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ABSTRACT
We present a novel approach for analysing radial velocity data that combines two features:
all the planets are searched at once and the algorithm is fast. This is achieved by utilizing
compressed sensing techniques, which are modified to be compatible with the Gaussian process
framework. The resulting tool can be used like a Lomb–Scargle periodogram and has the same
aspect but with much fewer peaks due to aliasing. The method is applied to five systems with
published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated
very active star. The results are fully compatible with previous analysis, though obtained more
straightforwardly. We further show that 55 Cnc e and f could have been respectively detected
and suspected in early measurements from the Lick Observatory and Hobby–Eberly Telescope
available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

Key words: methods: data analysis – techniques: radial velocities – planets and satellites:
detection.

1 IN T RO D U C T I O N

1.1 Overview

Determining the content of radial velocity data is a challenging task.
There might be several companions to the star, unpredictable instru-
mental effects as well as astrophysical jitter. Fitting separately the
different features of the model might distort the residual and pre-
vent one from finding small planets, as pointed out for instance by
Anglada-Escudé, López-Morales & Chambers (2010) and Tuomi
(2012). There might even be the cases where, due to aliasing and
noise, the tallest peak of the periodogram is a spurious one while
being statistically significant. To overcome those issues, recent ap-
proaches privilege the fitting of the whole model at once. In those
cases, the usual framework is the maximization of an a posteriori
probability distribution. In order to avoid being trapped in a sub-
optimal solution, random searches such as Monte Carlo Markov
chain methods or genetic algorithm are used (e.g. Gregory 2011;
Ségransan et al. 2011). The goal of this paper is to suggest an al-
ternative method using convex optimization, therefore offering a
unique minimum and faster algorithms.

To do so, we will not try to find directly the orbital parameters
of the planets but to unveil the true spectrum of the underlying
continuous signal, which is equivalent. The power spectrum is often
estimated with a Lomb–Scargle periodogram (Lomb 1976; Scargle
1982) or generalizations (Ferraz-Mello 1981; Cumming, Marcy &
Butler 1999; Zechmeister & Kürster 2009). However, as said above,
the estimation of the power spectrum with one frequency at a time
has severe drawbacks. To improve the estimate, we introduce a priori
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information: the representation of exoplanetary signal in the Fourier
domain is sparse. In other words, the number of sine functions
needed to represent the signal is small compared to the number of
observations. The Keplerian models are not the only ones to verify
this assumption, stable planetary systems are quasi-periodic as well
(e.g. Laskar 1993). By doing so, the periodogram can be efficiently
cleaned (see Figs 1–5).

The field of signal processing devoted to the study of sparse sig-
nals is often referred to as ‘compressed sensing’ or ‘compressive
sampling’ (Candès, Romberg & Tao 2006b; Donoho 2006) – though
it is sometimes restricted to sampling strategies based on sparsity
of the signal. The related methods show very good performances
and are backed up by solid theoretical results. For instance, com-
pressed sensing techniques allow one to recover exactly a spectrum
while sampling it at a much lower rate than the Nyquist frequency
(Mishali, Eldar & Tropp 2008; Tropp et al. 2010). Its use was ad-
vocated to improve the scientific data transmission in space-based
astronomy (Bobin, Starck & Ottensamer 2008). Sparse recovery
techniques are also used in image processing (e.g. Starck, Elad &
Donoho 2005).

It seems relevant to add to that list a few techniques developed
by astronomers to retrieve harmonics in a signal. In the next sec-
tion, we show that even though the term ‘sparsity’ is not explicitly
used (except in Bourguignon, Carfantan & Böhm 2007), some of
the existing techniques have an equivalent in the compressed sens-
ing literature. After those remarks on our framework, the paper is
organized as follows: in Section 2, the theoretical background and
the associated algorithms are presented. Section 3 presents in de-
tail the procedure we developed for analysing radial velocity data.
This one is applied in Section 4 to simulated observations and four
real radial velocity data sets: HD 69830, HD 10180, 55 Cnc and
GJ 876 and to a simulated very active star. The performance of
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the method is discussed in Section 5, and conclusions are drawn
in Section 6.

1.2 Previous work

The goal of this paper is to devise a method to efficiently analyse
radial velocity data. As it builds upon the retrieval of harmonics,
the discussion will focus on spectral synthesis of unevenly sampled
data (see Kay & Marple 1981; Schwarzenberg-Czerny 1998; Babu
& Stoica 2010, for surveys).

First, let us consider the methods that are efficient to spot
one harmonic at a time. The first statistical analysis is given by
Schuster (1898). However, the statistical properties of Schuster’s
periodogram only hold when the measurements are equispaced in
time. When this is not the case, one can use Lomb–Scargle peri-
odogram (Lomb 1976; Scargle 1982) or its generalization consisting
in adding a constant to the model (Ferraz-Mello 1981; Cumming
et al. 1999; Reegen 2007; Zechmeister & Kürster 2009). More
recently, Mortier et al. (2015) derived a Bayesian periodogram as-
sociated with the maximum of an a posteriori distribution. Also,
Cumming (2004) and O’Toole et al. (2009) define the Keplerian
periodogram, which measures the χ2 of residuals after the fit of a
Keplerian curve. One can remark that ‘Keplerian’ vectors defined
by P, e, ω and M0 form a family of vectors in which the sparsity of
exoplanetary signals is enhanced.

These methods can be applied iteratively to retrieve several
harmonics. In the context of radial velocity data processing, one
searches for the peak of maximum power, then the correspond-
ing signal is subtracted and the search is performed again. This
procedure is very close to CLEAN (Roberts, Lehar & Dreher 1987),
which relies on the same principle of maximum correlation and
subtraction. One of the first general algorithm exploiting sparsity of
a signal in a given set of vectors (Matching Pursuit, Mallat & Zhang
1993) relies on the same iterative process. This method was for-
merly known as forward stepwise regression (e.g. Bellmann 1975).
To limit the effects of error propagation in the residuals, one can
use the orthogonal matching pursuit algorithm (Pati, Rezaiifar &
Krishnaprasad 1993; Tropp & Gilbert 2007). In that case, when
a harmonic is found to have maximum correlation with the resid-
uals, it is not directly subtracted. The next residual is computed
as the original signal minus the fit of all the frequencies found
so far. The CLEANest algorithm (Foster 1995) and frequency map
analysis (Laskar 1988; Laskar, Froeschlé & Celletti 1992; Laskar
1993; Laskar 2003), though developed earlier, are particular cases
of this algorithm. To analyse radial velocity data, Baluev (2009) and
Anglada-Escudé & Tuomi (2012) introduce what they call respec-
tively the ‘residual periodogram’ and the ‘recursive periodogram’,
which can be seen as pushing that logic one step further. The princi-
ple is to re-fit at each trial frequency the previous Keplerian signals
plus a sine at the considered frequency.

Besides the matching pursuit procedures, there are two other
popular algorithms in the compressed sensing literature: convex
relaxations (e.g. Tibshirani 1994; Chen, Donoho & Saunders 1998;
Starck et al. 2005) and iteratively re-weighted least squares (IRWLS;
e.g. Gorodnitsky & Rao 1997; Candès, Romberg & Tao 2006a;
Donoho 2006; Daubechies et al. 2010). In the context of astronomy,
Bourguignon et al. (2007) implement a convex relaxation method
using �1 norm weighting (see equation 2) to find periodicity in
unevenly sampled signals, and Babu et al. (2010) present an IRWLS
algorithm named IAA to analyse radial velocity.

The methods presented above are apparently very different, yet
they can be viewed as a way to bypass the brute force minimization
of

arg min
K,ω,φ

m∑
i=1

⎛
⎝ y(ti) −

k∑
j=1

Kj cos(ωj ti + φj )

⎞
⎠

2

, (1)

where y(t) is a vector made of m measurements, and x� =
arg min f (x) denotes the element such that f(x�) = min f(x) for
a function f. This problem is very similar to ‘best k-term approx-
imation’, and its link to compressed sensing has been studied in
Cohen, Dahmen & Devore (2009) in the noise-free case. Solv-
ing that problem is suggested by Baluev (2013b) under the name of
‘multifrequency periodograms’. However, finding that minimum by
discretizing the values of (Kj, ωj, φj)j = 1, . . . , k depends exponentially
on the number of parameters, and the multifrequency periodograms
could hardly handle more than three or four sines with conventional
methods. However, with parallel programming on GPUs one can
handle up to ≈25 frequencies depending on the number of mea-
surements (Baluev 2013a). Jenkins et al. (2014) explicitly mention
the above problem and suggest a tree-like algorithm to explore the
frequency space. They analyse GJ 876 with their procedure and find
six significant harmonics, which we confirm in Section 4.5.2.

Let us mention that searching for a few sources of periodicity in a
signal is not always done with the Fourier space. When the shape of
the repeating signal or the noise structure is not well known, other
tests might be more robust. A large part of those methods consists
in computing the autocorrelation function or folding the data at a
certain period and look for correlation. See Engelbrecht (2013) for a
survey or Zucker (2015, 2016) in the context of radial velocity mea-
surements. Finally, we point out that the use of the sparsity of the
signal is not specific to compressed sensing. The number of plan-
ets in a model is often selected via likelihood ratio tests. A model
with an additional planet must yield a significant improvement of
the evidence. In general, the model with k + 1 planets Mk+1 is
selected over a model with k planet if Pr{ y(t)|Mk+1}/Pr{ y(t)|Mk}
is greater than 150 (see Tuomi et al. 2014), y(t) being the observa-
tions. Indeed, adding more parameters to the model automatically
decreases the χ2 of the residuals. Putting a minimum improvement
of the χ2 acts against overly complicated models.

The discussion above points that searching planets one after an-
other is already in the compressed sensing paradigm: this iterative
procedure is close to the orthogonal matching pursuit algorithm.
Donoho, Elad & Temlyakov (2006) show that for a wide range of
signals, this algorithm is outperformed by �1 relaxation methods.
Does this claim still apply to radial velocity signals ? In this paper,
this question is not treated in full generality, but we show the interest
of �1 relaxation on several examples. To address that question more
directly, it is shown in Appendix C that in some cases, the tallest
peak of the periodogram is spurious but �1 minimization prevents
one from being misled.

2 M E T H O D S

2.1 Minimization problem

Techniques based on sparsity are thought to enforce the ‘Occam’s
razor’ principle: the simplest explanation is the best. To apply that
principle, we must have an idea of ‘how’ the signal is simple. In
the compressed sensing framework (or compressive sampling), this
is done by selecting a set of vectors A = (aj (t))j∈I such that the
signal to be analysed y(t) is represented by a linear combination of

MNRAS 464, 1220–1246 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/464/1/1220/2280760 by guest on 01 August 2022



1222 N. C. Hara et al.

a few elements of A. Such a set is often called the ‘dictionary’ and
can be finite or not (the set of indices I can be finite or infinite). It
is here made of vectors a−ω(t) = e−iωt and aω(t) = eiωt , where t is
the array of measurement times.

Before going into the details, let us define some quantities.

(i) y(t) denotes the vector of observations at times t = t1, . . . , tm,
y(t) ∈ R

m for radial velocity data sets.
(ii) The �p norm of a complex or real vector x with n components

is defined as

‖x‖�p :=
(

n∑
k=1

|xk|p
)1/p

(2)

for p > 0. In particular, ‖x‖�1 is the sum of absolute values of the

vector components and ‖x‖�2 =
√

n∑
k=1

|xk|2 is the usual Euclidian

norm. When p = 0, ‖x‖�0 is the number of non-zero components
of x.

(iii) For a function f defined on a set E, arg min
x∈E

f (x) is the ele-

ment for which the minimum is attained, that is x� of E such that
f (x�) = min

x∈E
f (x). We denote by the superscript � the solution of

the minimization problem under consideration. In all the cases con-
sidered here except equations (1) and (3), the minimum is attained
as we consider convex functions on convex sets.

Let us consider combinations of S elements of the dictionary
(aj(t))j = 1, . . . , S and their corresponding amplitudes xj. To enhance
the sparsity of the representation, one can think of solving

arg min
aj (t)∈A

S∈C

S s.t.

∥∥∥∥∥∥
S∑

j=1

xj aj (t) − y(t)

∥∥∥∥∥∥
�2

� ε (3)

that is finding the smallest number of elements of A required to
approximate y(t) with a certain tolerance ε. This one is a priori a
combinatorial problem which seems unsolvable if A is infinite or
of an exponential complexity if the dictionary is finite. In the latter
case, A can be viewed as an m × n matrix A. In that case, on can
re-write equation (3) like

x� = arg min
x∈Cn

‖x‖�0 s.t. ‖Ax − y(t)‖�2
� ε. (4)

This problem is in general combinatorial (Ge, Jiang & Ye 2011),
therefore computationally intractable. Fortunately, when replacing
the �0 norm by the �1 norm,

x� = arg min
x∈Cn

‖x‖�1 s.t. ‖Ax − y(t)‖�2
� ε, (5)

the problem becomes convex and still enhances sparsity efficiently.
In the signal processing literature, this problem is referred to as
basis pursuit denoising (Chen et al. 1998), and is sometimes de-
noted by BPε . At this point, one can ask what is lost by considering
equation (5) instead of equation (3). Let us cite a few results –
among many: when y(t) is noise free, Donoho (2006) shows that
under certain hypotheses the solution to equation (5) is equal to
the solution of equation (3); more generally, denoting by yt = Axt

the true signal, such that y = yt + e, e being the error, there is
a theoretical bound on ‖Ax� − yt‖�2 (Candès et al. 2006b). One
can also obtain constraints on ‖x� − xt‖�2 or conditions to have
supp(x�) ⊂ supp(xt ), where supp(x) is the set of indices with x be-
ing non-zero (e.g. Donoho et al. 2006). In summary, there are results
guaranteeing the performance for denoising, compression and also
for inverse problems, the search for planets being a particular case
of the latter.

These results apply to a finite dictionary A, but the periods of
the planets could be anywhere: A is infinite for our purposes. We
will eventually go back to solving a modified version of the dis-
crete problem (5) and smooth its solution with a moving average.
Beforehand, we will present in the next section what seems to be
the most relevant theoretical background for our studies, ‘atomic
norm minimization’, in particular used in ‘super-resolution theory’
(Candès & Fernandez-Granda 2014). This one will give guidelines
to improve our procedure.

2.2 Atomic norm minimization

If A is infinite, the �1 norm cannot be used straightforwardly.
Chandrasekaran et al. (2010) suggest to use an ‘atomic norm’ that
extends equation (5) to infinite dictionaries. Practical methods to
solve the new minimization problem are designed in Candès &
Fernandez-Granda (2013) and Tang et al. (2013b). The atomic norm
‖ y‖A, of y ∈ R

m or C
m defined for a dictionaryA, is the smallest �1

norm of a combination of vectors of the dictionary reproducing y:

‖ y‖A = inf

{ ∑
j

|xj |, y =
∑

j

xj aj (t)

}
. (6)

If the observations were not noisy, computing the atomic norm of y
would be sufficient. As this is obviously not the case, the following
problem is considered,

u� = arg min
u∈Cm

‖u − y(t)‖2
�2

+ λ‖u‖A, (7)

where λ is a positive real number fixed according to the noise.
This problem is often referred to as atomic norm denoising. The
coefficient λ can be interpreted as a Lagrange multiplier, and this
problem can be seen as maximizing a posterior likelihood with a
prior on u. The quantities we are interested in are the dictionary
elements a�

j and the coefficients x� selected by the minimization,

where u� = ∑S�

j=1 x�
j a�

j (t).

2.3 More complex noise models

If exoplanetary signals are arguably a sum of sines plus noise,
the noise variance is not constant. Even more, the noise might
not be independent nor Gaussian. Recent papers such as Tuomi
et al. (2013) and Rajpaul et al. (2015) stress that the detection
efficiency and robustness improve as the noise model becomes more
realistic. Aigrain et al. (2011) suggest to consider the RV time
series as Gaussian processes: the noise n(t) is then characterized
by its covariance matrix V which is such that Vkl = E{n(tk)n(tl)},
E being the mathematical expectancy. When the noise is stationary,
by definition there exists a covariance function R such that Vkl =
R(|tl − tk|); therefore, choosing V is equivalent to choosing R. This
approach is similar to Sulis, Mary & Bigot (2016), which normalizes
the periodogram by the power spectrum of the stationary part of the
stellar noise. The similarity comes from the fact that the power
spectrum of the noise is P (ω) = |F (R)|2, where F denotes the
Fourier transform.

Here, the noise is assumed to be Gaussian of covariance matrix
V. In that case, the logarithm of the likelihood is (e.g. Baluev 2011,
equation 21; Pelat 2013)

ln(L) = −m

2
ln(2π) − 1

2
det(V) − 1

2
( y − Ax)T V−1( y − Ax),

(8)
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where the subscript T denotes the matrix transpose. Assuming that
the matrix V is fixed, we wish to minimize (y − Ax)TV−1(y − Ax).
If V−1 admits a square root, then W is chosen such that W2 = V−1.
This is the case when V is symmetric positive definite, which is the
case for covariance matrices of stationary processes. Consequently,
‖W(Ax − y)‖2

�2
= ( y − Ax)T V−1( y − Ax) is always ensured for

Gaussian noises. We then obtain the minimization

arg min
u∈Cm

‖W(u − y(t))‖2
�2

+ λ‖u‖A. (9)

Handling problem (5) with correlated measurements and noise has
been investigated by Arildsen & Larsen (2014). However, to the
best of our knowledge, the formulation above is not mentioned in
the literature; thus, we will briefly discuss its features.

The ability of problem (5) to unveil the true non-zero coeffi-
cients of x improves as the so-called mutual coherence of ma-
trix A diminishes (Donoho et al. 2006). This one is defined as
the maximum correlation between two column vectors of A. We
here consider a weight matrix, but we can go back to the previ-
ous problem by noting that W(Ax − y) can be re-written as A′x
− y′, where A′ = WA and y′ = W y. If we now consider two
column vectors of A′, a′

1 = Wa1 and a′
2 = Wa2, their correlation

is a′T
1 a′

2 = a1W
T W a2 = a1V

−1a2. In other words, introducing a
matrix W only comes down to changing the scalar product. This
should not be surprising. The matched filter technique (Kay 1993)
proposes to detect a model x in a signal s = x + n, where n is a
noise of covariance matrix V if xV−1s ≤ γ , where γ is a threshold.
This means if the correlation is sufficient for a non-trivial scalar
product.

In the case of an independent Gaussian noise, its covariance
matrix V is diagonal and its elements are σ 2

k , where σ k is the mea-
surement error at time tk. W is defined as V−1/2 so is a diagonal
matrix of elements wkk = 1/σ k. Therefore, a′T

1 a′
2 = a1W

T Wa2 =∑n
k=1

a1(tk )a2(tk )
σ 2
k

. This is compatible with the behaviour we intu-

itively expect: the less precise is the measurement, the lesser the
correlation between the signals matter through the weighting by σ k.

Unfortunately, having a non-identically independent distributed
(i.i.d.) Gaussian noise model biases the estimates of the true sig-
nals as it acts as a frequency filter. Whether this bias prevents one
from having the benefits of a correct noise model is discussed in
Appendix B. We show that choosing an appropriate weight matrix
W indeed allows us to see signals that would be buried in the red
noise otherwise.

3 IM P L E M E N TAT I O N

3.1 Overview

As said above, stable planetary systems are quasi-periodic. This
means in particular that radial velocity measurements are well ap-
proximated by a linear combination of a few vectors e−iωt and
eiωt . The minimization problem (7) seems therefore well suited for
searching for exoplanets. This section is concerned with the nu-
merical resolution, and the numerous issues it raises: the numerical
scheme to be used, the choice of the algorithm parameters and the
evaluation of the confidence in a detection.

Solving equation (7) is done either by reformulating it as a
quadratic program (Candès & Fernandez-Granda 2013; Chen &
Chi 2014; Tang et al. 2013b) or by discretizing the dictionary
(Tang, Bhaskar & Recht 2013a). The first one necessitates to see
the sampling as a regularly spaced one with missing samples. As
the measurement times are far from being equispaced in the con-

sidered applications, the required time discretization results in large
matrices. Therefore, the second approach is used.

Let us pick a set of frequencies equispaced with interval �ω,
� = {ωk = k�ω, k = 0, . . . , n} and an m × 2n matrix A whose
columns are e−iωk t and eiωk t . In that case, equation (9) reduces to

arg min
x∈C2n

‖W(Ax − y)‖2
�2

+ λ‖x‖�1 , (10)

which is often referred to as the Least Absolute Shrinkage and
Selection Operator (LASSO) problem when W is the identity matrix.
As the parameter λ is not so easy to tune, an equivalent formulation
of discretized equation (9) is chosen,

x� = arg min
x∈C2n

‖x‖�1 s. t.

‖W(Ax − y)‖�2 � ε, (11, BPε,W)

where ε is a positive number. By ‘equivalent’, we mean there exists
a λε such that the solution of equation (10) is equal to the solution
of equation (11,BPε,W ) (Rockafellar 1970). As this problem will
often be referred to, we add to the equation number BPε, W in the
rest of the text, BP standing for basis pursuit. There are several
codes written to solve equation (5). The existing codes we have
tested for analysing radial velocity data sets are �1-magic (Candès
et al. 2006a), SparseLab (Donoho 2006), NESTA (Becker, Bobin
& Candès 2011), CVX (Grant & Boyd 2008), spectral compressive
sampling (Duarte & Baraniuk 2013) and SPGL1 (van den Berg
& Friedlander 2008). The latter gave the best results in general for
exoplanetary data and consequently is the one we selected (the code
can be downloaded from this link1).

The solution of equation (11,BPε,W ) offers an estimate for the
periods, but the efficiency of the method can be improved by using
a moving average on x�, to approximate better equation (9). Indeed,
if a sine of frequency ω0 and amplitude K is in the signal, corollary
1 (Tang et al. 2013a) shows that the solution of equation (5) x�

verifies

K ≈
∑

x�(ωk)
|ωk |∈[ω0−η,ω0+η]

(12)

rather than |x(ω0)| ≈ K. The coefficients x�(ωk) are added up for ωk

lying in a certain interval of length 2η (see Section 3.6).
Finally, the confidence in the detection must be estimated. Prob-

lem (11,BPε,W ) selects significant frequencies in the data, but the
estimates of their amplitude are biased due to the �1 norm min-
imization. To obtain unbiased amplitudes, we first check that the
peaks are not aliases of each other. Then the most significant peaks
are fitted until non-significant residuals are obtained (see Section
3.7.4).

In summary, the method follows a seven-step process.

(i) Pre-process the data: remove the mean in radial velocity data
or an estimate of the stellar noise.

(ii) Choose the discrete grid �, tolerance ε, weighting matrix W
and the width η of the interval over which the result of equation
(11,BPε,W ) is averaged.

(iii) Define the dictionary A and normalize the columns of WA.
(iv) Run the program solving the convex optimization (11,BPε,W )

to obtain x�.
(v) Denoting � = [ωmin, ωmax] for each frequency ω ∈ {ωmin +

η, . . . , ωmax − η}, sum up the amplitudes of x�(ω′) from ω′ ∈ [− ω

− η, −ω + η]∪[ω − η, ω + η] to obtain a smoothed figure x�.

1 https://www.math.ucdavis.edu/∼mpf/spgl1/supplement.html
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(vi) Plot x� as a function of the frequencies or the periods.
(vii) Evaluate the significance of the main peaks (Fig. 6).

Each of these steps is detailed in the following sections.

3.2 Optimization routine

Many solvers can handle problem (5); however, their precision and
speed vary. Among the solvers tested, SPGL1 (van den Berg &
Friedlander 2008) gives the best results in general. This one has sev-
eral user-defined parameters such as a stopping criterion that must

be tuned. For a given tolerance, this one is
|‖Ax− y‖�2 −ε|

max(1,‖Ax− y‖�2 ) < tol.

The default parameters seem acceptable, in particular tol = 10−4.

3.3 Dictionary A

To estimate the spectrum, a natural choice for the columns of matrix
A is (e−iωt , eiωt ). However, the data might not contain only planetary
signals. In the case of a binary star, a linear trend t and a quadratic
term t2 are added. If the star is active, the ancillary measurements
are also added.

The method described in Section 3 is applicable to a wider range
of dictionary. As the timespan of the observations is in general a
few years, the signal might be more sparsely represented either by
Poisson terms [(a0 + a1t + a2t2 + ···)cos (ωt + φ)] or Keplerian mo-
tions. In the latter case, column vectors would be of the form r

a
eiν(t),

where ν(t) is a vector of true anomalies depending on the period
P, eccentricity e and initial mean anomaly M0 (or any combination
of three variables that cover all possible orbits). Unfortunately, the
size of A increases exponentially with the number of parameters
describing the dictionary elements (here P, e, M0).

3.4 Pre-processing

Theoretical results in Tang et al. (2013a) guarantee that the solution
to equation (5) will be close to equation (7) as the discretization
gets finer, provided the dictionary is continuous. As linear trends
or stellar activity-related signals are not sine, removing these from
the data before solving equation (11,BPε,W ) is crucial. The mean,
a linear trend and estimates of the stellar noise can be fitted and
removed. We reckon this is contrary to the philosophy of fitting the
whole model at once. However, the vectors fitted are included again
in the dictionary which allows us to mitigate the distortions induced
by their removal.

Secondly, to make the precision of the SPGL1 solver inde-
pendent from the value of W y, the weighted observations W y
are normed by ‖W y‖�2 , and the columns of the matrix WA
are also normed. Denoting by y′ = 1

ε
W y/‖W y‖�2 and A′ =

1
ε
(WAk/‖WAk‖�2 )k=1,...,n, we set in input of the solver

arg min
x∈Cn

‖x‖�1 s.t.
∥∥A′x − y′∥∥

�2
� 1, (13)

to always be in the same kind of use of the solver and ensure
that the accuracy of the result does not depend on its units. Going
back to the correct units in the post-processing step is described in
Section 3.6.

3.5 Tuning

Choice of W. We have seen in Section 2.3 that the weight matrix
W is characterized by the covariance function R via Wkl = R(|tk −
tl|). Several forms for the covariance functions were suggested (e.g.

Rajpaul et al. 2015). Here we only consider exponential covariances,
which are

R(�t) = σ 2
Re− |�t |

τ , �t �= 0

R(0) = σ 2
W + σ 2

R, (14)

where the subscripts W and R stand respectively for white and red.
As the red and white noises are here supposed independent, the
covariance function of their sum is the sum of their covariance
functions. Therefore, the matrix W is such that its diagonal terms

are Vkk = σ 2
k + σ 2

W + σ 2
R and Vkl = σ 2

Re− |tk−tl |
τ for k �= l.

Choice of �. We have two parameters to choose: the grid span and
the grid spacing. For the first one, we take 1.5 cycles d−1 as a default
value but it is also advisable to re-do the analysis for 0.95 cycles
d−1, as discussed in the examples in Section 2. We ensure that if the
signal is made of sinusoids (a.k.a. it is quasi-periodic), there exists
at least one vector x verifying ‖W(Ax − y)‖�2 < ε that has the
correct �0 norm. Let us consider a signal made of p pure sinusoids

sampled at times t = (tk)k = 1, . . . , m, y(t) =
p∑

j=1
cj eiωj t . Assuming

that the frequencies on the grid are regularly spaced with step �ω,
this leads to the condition (see Appendix A for calculation details)

�ω � 4

T
arcsin

ε

2

√
p∑

j=1
|cj |2

√
m∑

k=1

1
σ 2
k

. (15)

Let us note that the values of cj are a priori unknown, so the term√∑p
j=1 |cj |2 has to be approximated. Supposing the signal is made

of sinusoids plus small noise,
√∑p

j=1 |cj |2 ≈ ‖ y‖�2/
√

m. Further-

more, it must be ensured that all possible significant frequencies are
in the signal.

The choice of the grid spacing can be based on other criteria:
Stoica & Babu (2012) suggest to choose a spacing such that the
‘practical rank of matrix Mkl = ei�ω(tk−tl ) is equal to one. This term
designates the number of singular values above a certain thresh-
old. Here the condition states that only one singular value is non-
negligible. Let us also mention that one can perform the reconstruc-
tion with different grids and average out the results. However, this
approach does not practically generate better results than using a
finer grid.

Choice of ε. The error is due to two sources: grid discretization
which gives an error εgrid and noise, which yields εnoise. Supposing
the noise is Gaussian, denoting by yt the underlying non-noisy
observations, ‖W( yt − y)‖2

�2
as a function of random variable y =

yt + n follows a χ2 distribution with m degrees of freedom. Denoting
its cumulative distribution function (CDF) by Fχ2

m
, the probability 1

− α that the true signal yt is in the set { y′, ‖W( y′ − y)‖2
�2

≤ εnoise}
is

Fχ2
m

(ε2
noise) = 1 − α. (16)

The bound εnoise is determined according to the equation above for
a small α. Once εnoise is chosen, rearranging equation (15) gives a
minimal value of εgrid that ensures that a signal with a correct �0

norm exists,

εgrid = 2

√√√√ p∑
j=1

|cj |2
√√√√ m∑

k=1

1

σ 2
k

sin
�ωTobs

4
. (17)

An alternative is to set ε to zero and let the algorithm find a
representation for the noise, which will not be sparse. In that case,
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one must obviously not perform the re-normalization of the columns
of WA by ε of Section 3.4. Below a certain amplitude, a ‘forest’ of
peaks would be seen on the �1-periodogram. This has the advantage
to give an estimation of the noise structure. However, this method
is more sensitive to the solver inner uncertainties and requires more
time; it was not retained for this work.

Choice of η. See the next section.

3.6 Post-processing

Once the solution to equation (11,BPε,W ) is computed, the spectrum
x� is filtered with a moving average. We expect from discretization
(9) that the frequencies might leak to close frequencies. Indeed,
the amplitude of the solution to equation (11,BPε,W ) might be un-
trustworthy. When the signal is made of several frequencies, the
solution might overestimate the one with the greatest amplitude,
and underestimate the others; this problem arises especially when
less than a hundred observations are available. To mitigate this ef-
fect, one can sum up the contribution of subsequent frequencies and
estimate the amplitude of the resulting signal. If x� is the solution to
equation (11,BPε,W ), denoting by x�(ω) the coefficient correspond-
ing to frequency ω, we compute

ŷω(t) = ‖W y‖�2

∑
ω′ ∈ �

ω − η � |ω′| � ω + η

x�(ω′)aω′ (t)
‖Waω′ (t)‖�2

, (18)

where aω′ (t) is the column of A corresponding to frequency ω′. The
terms ‖W y‖�2 and 1/‖Waω′ (t)‖�2 appear because the columns
of WA and the weighted observations Wy were normalized in
Section 3.4. The vector ŷω(t), t = t1, . . . , tm is approximately a
sine function; the new estimation of the signal power is

x�(ω) = max
t1..tm

|ŷω(tk)|. (19)

Other estimates are possible, such as the power of a sine at frequency
ω fitted on ŷ(ω). Though the choice of η is heuristic, corollary 1 of
Tang et al. (2013a) is used as a guideline. It indeed states that the
summed amplitudes of coefficients of x� within a certain distance
η0 from the actual peak in the signal tend to the appropriate value
as the discretization step tends to zero. In the proof, they choose ε

such that the balls of width η0 centred around the true peaks have a
null intersection. Thus, it seems reasonable to select η as the largest
interval within which the probability to distinguish frequencies is
low. Values such as ≈0.5π/Tobs to π/Tobs are robust in practice.

3.7 Significance and uncertainties

3.7.1 Detection threshold

It is simple to associate a ‘global’ false alarm probability (FAP)
to the �1-periodogram similar to the classical FAP of the Lomb–
Scargle periodogram (Scargle 1982, equation 14). Let us consider
the probability that ‘x = 0 is not a solution knowing the signal
is pure independent Gaussian noise’. Denoting this probability α̃,
following notations of Section 2.1, ε2 = Fχ2

−1(1 − α̃). As ε ≈
εnoise, the value of α̃ is close to the user-defined parameter α. In
the Lomb–Scargle case, the FAP obeys: ‘if the maximum of the
periodogram is z, then the FAP is β(z)’, where β is an increasing
function of z [often taken as β(z) = 1 − (1 − e−z)M , where M is a
parameter fitted with numerical simulations; Scargle 1982; Horne
& Baliunas 1986; Cumming 2004. Here the formulation is ‘if the

solution to equation (11,BPε,W ) is not zero, then a signal has been
detected with an FAP lower than or equal to α’.

3.7.2 Statistical significance of a peak

The discussion above points out similarities with the FAP defined
for periodograms. This one and the global FAP share in particular
that they only allow one to reject the hypothesis that the signal is
pure Gaussian noise of covariance matrix W. However, the problem
is rather to determine if a given peak indicates a true underlying
periodicity, and if this one is due to a planet.

In that scope, our goal is to test if the harmonics spotted by
the �1-periodogram are statistically significant. Ultimately, one can
use statistical hypothesis testing, which can be time consuming. To
quickly assess the significance of the peaks, two methods seem to
be efficient.

(i) Re-sampling: taking off randomly 10–20 per cent of the data
and re-computing the �1-periodogram. The peaks that show great
variability should not be trusted.

(ii) Using the formulae of the ‘residual/recursive periodograms’
(Cumming 2004; Baluev 2008, 2009, 2015a; Anglada-Escudé &
Tuomi 2012).

The first case is easy to code and has the advantage to implement
implicitly a time–frequency analysis. Indeed, we might expect from
stellar variability some wavelet-like contributions: a signal with a
certain frequency arises and then vanishes. The timespan of obser-
vation might be short enough so that feature is mistaken for a truly
sinusoidal component. By taking off some of the measurements, we
can see if the amplitude of a given frequency varies through time.
However, this method requires to re-compute the �1-periodogram
several times and might not be suited for systems with numerous
measurements.

3.7.3 Model

As the re-sampling approach is straightforward to code, we will now
focus on the recursive periodogram formulae. These ones should be
useful for readers more interested in speed than comprehensiveness.
In this section, the relevant signal models are defined. We consider
that the signal is of the form

fK

(
θ0,

(
θKj

)
j=1..np

)
= non-planetary (θ0) +

np∑
j=1

Keplerianj

(
θKj

)
(20)

or

fC

(
θ0,

(
θCj

)
j=1..np

)
= non-planetary (θ0) +

np∑
j=1

Circularj
(
θCj

)
.

(21)

That is a sum of a model accounting for non-planetary effects,
non-planetary(θ0), θ0 being a real vector with nθ components, and
a sum of Keplerian or circular curves depending on five resp. three
parameters, θKj = (kj, hj, Pj, Aj, Bj) and θCj = (Pj, Aj, Bj)

Keplerian(θK ) = AU̇ (k, h, P ) + BV̇ (k, h, P ) (22)

Circular (θC) = A cos

(
2πt

P

)
+ B sin

(
2πt

P

)
, (23)
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1226 N. C. Hara et al.

where k = ecos � , h = esin � , � = ω + � is the sum of the
argument of periastron and right ascension at ascending node, U,
V are the position on the orbital plane rotated by angle � . These
variables are chosen to avoid poor determination of the eccentricity
and time at periastron for low eccentricities.

We compare subsequently the χ2 of residuals of a model with np

and np + 1 planets. In practice, one selects the tallest peak of the
�1-periodogram, and uses this frequency to initialize a least-squares
fit of a circular or Keplerian orbit. Then the two tallest peaks are
selected and so on.

To clarify the meaning of the computed FAP, let us define the
recursive periodogram, depending on a frequency ω. We denote the
χ2 of the residuals by

χ2
K,C

(
θfit

0 , θfit
np

, ω
)

=
[

y − fK,C

(
θfit

0 , θfit
np

, ωfit
)]T

V−1
[

y − fK,C

(
θfit

0 , θfit
np

, ωfit
)]

(24)

χ2
K,C

(
θfit

0 , θfit
np

)

=
[
y − fK,C

(
θfit

0 , θfit
np

)]T

V−1
[

y − fK,C

(
θfit

0 , θfit
np

)]
. (25)

fK,C

(
θfit

0 , θfit
np

, ωfit
)

is the model fitted depending on the

non-planetary effects θ0, the (Keplerian or circular) θnp =
(θK,Cj )j=1,...,np parameters of np planets plus a circular or Kep-
lerian orbit initialized at frequency ω. V designates the covariance
matrix of the noise model (V−1 = W2 with the notations above).
This one is often assumed to be diagonal but this is not neces-
sary as all the properties of those periodograms come from the fact
that they are likelihood ratios. The model fit can be done linearly
(Baluev 2008) or non-linearly (Anglada-Escudé & Tuomi 2012).
By linear, we mean that among the five or three parameters defined
in equations (22) and (23), only (Aj )j=1,...,np+1 and (Bj )j=1,...,np+1

are fitted and the non-planetary effects are modelled linearly: there
exists a matrix φ such that non-planetary(θ0) = φθ0. In the second
option, the orbital elements of previously selected planets, the non-
planetary effects and the signal at the trial frequency are re-adjusted
non-linearly for each trial frequency.

3.7.4 FAP formulae for recursive periodograms

Recursive periodogram is a term that refers to a general concept for
comparing the residuals of a model with or without a signal at a
given frequency. Here we specialize the formulae we use. Denoting
by PC(ω) and PK(ω) in the circular resp. Keplerian case,

PC(ω) = N
χ2

C(np, ω) − χ2
C(np)

χ2
C(np)

(26)

PK (ω) = 1

2

(
χ2

K (np) − χ2
K (np, ω)

)
, (27)

where N = m − 2np − nθ . The circular case is expression ‘z1’ in
equation 2 of Baluev (2008), and the Keplerian one is expression ‘z’
in equation 4 of Baluev (2015a). In what follows, only the circular
case will be used.

The quantity we are interested in is the probability that a selected
peak is not a planet. We here use the FAP as a proxy for that

quantity:

FAP(Z) = Pr

{
max

ω∈[0,ωmax]
P (ω) > Z | non-planetary effects, np

}
,

(28)

where ωmax is the maximum frequency of the periodogram that has
been scanned. This FAP is the probability to obtain a peak at least as
high as Z while there are only non-planetary effects and np planets.
Baluev (2008) has computed tight bounds for that quantity in the
case of a circular model and a linear fit (corresponding to subscript
C), which we reproduce here:

FAP(z, ωmax) ≈ Wγ

(
2z

NH

) 1
2
(

1 − 2z

NH

) NH+1
2

, (29)

where NH is the number of degrees of freedom of the model without
the sine at frequency ω, γ = �(NH/2)/�((NH + 3/)2), � being

the Euler � function, and W = ωmax

√
( t̄2 − t̄2)/π, t being the array

of measurement times and t̄ is the mean value of t . We have also
tried the exact expression of the so-called Davies bound provided by
equations 8, B5 and B7 of Baluev (2008), but the results were very
similar to the simpler formula. In the case of Keplerian periodogram,
we used equation 21 and 24 from Baluev (2015a).

Again, we emphasize that the interest of the present method is to
select candidates for future observations or unveiling signals unseen
on periodograms. The FAP formulae used here do not guarantee the
planetary origin of a signal. For robust results, statistical hypothesis
testing (e.g. Dı́az et al. 2016) can be used.

4 R ESULTS

4.1 Algorithm tuning

For all the systems analysed in the following sections, the figures
called �1-periodogram represent x�(ω) as defined in equation (19)
plotted versus periods. The name �1-periodogram was chosen to
avoid the confusion with the generalized Lomb–Scargle (GLS) pe-
riodogram defined by Zechmeister & Kürster (2009). In each case,
the algorithm is tuned in the following way.

(i) The problem (11,BPε,W ) is solved with SPGL1 (van den Berg
& Friedlander 2008).

(ii) The solution of SPGL1 is averaged on an interval η =
2π/(3Tobs) according to Section 3.5.

(iii) The grid spacing is chosen according to equation (15).

The importance of the grid span and the tolerance ε will be discussed
in the examples.

The FAPs are computed according to the procedure described in
Section 3.7.4 and are represented in Fig. 6 with decreasing FAP.
The ticks in abscissa correspond to the period of the signals and the
flag to their semi-amplitude after a non-linear least-squares fit.

In the following, we will present our results for HD 69830, HD
10180, 55 Cnc, GJ 876 and a simulated very active star from the
RV Challenge (Dumusque et al. 2016). For each system, the GLS
periodogram is plotted along with the �1-periodogram.

4.2 HD 69830

In Lovis et al. (2006), three Neptune-mass planets are reported
around HD 69830 based on 74 measurements of HARPS spanning
over 800 d. The precision of the measurements given in the raw
data set (from now on called nominal precision) is between 0.8 and
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RV data analysis with compressed sensing 1227

(a)

(b)

(c)

Figure 1. Generalized Lomb–Scargle periodogram and �1-periodogram of HD 69830 in blue, and published planets are represented by the red stems. The
frequency spans used for panels (b) and (c) are respectively 1.5 and 0.95 cycles d−1. The other signals mentioned in Section 1 are spotted by the blue arrows.
For all the noise model considered for matrix W, σW = 0, σR = 1 m s−1.
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1228 N. C. Hara et al.

Figure 2. GLS and �1-periodograms of HD 10180 data set with mean subtracted. The red stems have the periods and amplitude of published planets. The
other signals mentioned in Section 2 are spotted by the blue arrows. For all the noise model considered for matrix W, σW = 0, σR = 1 m s−1.
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Figure 3. GLS and �1-periodograms of 55 Cnc data set with mean subtracted. The red stems have the periods and amplitude of published planets. The other
signals mentioned in Section 4.4 are indicated by the blue arrows.
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1230 N. C. Hara et al.

Figure 4. GLS and �1-periodograms of GJ 876 data set with means of Keck and HARPS measurement respectively subtracted. The red stems have the periods
and amplitude of published planets. The other signals mentioned in Section 4.5 are indicated by the blue arrows.
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Figure 5. Top: GLS of the RV Challenge system 1 (simulated signal). Top: GLS of raw data. Middle: GLS after fitting ancillary measurements. Bottom:
�1-periodogram after fitting ancillary measurements. True planets are represented by red lines.

MNRAS 464, 1220–1246 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/464/1/1220/2280760 by guest on 01 August 2022



1232 N. C. Hara et al.

Figure 6. Peak amplitudes and associated FAPs for the four systems analysed.
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1.6 m s−1. The host star is a quiet K dwarf with a log R′
HK = −4.97

and an estimated projected rotational velocity of 1.1+0.5
−1.1 m s−1;

therefore, the star jitter should not amount to more than 1 m s−1

(Lovis et al. 2006).
Our method consists in solving the minimization problem

(11,BPε,W ) and averaging the solution as explained in Section 3.6.
The resulting array x�(ω) (see equation 19) is plotted versus fre-
quency, here giving Figs 1(b) and (c). The tallest peaks are then
fed to a Levenberg–Marquardt algorithm, and the FAPs of models
with an increasing number of planets are computed. We represent
the FAPs of the signals when fitted from the tallest peaks to the
lowest – disregarding aliases – Fig. 6(a). The FAP corresponding to
an FAP of 10−4 is represented by a dotted line.

The values of most of the algorithm parameters defined in Sec-
tion 3.5 are fixed in the previous section. In this example, the
method is performed for two grid spans: 0–1.5 and 0–0.95 cycles
d−1 (Figs 1b resp. c).

We first apply the method on a grid spanning between 0 and 1.5
cycles d−1. The weight matrix is diagonal, Wkk = 1/σ k (not 1/σ 2

k ),
where σ k is the error on measurement k. In Fig. 1(b), the peaks
of published planets appear, as opposed to the GLS periodogram
(Fig. 1a). However, there are still peaks around 1 d. The three main
peaks in that region have periods of 0.9921, 0.8966 and 1.1267.
The maximum of the spectral window occurs at ωM = 6.300 84 rad
d−1. Calculating 2π/(ω − ωM ) yields 194.06, 8.8877 and −8.6759,
respectively for ω = 2π/0.9921, 2π/0.8966 and 2π/1.1267, sug-
gesting that the short-period peaks are aliases of the true periods.

We now apply the method described in Section 3.7.4 to test the
significance of the signal, obtaining Fig. 6(a). Taking 8.667, 31.56
and 197 d gives a reduced χ2 of the Keplerian fit with three planets
plus a constant (16 parameters) of 1.19, yet the stellar jitter is not
included. As a consequence, finding other significant signals is
unlikely.

Looking only at Fig. 1(b), whether the signal at 197 d or its alias
at 0.9921 d is in the signal is unsure. We perform two fits with the
two first planets plus one of the candidates. The reduced χ2 with
0.9921 d is 1.2548, suggesting that the planet at 197 is indeed the
best candidate.

Now that there are arguments in favour of a white noise and
three planets, let us examine what happens when using a red noise
model. The frequency span is restricted to 0–0.95 cycles d−1 to
avoid spurious peaks (Fig. 1c). As said above, the star is expected
to have a jitter in the m s−1 range, so we take for the additional jitter
σ W = 0, σ R = 1 m s−1 and try several characteristic correlation time
lengths τ = 0, 3, 6, 10 or 20 d with definitions of equation (14).
In that case, as said in Section 2.3, the estimation of the power is
expected to be biased. Fig. 1(c) shows that the peaks at high and low
frequencies are respectively overestimated and underestimated. We
suggest the following explanation: the weighting matrix accounts
for red noise that has more power at low frequencies. Therefore,
the minimization of equation (5) has a tendency to ‘explain’ the
low frequencies by noise and put their corresponding energy in the
residuals.

When the signal is more complicated, there might be complex
effects due to the sampling resulting in a less simple bias. This issue
is not discussed in this work, but we stress that when using different
matrices W, the tolerance ε must be tightened to avoid being too
affected by the bias on the peak amplitudes.

To illustrate the advantages of our method, in Appendix C, we
generate signals with the same amplitude as the ones of the present
example but with periods and phases randomly selected. We show

that the maximum of the GLS periodogram does not correspond to
a planet in ≈7 per cent of the cases, while the maximum peak of the
�1-periodogram is spurious in less than 0.5 per cent of the cases.

4.3 HD 10180

Lovis et al. (2011) suggested that the system could contain up to
seven planets based on 190 HARPS measurements, whose nominal
error bars are between 0.4 and 1.3 m s−1. The star has an activity
index log R′

HK = −5 which lets suppose an inactive star with low
jitter. In Lovis et al. (2011), the presence of the planets at 5.79,
16.35, 49.74, 122.7, 600 and 2222 d is firmly stated. Let us mention
that there is a concern on whether a planet at 227 d could be in the
signal instead of 600 d, as they both appear on the periodogram of
the residuals and 1/227 − 1/600 + 1/365 ≤ 1/Tobs, where Tobs

is the total observation time. The possibility of the presence of a
seventh planet is also discussed. After the six previous signals are
removed with a Keplerian fit, the tallest peaks on the periodogram
of the residuals are at 6.51 and 1.178 d (Lovis et al. 2011). They are
such that 1/6.51 + 1/1.178 − 1 ≤ 1/Tobs, so one is probably the
alias of the other. The dynamical stability of a planet at 1.17 d is
discussed in Laskar, Boué & Correia (2012), and its ability to survive
is shown. However in our analysis, the statistical significance is too
low to claim that the planet is actually in the system.

We compute the �1-periodogram for a grid span of 0–1.5 and
0–0.95 cycles d−1, giving respectively Figs 2(b) and (c) (blue
curve). In Appendix B, we show that when W correctly accounts
for the red noise, signals might become apparent. Therefore, on
the latter we also test different weight matrices. As explained in
Appendix B and previous section, in that case we have to decrease
εnoise and here Fχ2

m
(ε2

noise) = 0.1 was taken, where Fχ2
m

is the CDF of
the χ2 distribution with m degrees of freedom, m being the number
of measurements, in accordance with the notations of Section 3.5.
We note that there is a signal appearing at 15.2 d and that there is
a small peak at 23 d, which is close to the stellar rotation period
estimate of 24 d (Lovis et al. 2011). Whether this is due to random
or not is not discussed here.

Alike the case of HD 69830, the aliases are overestimated when
the frequency span is 3 cycles d−1. In that case, the highest one at
0.9976 d corresponds to an alias of the 2222 d period. We will see
that in the two next systems the aliases are not as disturbing, which
is discussed in Section 5.2.

We now need to evaluate the significance of the peaks. The FAP
test is performed for the seven highest signals, which are the pub-
lished planets plus 0.177 d or 15.2 d. The latter appears for a non-
diagonal weight matrix W; therefore, when performing a Keplerian
fit, the χ2 we take is (y(t) − ŷ(t))T W 2(y(t) − ŷ(t)) with the same
W, that is σ W = 0, σ R = 1 m s−1 and τ =25 d [with notations of
equation (14)]. This analysis gives Figs 6(c) and (d). In both cases,
the signals are below the significance threshold. It is also not clear
which seventh signal to choose (Fig. 2c), but doing the analysis
with other candidates as 6.51, 23 or 67.5 d does not spot significant
signals either. Let us note that when choosing a non-diagonal W,
the FAPs of the 16.4 and 600 d planets respectively increase and
decrease. We suggest the following explanation: the noise model
is compatible with noises that have a greater amplitude at low fre-
quencies. As a consequence, the minimization has a tendency to
interpret low frequencies as noise and ‘trust’ higher frequencies.
Deciding if a signal is due to a low-frequency noise or a true planet
could be done by fitting the noise and the signal at the same time.

MNRAS 464, 1220–1246 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/464/1/1220/2280760 by guest on 01 August 2022



1234 N. C. Hara et al.

4.4 55 Cancri

4.4.1 Data set analysis

Also known as ρ Cancri, Gl 324, BD +28◦1660 or HD 75732, 55
Cancri is a binary system. To date, five planets orbiting 55 Cancri A
(or HR 552) have been discovered. The first one, a 0.8 M j minimum
mass planet at 14.7 d was reported by Butler et al. (1997). Based
on the Hamilton spectrograph measurements, Marcy et al. (2002)
found a planet with a period of approximately 5800 d and a possible
Jupiter mass companion at 44.3 d. With the same observations
and additional ones from the Hobby–Eberly Telescope (HET) and
ELODIE, McArthur et al. (2004) suggested that a Neptune-mass
planet could be responsible for a 2.8 d period. Wisdom (2005) re-
analysed the same data set and found evidence for a Neptune-sized
planet at 261 d and suggested that the 2.8 period is spurious. This
was confirmed by Dawson & Fabrycky (2010), which showed that
the 2.8 d periodicity is an alias and the signal indeed comes from
a super-Earth orbiting at 0.7365 d. The transit of this planet was
then observed by Winn et al. (2011) and Demory et al. (2011), con-
firming the claim of Dawson & Fabrycky (2010). In the meantime,
using previous measurements and 115 additional ones, Fischer et al.
(2008) confirmed the presence of a planet at 261 d of minimum
mass M sin i = 45.7 M⊕. They also point out that in 2004 they
observed two weak signals at 260 and 470 d on the periodogram.
The constraints on the orbital parameters were improved by Endl
et al. (2012) based on 663 measurements: 250 from the Hamilton
spectrograph at Lick Observatory, 70 from Keck, 212 from HJST
and 131 of the high-resolution spectrograph (HET), giving planets
at 0.736 546 ±3 × 10−6, 14.651±10−4, 44.38 ±7 × 10−3,
261.2 ±0.4 and 4909 ±30 d. This is the set of measurements we
will work on in this section. Let us mention also that Baluev (2015b)
and Nelson et al. (2014) studied respectively 55 Cnc dynamics
and noise correlations including additional measurements (Fischer
et al. 2008).

Let us consider the set of 663 measurements from four instru-
ments used in Endl et al. (2012). The mean of each of the four data
set is subtracted and the method described in Section 2 is applied
straightforwardly. Here we only display the figure obtained for a
white noise model as it is essentially unchanged when correlated
noise is taken into account. Fig. 3(b) shows the �1-periodogram,
and Fig. 3(c) is the same figure with a smaller y-axis range. The
published signals appear without ambiguity. This is somewhat sur-
prising, as the data come from four different instruments and their
respective mean was subtracted. Such a treatment is rather crude, so
it shows that at least in that case the method is not too sensitive to
the differences of instrumental offsets. When those are fitted with
the planets found and corrected, a 365 d periodicity clearly appears
on the �1-periodogram.

The FAPs computed following the method outlined in
Section 3.7.4 are significant (see Fig. 6b). The sixth highest peak is
at 470 d, the FAP of which is too low to claim a detection. Inter-
estingly enough, a signal at this period was mentioned by Fischer
et al. (2008). We will see in the next section that this one is already
seen in 2004, and probably due to the different behaviour of the
instruments at Lick and HET. The presence of a signal at 2.8 and
260 d in early measurements is also discussed.

4.4.2 Measurements before 2004: no planet at 2.8 d nor 470 d but
visible 55 Cnc e and f

The 55 Cnc system has several features that are interesting to test
our method. There has been some false detections at 2.8 d, and

among candidate signals, one was confirmed (260 d) and one was
not (470 d). We now have at least 663 reliable measurements that
are very strongly in favour of five planets. As a consequence, the
method can be applied on a shortened real data set with specific
questions in mind, while being confident about what really is in the
system. We will see that the use of the �1-periodogram could have
helped detecting the true planets based on the 313 measurements
considered in McArthur et al. (2004). These ones are from Hamil-
ton spectrograph at the Lick Observatory, the HET and ELODIE
(Observatoire de Haute Provence). We also show that the signal at
0.7365 d (55 Cnc e) was detectable on the separate data sets from
Lick or from HET available in 2004.

Our method is first applied to the three data sets at once, the
means of which were subtracted, which gives the lighter blue curve
in Fig. 7(a). The true periods appear, although the 260 period is
very small and there are peaks at 470, 1314 and 2000 d (the other
features of the figure will be explained later). We then consider
the three data sets separately; the figure obtained is displayed in
Fig. 7(b). The fact that the �1-periodograms of each of the three
instruments span on different length is due to the fact that they do
not have the same observational span. As the moving average on the
result of SPGL1 is 2π/3Tobs, it is wider when the total observation
time Tobs is small. The 14.65 and long periods are seen for each
data set, but the 0.7365 and 44.34 d periodicities are not seen for
the ELODIE data set. Interestingly, HET �1-periodogram displays
a periodicity close to 260 d. However, one cannot claim a detection
at this period in HET data, as those only span on 180 d, any period
longer than the observation timespan is very poorly constrained.
Furthermore, the period at 2.8 d is not seen in any data set. The
closest one would be a peak at 2.62 d obtained with ELODIE data,
which was checked not to be significant. The 470 d periodicity
does not appear either. We show in the next paragraph that this is
likely due to the velocity offset between Lick-Hamilton and HET
data sets. Let us point that CLEAN (Roberts et al. 1987) or frequency
analysis (Laskar 1988; Laskar et al. 1992, see Fig. 8) also allows
us to retrieve the 0.7365 periodicity, which basically means that the
strongest peak of the residual was already this one in 2004.

To compute the significance, the method of Section 3.7.4 is ap-
plied to the Lick and HET data separately. The FAPs are com-
puted for circular models with an increasing number of planets
whose periods correspond to the subsequent tallest peaks of the
�1-periodogram. Here, as the data come from different instruments
we add to the model three vectors 1Lick(t), 1Elodie(t) and 1HET(t),
where 1I(t) = 1 if the measurement at time t is made by instrument
I, 1I(t) = 0 otherwise. In the case of Lick data, there is a peak of
6 m s−1 at 1.0701 d, but this one can be discarded as it is an alias of
the 14.65 d periodicity. In both HET and Hamilton data, the 0.7365
periodicity is significant (Figs 7c and d). Also, one sees a significant
long period in both cases (respectively 8617 and 5212 d). The HET
data set spans on 170 d, so in this case one can only guess that there
is a long-period signal. Finally, when combining the two data sets,
the 470, 2150 and 1314 d periodicities become insignificant.

The difference in zero-points of the three instruments has a sig-
nature on the �1-periodogram. Indeed, in problem (11,BPε,W ), the
signal is represented as a sum of sinusoids. The algorithm could
then attempt to ‘explain’ the bumps in velocity that occur when
passing from one instrument to the other by sines. The previous
analysis ensures the presence of four periodicities in the signal: at
≈14.65 d, 44.34, 5000 and 0.7365 d. The fit with these four periods
plus the vectors 1I(t) gives coefficients of the latter αLick, αElodie and
αHET. The vector αLick1Lick(t) + αElodie1Elodie(t) + αHET1HET(t) is
subtracted from the raw data. The �1-periodogram of the residuals
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Figure 7. �1-periodogram of 55 Cnc, using measurements from the Lick-Hamilton, ELODIE spectrograph (Observatoire de Haute Provence) and HET
telescope.
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(a)

(b)

Figure 8. (a) CLEAN spectrum of 55 Cnc with the data available in 2004. (b) Frequency analysis of the same data.

is computed, which gives the dark blue curve shown in Fig. 7(a).
The 2000 and 1314 periods disappear and the 470 d peak decreases.
Interestingly enough, the fifth tallest peak (except the 0.99 709 d
alias) becomes 260 d, which was suggested by Wisdom (2005) and
confirmed by Fischer et al. (2008) and Endl et al. (2012), but it
does not appear on the CLEAN spectrum nor the frequency analysis
(Figs 8a and b).

We now fit the model with five planets along with the 1I vectors
and trends for each instrument, which are vectors tI such that tI (t)
= t and 0 elsewhere if the measurement at time t is done by the
instrument I. The vector

∑
αk1Ik + βk tIk is subtracted from the

raw data, and we compute again the �1-periodogram (Fig. 7a, green
curve). This time, the 470 d periodicity disappears, suggesting –
though not proving – that it is due to a difference in behaviour
between the instruments. The fact that the 470 d signal disappears
just shows its presence depends on the models of the instruments.
The same analysis on Lick and HET data altogether shows the same
features at 470 d; therefore, we exclude the possibility that it is due
to the lesser precision of ELODIE.

The analysis by Wisdom (2005) does not use �1 minimization
to unveil the 260 d periodicity (55 Cnc f). We tried to reproduce
a similar analysis ‘by hand’ on the same data set, namely the one
of McArthur et al. (2004). The rationale is to determine if it was
easy to make 55 Cnc f appear with an analysis more conventional
than the �1-periodogram. Also, the short-period planet can be in-
jected at 0.7365 d, not ≈2.8 d as it was then. We found that the size
of the peak in the residuals at 260 d depends on the initialization
of the fits, both with classical and recursive periodograms. While
in most cases the 260 periodicity does appear in the residuals, it
sometimes coexists with peaks of similar amplitude. Interestingly
enough, an analysis of Lick-Hamilton and HET data sets by re-
cursive periodograms suggests that the periods estimated by HET
are shifted to longer ones with respect to Lick ones. We found that
adding the periods 14.8, 15 000 (1/14.65 − 1/14.8 ≈ 1/5000 −
1/15 000) to those of the four planets and a 2500 one (probably
due to a harmonic of the 5000 d periodicity) makes the 400 (seen
on the CLEAN spectrum in Fig. 8a) and 470 periodicity disappear,
and the 260 d peak appears very clearly. As the data come from
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an older generation of spectrographs, one could expect complicated
systematic errors. Again, this discussion focuses on the possibility
of seeing the 55 Cnc f in 2004; we do not raise the question of its
existence, well established by the subsequent measurements.

Finally, we perform the FAP test on the data from the three
instruments (see Fig. 7e). The model is made of Keplerians plus
the 1I vectors. The four significant signals in each data set are still
significant. The 260 d periodicity is significant as well. This analysis
shows that both the 0.7365 and 260 d periodicities were already
present in the data. Long periods might be due to instrumental
effects; therefore, the planetary origin of the 260 period could have
been subject to discussion. In contrast, it seems hard to explain
a steady 0.7365 d periodicity with a non-planetary effect. Let us
also note that our χ2 minimization algorithm and the one used by
Wisdom (2005) are different, the latter being more sophisticated,
which might account for discrepancies between our analyses.

4.5 GJ 876

4.5.1 Previous work

The GJ 876 host star is one of the first discovered multiplanetary
systems. First, two giant planets at 30 and 61 d were reported by
Marcy et al. (1998) and Delfosse et al. (1998). Subsequently, Rivera
et al. (2005) find a short-period Neptune at 1.94 d and a Uranus-mass
planet at 124 d (Rivera et al. 2010).

The giant planets are close to each other and in 2:1 resonance,
therefore we might expect visible dynamical effects. Indeed, Correia
et al. (2010), Baluev (2011) and Nelson et al. (2016) perform four-
body Newtonian fits which give a χ2 of the residuals smaller than a
Keplerian fit. The dynamical fits also allow one to have constraints
on the inclinations, therefore on the true masses of the planets.
Furthermore, Baluev (2011) shows that the maximum of a posterior
likelihood including a noise model as the one used here (equation
14) occurs at σ W = 1.31 m s−1, σ R = 1.8 m s−1 and τ = 3 d.

Jenkins et al. (2014) take a different approach and search for sine
functions in the signal. They claim that six significant sinusoidal
signals are in the data. The following discussion first confirms these
results. Secondly, we investigate the origins of the additional two
signals and find that they are likely to be due to the interactions
between the giant planets.

4.5.2 Six significant sines

Jenkins et al. (2014) analyse the GJ 876 data by aiming at solv-
ing the problem (1), which they call minimum mean squared error.
To do so, the phase space is explored with an iterative arborescent
method. They find the following periods: 61.03±3.81, 30.23±0.19,
15.04±0.04, 1.94±0.001, 10.01±0.02 and 124.69±90.04 d. To
compare our results with Jenkins et al. (2014), the significance of the
signals is tested with FAPs as previously. We use different weight
matrix models according to equation (14) and two grid spans: 1.5
and 0.95 cycles d−1 (see Figs 4b and c). In Fig. 4(c), we see that the
six tallest signals correspond to the periods we expect. Depending
on the noise model, the seventh tallest peak varies. We compute the
FAP test for 7.748, 1200 or 4200 d as candidate seventh planets,
respectively, with the W matrix yielding their greatest amplitude.
In Fig. 6(e), we display the result for 7.748 d but in other cases the
signals are not significant. Let us still point out that in the case of
τ = 6 d, initializing a 4200 d periodicity, after the non-linear fit we
obtain a 4862 d periodicity which has an FAP of 0.0007. This one
is close to the total observation timespan (4600 d). Therefore, it is
hard to determine what could be its cause.

Before discussing the origin of these signals, we wish to com-
ment on the behaviour of the �1-periodogram towards the 124 d
periodicity. Indeed, in the case of the 1.5 cycles d−1, this one has
the same order of magnitude as the tallest alias in the 1 d region
(at 0.9812 d, alias of the 61 d periodicity). Furthermore, the peak
becomes visible only for non-diagonal weight matrix W, while a
white noise model is sufficient to see it when using a shorter grid
(Fig. 4c). To understand this feature, we argue as follows. There
are three effects against finding the correct planets: the red noise
(Baluev 2011), the uncertainties on the two instrumental means and
the inner faults of our method. The persistence of aliases at 1 d
indeed shows that the recovery of the true signals is more difficult
when considering a grid � where some of the frequencies are very
correlated. We also computed the �1-periodogram when the mean of
each instrument is corrected after the orbital parameters fit, as done
in Section 4.4.2. In that case, the 124 d periodicity does appear and
the aliases are reduced. We suggest the following explanation: when
at least one of the three obstacles is correctly taken into account, the
method is sufficient. When the three are ignored, their joint effect
is deadly to our ability to recover the correct planets.

4.5.3 Signals at 10 and 15 d

Now that the six sines are seen in the signal, we show that the peaks
at 15.06 and 10.01 d are due to the dynamical interactions.

We perform the same four-body fit of GJ 876 with the same
method as Correia et al. (2010). This one includes 25 parameters:
the mass of the star, a velocity offset, the mass of the planets, for the
smallest planets: period, semi-amplitude, eccentricity, argument of
periastron and initial mean anomaly. For the giant planets at 30 and
61 d, the inclination is also a free parameter.

A planetary system with the orbital elements found by the least-
squares fit is simulated on 100 years for the two giant planets and the
four planets at once. The frequency analysis (Laskar 1988, 1993;
Laskar et al. 1992) is then performed on the resulting time series of
the star velocity along the x-axis. We find that 15.06 and 10.01 pe-
riods appear and are a combination of the fundamental frequencies.
Denoting by ωP the frequency of a planet of period P, we have ω15

= 3ω30 − 2ω60 and ω10 = 5ω30 − 4ω60, both in the two-planet and
four-planet cases. We also performed another test: if we adjust the
two giant planets with a dynamical fit, then the peaks at 15.06 and
10.01 d are not seen on the residuals. This agrees with the analysis of
Nelson et al. (2016), where they discuss the possibility that the sig-
nals at 10.01 and 15.06 d could be due to additional planets, and find
it unlikely. They compute the evidence ratio of Newtonian models
with four and five planets, Pr { y|5 planets} / Pr { y|4 planets}, and
find that it is not higher than the threshold we chose. The difference
between ω15 and the first harmonic of the planet gives an estimate
of the frequency of precession of the periastron of the inner orbit;
we find 2π(1/ω15 − 2/ω30)≈ 8.77 yr, which is consistent with the
estimate of Correia et al. (2010, g2 = 8.73 yr, table 4).

To obtain the expressions of ω15 and ω10, we used frequency anal-
ysis. This could be puzzling as the present work defines a method to
retrieve the frequencies in the signal. The rationale is that we do the
frequency analysis on a numerical integration; therefore, we have
tens of thousands of points available. Frequency analysis has been
used in that situation for years and is known to be fast and robust.
We double checked the results by computing the �1-periodogram
on a thousand points from the simulation (handling as many as the
frequency map analysis is too long for now); the periods at 15.06
and 10.01 do appear very clearly.
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4.6 Very active star (simulated signal)

The examples above concern rather quiet stars, where the noise
can be modelled by Gaussian time series. However, in some cases,
the stellar activity does not have a known Gaussian signature. The
method described here is not yet adapted to handle such situations.
In this section, we show that the problem can be circumvented,
provided there are enough measurements.

We exploit the fact that stellar noise can be correlated with the
bisector span (Queloz et al. 2001), the full width at half-maximum
(FWHM) and the log R′

HK . This correlation has been used for ex-
ample in Meunier, Lagrange & De Bondt (2012), which shows
that the detection threshold limit improves by an order of mag-
nitude by testing the correlation between the radial velocity and
ancillary measurements. They compute the correlation of the peri-
odograms of radial velocity measurements and bisector span, but
a correlation in the frequency domain is also visible in the time
domain, as the Fourier transform contains the same amount of in-
formation as the original time series. Here we take an approach
similar to Melo et al. (2007), Boisse et al. (2009) and Gregory
(2016) in so far as we use the ancillary measurements as proxies for
estimating the activity induced signal. Here, we simply fit and re-
move the three ancillary measurements from the data and then use
the method described above on the residuals. To compute the FAP,
we use a model of the form AFWHM + Bbisector + C log R′

HK +
Circ(k, h, P , D, E), Circ denoting a circular model as defined in
Section 3.7.3. The validity of this approach is discussed in Ap-
pendix D.

The data set used is taken from the RV Fitting Challenge
(Dumusque 2016; Dumusque et al. 2016). In this challenge, 15
systems were simulated with a red noise component taken from
observations of real stars plus activity simulated via SOAP 2 (Du-
musque, Boisse & Santos 2014). Here we consider the system num-
ber two of the challenge. The data set is made of 492 measurements,
and the mean precision is 0.67 cm s−1. The first step of the process-
ing is to fit a linear model made of the ancillary measurements, an
offset, a linear and a quadratic trend (six parameters). Secondly, we
compute the �1-periodogram for different weight matrices, which
gives Fig. 5(c). The GLS periodogram is also computed before and
after the fit of the six parameters for comparison (Figs 5a and b).

We find without ambiguity the three planets whose semi-
amplitude is above 1 m s−1, and also the 20.16 d periodicity. The
planet with the smallest amplitude does not appear clearly, but there
is a peak at 5.4 d which seems to be significant. In fact, the spectral
window is such that 5.4 d is an alias of 5.32 = 10.64/2 d, and corre-
sponds to the first harmonic due to eccentricity. This feature seems
to be due to an error in the noise model. When accounting for a red
noise effect, the relative amplitudes of 5.32 and 5.4 change in favour
of 5.32 d. This effect is also observed on the recursive periodograms
which are not represented here for the sake of brevity. One can see a
peak at 6.25 d which grows stronger as the characteristic correlation
time of the noise model increases. This coincides with the fourth
harmonic of the rotational period and is therefore not surprising.

5 D ISCUSSION

5.1 Summary

The present work was first devised to overcome the distortions in
the residual that arise when fitting planets one by one. It is compat-
ible with the assumption that the noise is Gaussian and correlated
through the weighting matrix W. One of the main advantages of

the method is that, as opposed to global χ2 minimization, the min-
imization problem (11,BPε,W ) is convex therefore quicker to solve.
On our workstation (Intel Xeon CPU E5-2698 v3 at 2.30 GHz),
it takes typically 30 s to 10 min to obtain (resp. for HD 69830,
74 measurements and 55 Cnc, 663 measurements). The speed here
depends mainly on three parameters: the number of observations
m, the number of columns of matrix A (see Section 3.3), n, and
the precision wanted in output, tol (see Section 3.2). The SPGL1
algorithm used to solve equation (11,BPε,W ) relies on a Newton
algorithm; therefore, its complexity is O(log (p)F(p)), where p =
10−tol is the number of significant digits desired and F(p) the cost
of evaluating the objective function to p digits accuracy. The most
expensive steps of the evaluation are a matrix vector product and
a projection on to a convex set (see van den Berg & Friedlander
2008), which have a respective complexity of O(mn) and a worst
case complexity of O(n log n). The post-processing operation also is
in O(mn). This overall should amount asymptotically to complexity
O(mn), similarly to the Lomb–Scargle periodogram. Its complexity
is in O(mn) if there are m measurements and n frequency scanned.
The constants are however different.

Furthermore, our method does not require the number of planets
as input parameter and offers a graphic representation of the infor-
mation content of the signal. However, the statistical properties of
the solution are not as easy to interpret as in the case of a global
least-squares minimization. Considering that the method presented
here is in its infancy, comparing its merits to other techniques is left
for future work. Here, we will only stress that the �1- and GLS pe-
riodogram are tools are of different levels, and we do not advocate
to give up the latter.

We will confine ourselves to addressing some internal issues of
our method. Ultimately, we would like to know if there is a way
to determine which peaks are to be associated with planets. As
the present paper is concerned with unveiling the periodicities in
the signal but not their origins, we will address a simpler question:
assuming that the signal is only made of sines plus a Gaussian noise,
are there risks to see spurious peaks on the �1-periodogram?

Unfortunately, the answer is yes, as we have seen in the previous
examples. The method is in particular sensitive to the aliases due
to the daily repetition of the measurements: spurious peaks are
especially present around 1 d periods. To shed some light on this
problem, the following questions will be briefly discussed in the
two next sections.

(i) Are spurious peaks to be expected from the theoretical prop-
erties of the method or from its implementation?

(ii) If they are to appear anyway on the �1-periodogram, is there
a way to spot them?

5.2 Mutual coherence

To test if the algorithm behaves appropriately, we reason as follows.
Considering a set of observational times t = t1, . . . , tm, a linear
combination of p pure sine signals y(tk) = a1cos (ω1tk + φ1) + ··· +
apcos (ωptk + φp) is generated with uniformly distributed phases φ

and various amplitudes. For any tolerance ε, the SPGL1 algorithm
must give a solution x� (see equation (11,BPε,W )) such that ‖x�‖�1 �
|a1| + · · · + |ap|, as obviously y(t) belongs to the set of signals u
verifying ‖u − y(t)‖�2 � ε. To test if SPGL1 gives the best solution,
we take the measurement dates of HD 69830 and generate three pure
cosine functions of one amplitude whose frequencies are in the grid.
They are fed to the SPGL1 solver for ε = 0.01 and W equal to the
identity matrix. The solution x� to equation (11,BPε,W ) must verify
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Table 1. Maximum amplitude of the spectral window in the 1 cycle d−1

and 1 cycle yr−1 for the examples considered here.

≈1 cycle d−1 ≈1 cycle yr−1

HD 69830 0.926 0.600
HD 10180 0.949 0.703
55 Cnc 0.822 0.557
GJ 876 0.732 46 0.501
RV Challenge 2 0.870 0.800

‖x�‖�1 < 3 as the original signal is not noisy. The test is performed
for a thousand set of three frequencies randomly selected on the grid.
We find that the average �1 norm of the solution is 3.26, suggesting
that the algorithm could be improved.

Secondly, in the discrete case (problem 5), there are theoretical
guarantees on the success of the recovery if the mutual coherence
of the dictionary is sufficiently small (Donoho 2006). This one is
defined as the maximal correlation between two columns aj and ak

of the dictionary A,

μ = max
k=1,...,n

j=1,...,n

j �=k

|〈ak, a j 〉|. (30)

In the case of a dictionary such that ak = eiωk t , taking the conven-
tion 〈ak, aj 〉 = a∗

k aj , where the superscript ∗ denotes the conjugate
transpose,

|〈ak, aj 〉| =
∣∣∣∣∣

m∑
l=1

e−i(ωk−ωj )tl

∣∣∣∣∣ (31)

that is the spectral window in ωk −ωj. As a consequence, the method
cannot resolve very close frequencies due to their high correlation.
More importantly, aliases are still a limitation – though not as much
as in iterative algorithms in general (Donoho et al. 2006), see also
Appendix C. This feature is responsible for the aliases that still
appear around 1 d, where there is generally a strong alias due to
the sampling constraints. The problem tends to get worse as the
maxima of the spectral window increase. Aliases are higher relative
to the true peaks for HD 69830, HD 10180 and the separate sets of
55 Cnc than GJ 876 (see Figs 1, 2, 3, 4, 7 and Table 1).

5.3 Spotting spurious peaks

We know that the theoretical obstacle for a good recovery is cor-
relation between the elements of the dictionary. If a frequency ω0

truly is in the signal, it is expected to cause significant amplitudes
at ω0 + ωk, where the ωk are maxima of the spectral window. So if
two peaks at frequencies ω1 and ω2 are seen on the �1-periodogram
and the spectral window has a strong local maximum close to ω1 −
ω2, one can suspect that one of the two peaks is spurious.

5.4 When to use the method?

We consider the general problem of finding the frequencies of a
signal made of several harmonics (the multitone problem). It seems
natural – though not mandatory – to try to find the global minimum
for a given number of sinusoids, and possibly additional parameters
such as the offset or a trend. We do not know a priori the number
of sinusoids in the signal. Ideally, we would like to solve the global
minimization (1) for any number of sines inferior to the number
of measurements and regarding their amplitudes, which seem to

be truly in the signal. The approach consisting in using grids has
a computational cost growing exponentially with the number of
frequency. Therefore, strategies must be found to estimate a reli-
able solution to this problem. The recursive periodogram (Anglada-
Escudé & Tuomi 2012), the treillis approach (Jenkins et al. 2014)
or the super-resolution methods (Candès & Fernandez-Granda
2014; Tang et al. 2013b) can be viewed as a way to approximate
equation (1) and selecting the relevant number of frequencies at the
same time. These have the advantage of not being bothered by the
�1 norm minimization, which biases downwards the amplitude of
the signal. Even more, the bias becomes more complicated when
using a correlated noise model.

The most interesting use of the �1-periodogram seems to be as a
complement to the classical periodogram: it gives a much clearer
idea of the number of spikes and their significance. If the peaks
spotted by the �1-periodogram yield a χ2 of the residuals consistent
with the noise assumptions as in HD 69830, then it is likely that
there are not many more signals. To check that there are not very
high correlations between signals, one can use the spectral window.
Furthermore, we have exhibited in Appendix C1 examples where
the main peak of the classical periodogram is spurious while �1

minimization (5) avoids selecting the first spurious peak. Such an
example was also presented in Bourguignon et al. (2007). Those
findings are consistent with the claims of Donoho et al. (2006): the �1

method is more reliable in general than orthogonal matching pursuit.
A failure of the �1-periodogram is also informative, as shown in
Fig. C2 of Appendix C1. If there still is a forest of peaks below a
certain amplitude, it might indicate that the signal is noisy, possibly
that noise is higher than expected or non-Gaussian. This means that
the set of observations requires a more careful analysis. To sum up,
the �1-periodogram can yield an estimation of the difficulty of the
system; in some cases, it is a shortcut to random searches and its
use decreases the chance of being misled by a spurious tallest peak.

6 C O N C L U S I O N

The aim of the present paper was to produce a tool for analysing
radial velocity that can be used as the periodogram but without
having to estimate the frequencies iteratively. To do so, we used
the theory of compressed sensing, adapted for handling correlated
noise, and went through the following steps.

(i) Selecting a family of normalized vectors where the signal is
represented by a small number of coefficients.

(ii) Approximating a solution to equation (9); for example, by
discretizing the dictionary, and ensuring that the grid spacing is con-
sistent with the noise power (see equation 15) then solving equation
(11,BPε,W ) with SPGL1 and take the average power. The intro-
duction of the weight matrix W accounts for correlated Gaussian
noises.

(iii) Estimating the detection significance, which we do by com-
puting subsequent FAPs of the models with an increasing number
of planets.

We showed that the published planets for each system could
be seen directly on the same graph, and that taking into account
the possible correlations in the noise could make a signal appear.
This was established in the case of radial velocity data but the
method could be adapted to other types of measurements, such as
astrometric observations.

The use of the basis pursuit/�1-periodogram we suggest is as fol-
lows. This method can be used as a first guess to see if the signal
is sparse or not; in that extent, it constitutes an evaluation of the

MNRAS 464, 1220–1246 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/464/1/1220/2280760 by guest on 01 August 2022



1240 N. C. Hara et al.

difficulty of the system and possibly a shortcut to the solution. It
can bring attention to signal features that are hidden in the classical
periodogram, which can still be used for an analysis ‘by hand’. Sec-
ondly, for confirming the planetary nature of a system, we advocate
to use in a second time statistical hypothesis testing.

The perspective for future work is twofold. First, we saw that the
algorithm itself could be improved. Also, there might be significance
tests more robust than the FAP, and the effect of introducing a weight
matrix W must be studied into more depth. Secondly, let us recall
that our method uses a priori information, that is the sparsity of
the signal, but still does not handle all the information we have. To
improve the technique, we wish to broaden its field of application
by

(i) adapting the method for very eccentric orbits, through the
addition of Keplerian vectors to the dictionary for example;

(ii) using precise models of the noise, especially magnetic activ-
ity, granulation, p-modes. Possibly include an adaptive estimation
of the noise, especially one could extend the dictionary to wavelets;

(iii) handling several types of measurements at once (e.g. radial
velocity, astrometry and photometry).
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Butler R. P., Marcy G. W., Williams E., Hauser H., Shirts P., 1997, ApJ,

474, L115
Candès E., Fernandez-Granda C., 2013, J. Fourier Anal. Appl., 19, 1229
Candès E., Fernandez-Granda C., 2014, Commun., Pure Appl. Math., 67,

906
Candès E., Romberg J., Tao T., 2006a, IEEE Trans. Inf. Theory, 52, 489
Candès E. J., Romberg J. K., Tao T., 2006b, Commun. Pure Appl. Math.,

59, 1207
Chandrasekaran V., Recht B., Parrilo P. A., Willsky A. S., 2010, preprint

(arXiv:1012.0621)
Chen Y., Chi Y., 2014, IEEE Trans. Inf. Theory, 60, 6576
Chen S. S., Donoho D. L., Saunders M. A., 1998, SIAM J. Sci. Comput.,

20, 33

Cohen A., Dahmen W., Devore R., 2009, J. Am. Math. Soc., 22, 211
Correia A. C. M. et al., 2010, A&A, 511, A21
Cumming A., 2004, MNRAS, 354, 1165
Cumming A., Marcy G. W., Butler R. P., 1999, ApJ, 526, 890
Daubechies I., DeVore R., Fornasier M., Güntürk C. S., 2010, Commun.
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APPENDIX A : MINIMUM GRID SPAC ING

Let us consider a signal made of p pure harmonics sampled at times

t = (tk)k = 1, . . . , m, y =
p∑

j=1
cj eiωj t . We denote by ω′

j and �ω two

real numbers such that for each j

�ω <
4

T
(A1)

|ωj − ω′
j | < �ω , (A2)

where T = tm − t1. For each tk and each j,

|cj ||eiωj tk − e
iω′

j tk | = |cj |
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∣∣∣∣sin
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So denoting y′ =
p∑

j=1
cj eiω′

j t ,

|yk − y ′
k| =

∣∣∣∣∣∣
p∑

j=1

cj

(
eiωj tk − eiω′

j tk
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� 2
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j=1

∣∣∣∣cj sin

(
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Without loss of generality, the origin of time is shifted to −T/2;
therefore,

2
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Finally, a condition for y′ to be an acceptable solution is

‖W(y − y′)‖2
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given (equation A3),
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where ‖W‖ = sup
x∈Cm
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. When the matrix W is diagonal, the

formula can be improved:
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given (equation A3),
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So εgrid can be chosen as

εgrid = 2

√√√√ p∑
j=1
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σ 2
k
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And conversely given an ε, the grid spacing that ensures that there
exists a vector that has the correct �0 norm is

�ω = 4

T
arcsin

ε

2

√
p∑

j=1
|cj |2

√
m∑

k=1

1
σ 2
k

. (A5)

APPENDI X B: D I GGI NG I N RED N OI SE
W I T H N O N - D I AG O NA L W

B1 Short period buried in the noise

Our method uses the tools of compressed sensing, especially the
algorithms to minimize �1 norms with the constraint that the recon-
structed signal is not too far from the observations [see equation
(5)]. To the best of our knowledge, the case where the noise is
correlated has been considered only in Arildsen & Larsen (2014),
and is not specialized for Gaussian processes. Here, we introduce a
weight matrix and obtain problem (11,BPε,W ), reproduced here:

x� = arg min
x∈Cn

‖x‖�1 s. t. ‖W(Ax − y)‖�2 � ε. (BPε,W)
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Figure B1. Average �1-periodogram for 50 data sets generated with red noise of characteristics σW = 0, σR = 2 m s−1 and τ = 12 d according to model (14).
The curves correspond to the solutions of equation (11,BPε,W ) with different weight matrices W whose parameters are σW = 0, σR = 2 m s−1 and τ = 0, 6 or
12 d(respectively the blue, green and yellow curves).

To illustrate the interest of choosing an appropriate weight matrix,
we will show an example where acknowledging the red noise makes
a planet visible. Let us first consider a data set constructed as follows.

(i) The measurement times are those of HD 69830 (74 measure-
ments).

(ii) The true signal is y(t) = 1 cos( 2π
7.5 t) + 2 cos( 2π

40 t + 2) +
2 cos( 2π

120 t + 1) m s−1.
(iii) The noise is red, with parameters σ W = 0, σ R = 2 m s−1 and

τ = 12 d, where σW, σ R and τ are the parameters of the autocorre-
lation function R defined in equation (14) reproduced here:

R(�t) = σ 2
Re− |�t |

τ , �t �= 0

R(0) = σ 2
W + σ 2

R.

The noise defined above is such that its correlation with low fre-
quencies is higher than with high frequencies.

We test if changing the weight matrix could allow us to find
signals that would not be seen otherwise. To do so, 50 noise time
series (nk(t))k = 1, . . . , 50 are generated and the method is applied to
each yk(t) = y(t) + nk(t) for three different weight matrices, all other

parameters being fixed. In each case, they are defined according to
model (14) with σ W = 0, σ R = 2 m s−1 and τ = 0, 6 or 12 d. The grid
goes between 0 and 0.95 cycles d−1 and ε verifies Fχ2

m
(ε2

noise) = 0.1.
The resulting �1-periodograms are averaged (see Fig. B1b).

To compare with a classical approach, we also compute classical
periodograms for the same signals yk(t) and average them. For the
comparison to be fair, we fit the model parameters A, B, C in A cos ωt
+ B sin ωt + C to y(t) with the same weight matrices as the ones
used above. This gives Fig. B1(a). If the weight matrix is left diago-
nal, then the low-frequency terms dominate. Using the appropriate
noise model gradually reduces the spurious low frequencies.

We stress two features: as the noise model becomes accurate,
the short period becomes apparent, which justifies the trial of dif-
ferent noise matrices on real radial velocity data sets to see if a
peak appears. Secondly, when W is defined with an exponential
autocorrelation function, the estimation of the peaks becomes bi-
ased: some frequencies will have a tendency to be interpreted by
the algorithm as noise. The amplitude of the 120 d periodicity is
then underestimated. This bias could prevent us from finding small
amplitudes when using non-diagonal weight matrices. When the
number of frequency in the signal increases, the bias becomes more
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complicated. In order to mitigate this effect, we suggest to decrease
the value of ε when testing different noise model. Thus, the model
‘sticks’ to the observations, and if a periodicity truly is in the data,
the chance of it being too underestimated decreases. This is why, we
took εnoise such that Fχ2

m
(ε2

noise) = 0.1 and not Fχ2
m

(ε2
noise) = 0.999,

which would reject more signals in the residual.

B2 No automatic procedure so far

Here the improvement due to an appropriate handle of the noise is
seen by eye. One could wonder if a simple criterion could allow one
to chose an appropriate weight matrix automatically. In all cases
when the algorithm has converged, we have ‖W(Ax − y)‖�2 = ε

to a certain tolerance, or x = 0. Looking at the χ2 of the residuals
as usual is then not appropriate.

As in all cases the columns of matrix WA and the weighted
observations Wy are normalized. Therefore, the problem always
comes down to minimizing

x� = arg min
x∈Rn

‖x‖�1 s. t. ‖A′x − y′‖�2 � ε, (B1)

where A′ has normed columns and y′ is a unitary vector. It is then
tempting to see if there is a correlation between the �0 or �1 norm
of x� and the success of the method. Unfortunately, this is not the
case. Whether there is an automatic way to select the appropriate
weight matrix remains an open question.

APPENDIX C : SPURIOUS TALLEST PEAK
O F T H E G L S P E R I O D O G R A M

In this section, we show examples where the initial highest peak
of the periodogram is spurious due to aliasing. We take the 74
measurement dates of HD 69830 and generate 500 systems with
three circular orbits with the following properties.

(i) The amplitudes are those of the three Neptunes of HD 69830
(2.2, 2.66 and 3.51 m s−1).

(ii) The periods P1, P2, P3, are selected uniformly in log P in the
range 1.2–2000 d.

(iii) The phases are uniformly distributed on [0, 2π].
(iv) The noise standard deviation is 0.6 m s−1.

We compute the number of times the maximum peaks of the GLS
and �1-periodogram are spurious. The criterion we take for failure
is when the frequency of the highest peak and any of the three true
frequencies are greater than the inverse of the total observation time,
that is |1/P1, 2, 3 − 1/Pmax| > 1/Tobs.

Fig. C1 shows the GLS periodogram and �1-periodogram of rep-
resentative cases where the highest peak of the GLS periodogram
is spurious. In these conditions, when searching for periods in the
1.2–2000 d with the periodogram, we find that the strongest peak is
spurious in 33 cases out of 500 simulations, while the tallest peak
of the �1-periodogram only was incorrect in two cases. In those, the
GLS periodogram was also failing.

An interesting feature of the cases where the �1-periodogram
fails is that one can see that the solution is not sparse. This is a very
useful property we observed empirically: we have not found any
occurrence of �1-periodogram that looks clean, with well-separated
clear peaks, where one of the peaks was completely spurious. We
display one of the two failures of the �1-periodogram in Fig. C2. First
of all neither the GLS nor the �1-periodogram leads the observer
completely astray. Secondly, we see that as opposed to the �1-
periodogram of the systems studied here, the figure is not clean,
which should invite the analyst to a certain suspicion.

A P P E N D I X D : FI T T I N G T H E A N C I L L A RY
MEASUREMENTS

In Section 4.6, we suggest to fit the activity indicators to the ra-
dial velocity time series. The present discussion wishes to give a
justification to this approach. The idea is to exploit the possible
correlations between radial velocity and ancillary measurements
when the star is active. For instance, on the first system of the RV
Fitting Challenge (Dumusque et al. 2016) where activity dominates
the signal, the radial velocity, FWHM, bisector span and log R′

HK

exhibit very similar features at low frequency (see Fig. D1).
Let us approximate the error made when fitting an ancillary in-

dicator. We consider the radial velocity signal y(t) = P(t) + a(t)
+ ε(t), where P(t) is due to a planetary companion, y(a) is a
deterministic signal due to activity and ε is a Gaussian noise of co-
variance matrix V. We also consider an ancillary measurement z(t)
= a(t) + ε′, where ε′(t) is another Gaussian noise of covariance
matrix V. If we fit z(t) to y(t), we obtain (dropping the t notation)

ydetrend = y − yfit = y − zT V−1y

zT V−1 z
z (D1)

ydetrend = y − (a + ε′)T V−1(P + a + ε)T

(a + ε′)T V−1(a + ε)
(a + ε′). (D2)

We assume that the noise is small compared to a, which allows us
to develop the denominator at first order in ε and ε′

yfit ≈ (a + ε′)T V−1(P + a + ε)

aT V−1a

×
(

1 − ε′T V−1a

aT V−1a
− εT V−1a

aT V−1a

)
(a + ε′).

After developing that expression at first order in ε and ε′, we com-
pute its mathematical expectancy taking into account only the zero-
order, ε2 and ε′2 coefficients. In the simple case where the noise is
i.i.d. of variance σ 2, we obtain

E{ yfit} ≈ σ 2

‖a‖2
P (D3)

+
(

1 + aT P

‖a‖2
�2

− 2σ 2

‖a‖2
�2

− ‖P‖�2σ
2

‖a‖3
�2

− aT Pσ 2

‖a‖4
�2

)
a. (D4)

We would like yfit to be as close to a as possible. This will
be better satisfied as the correlation aT P and the signal-to-noise
σ 2/‖a‖�2 decrease. The fact that a term aT P appears in the equation
above should not be surprising. The mutual coherence defined in
Section 5.2 grasps that the correlation between the parts of the
model is an obstacle to the recovery of the true signals.

For the RV Fitting Challenge, not only have we fitted one activity
indicator but several. We point out that this approach is consistent
with Rajpaul et al. (2015). Indeed, they consider that the activity-
induced variations of the measurements depend linearly on an un-
derlying zero-mean Gaussian process G(t) = F2(t) and its derivative
Ġ(t), where F(t) is the fraction of the sphere covered with spots.
The evolution of the indicators is modelled by formulae (14)–(16),
reproduced below,

�RV = VcG(t) + VrĠ(t), (D5)

log R′
HK = LcG(t), (D6)

BIS = BcG(t) + BrĠ(t), (D7)
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(a) (b)

(c) (d)

Figure C1. Peak amplitudes and associated FAPs for the four systems analysed.
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(a)

(b)

Figure C2. Failure of the GLS (a) and �1 (b) periodograms.

Figure D1. GLS periodogram of radial velocity and ancillary measure-
ments at low frequencies.

for some constants Vc, Vr, Lc, Bc, Br. This means that for a given
realization (g, g′) of (G(t), Ġ(t)), the subspace generated by the
log R′

HK and the bisector span BIS is the same as the space generated
by g, g′. So according to that model, projecting the radial velocity
on to (log R′

HK ,BIS) is equivalent to projecting on to (g, g′).
However, there is an uncertainty on the behaviour of the ancil-

lary measurements and additional noise. We have to decide if fitting
an uncertain model is better than working with the raw data. One
thing that could happen is that fitting the combination of the three
ancillary measurements would greatly change the spectral content
of the radial velocity time series by absorbing some frequencies,
potentially due to planets. To estimate this risk, we first compute
the term aT P/‖a‖2

�2
in equation (D4), assuming that the signal

y = P = eiωt is a pure harmonic of amplitude 1 m s−1. Here a des-
ignates the FWHM, bisector span or log R′

HK , respectively, shown
by the red, yellow and purple curves in Fig. D2. We also compute
the fraction of the energy of the signal before and after the fit of the
three ancillary measurements simultaneously, that is

Fraction(ω) = ( yω − yfit)
T V−1( yω − yfit)

yT
ωV−1 yω

; (D8)

this one is represented by the blue curve in Fig. D2.
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Figure D2. Energy of a cosine function after the fit of the FWHM, bisector
span, log R′

HK and a constant.

For the system analysed in Section 4.6, only 15 per cent of the
energy is absorbed in general, with a maximum of 27 per cent at
a period of 2000 d. The peaks at 25 and 12.5 d correspond to the
rotation period of the star and its first harmonic, which are expected
to be correlated with the radial velocity and ancillary measurements.

This discussion does not intend to provide strong statistical ar-
guments, but rather to show that the spectral content should not be
too affected by fitting the FWHM, bisector span and log R′

HK .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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