of the Markov chain, we have to prove the existence of P satisfying 2) and 3). The proof is non constructive and uses the following probabilistic method, where we select independently for each a in A, the set {b ∈ A, P a,b > 0} uniformly among the subsets of A with cardinal N/2. We will show that when N goes to innity, the probability of selecting an appropriate transition matrix does not only become positive, but converges to 1.

Formally, denote by S A the collection of all subsets S ⊆ A with cardinality |S| = 1 2 N . We consider a collection (S a ) a∈A of i.i.d. random variables uniform distributed over S A dened on a probability space (Ω N , F N , P N ). For all a, b in A, By construction, P is a transition matrix satisfying 2). Theorem 19 will now follow directly from the following proposition.

Proposition 29.

P N ( P induces a Markov chain satisfying UI1 and UI2 ) ----→ n→∞ 1.

In particular, the above probability is strictly positive for all suciently large N .

The rest of this section is devoted to the proof of proposition 29.

We start with probability bounds based on Hoeding's inequality.

Lemma 30. For any a = b, each γ > 0

Proof. Consider a family of i.i.d. Bernoulli variables ( X i,j ) i=a,b, j∈A of parameter 1 2 dened on a space (Ω, F, P). For i = a, b, dene the events L i = { j∈A X i,j = N 2 } and the set-valued variables S i = {j ∈ A | X i,j = 1}. It is straightforward to check that the conditional law of ( S a , S b ) given L a ∩ L b under P is the same as the law of (S a , S b ) under P N . It follows that

Using Hoeding inequality, we have

On the other hand, using Stirling approximation 12 , we have

We deduce that

Lemma 31. For each a = b, for any subset S ⊆ A and any γ ≥ 1 2N -2 ,

, and

Proof. For the rst inequality, notice that X i,a are i.i.d. Bernoulli random variables with parameter 1 2 . The Hoeding inequality implies that :

Lemma 34. We have

Proof. Take γ = α 1+α = 1 26 and let

It is easy to see that F a,b,c,d ⊆ E a,b,c,d . The probability that F a,b,c,d holds can be bounded from Lemma 33 (as soon as N ≥ 64 γ = 1664), as

The result follows since there are less than N 4 ways of choosing (a, b, c, d).

Computations using the bound of lemma 34 show that N = 52.10 6 is enough to have the existence of an appropriate Markov chain. So one can take ε = 3.10 -17 in the statement of theorem 19. We conclude the proof of proposition 29 by showing that event E implies conditions U I1 and U I2.

Lemma 35. If event E holds, then the conditions U I1, U I2 are satised.

Proof. We x the law ν of the Markov chain on A and assume that it has been induced, as explained at the beginning of section D.4, by a transition matrix P satisfying E. given that they are nice at level r and that the signal received by player 2 is d. We divide the problem into dierent cases.

Case m > 1 and r = 2m -1.

Note that the events {c 2m d } and {c 2m-1 d } can be decomposed as follows :

and the

Markov property gives:

.

report its hierarchy. Construct game g (1) :

1 (k, i, i 0 , j, j 0 ) = g (0)

1 (k, i, i 0 , j) , g

2 (k, i, i 0 , j, j 0 ) =

Then, the rationalizable actions of player 2 in game g (1) are contained in J × {u} for any type in type space u and in J × {v} for any type in type space v.

Finally, for any ε ∈ (0, 1) ,construct a game g ε : K

2 .

Then, the Bayesian Nash equilibrium payo of player belongs to [1 -ε, 1] on the structure u and [-1, -1 + ε] on the structure v. It follows that the payo distance between the two type spaces is at least 2 -2ε, for arbitrary ε > 0.

Next, suppose that u and v are two simple information structures with the decomposition u = α p α u α and v = α q α v α and such that ũα = ṽα for each α. Let g be a non-zero sum payo function. Let σ α be an equilibrium on u α with payos g α ∈ R 2 . Let s α is the associated equilibrium on v α (that can be obtained by mapping the hierarchies of beliefs through an appropriate bijection) with the same payos g α . The distance between payos is bounded my p α g a -q α g α max =

(p α -q α ) g α max ≤ |p α -q α | ,

where the last inequality comes from the fact that payos are bounded.

On the other hand, let A = {α : p α > q α }. Using a similar construction as above, we can construct a game g (1) such that player 2's actions have a form J × {u A , u B }, and his rationalizable actions are contained in set J × {u A } for any type in type space u α , α ∈ A and in J × {u B } otherwise. Further, we construct a game g (ε) as above. Then, any player 1's equilibrium g (ε)

1,α payo is at least 1 -ε for any type in type space u α , α ∈ A, and -1+ε for any type in type space u α for α / ∈ A. Denoting the equilibrium payo of player 2 as g ε 2,ε , the payo distance in game g ε is at least

Because the ε > 0 is arbitrary, the two above inequalities show that the payo distance is equal to |p α -q α |.