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ABSTRACT

Because light field devices have a limited angular resolution,
artificially reconstructing intermediate views is an interesting
task. In this work, we propose a novel way to solve this prob-
lem using deep learning. In particular, the use of Long Short
Term Memory Networks on a plane sweep volume is pro-
posed. The approach has the advantage of having very few
parameters and can be run on sequences with arbitrary length.
We show that our approach yields results that are competitive
with the state-of-the-art for dense light fields. Experimen-
tal results also show promising results with light fields with
wider baselines.

Index Terms— Light Field, View Synthesis, Deep Learn-
ing

1. INTRODUCTION

Real light fields capturing devices exhibit different spatial and
angular trade-offs. Plenoptic cameras trade spatial resolution
against angular resolution, whereas camera arrays can only
capture a limited set of views. Both depth image-based ren-
dering (DIBR) and deep learning approaches have been pro-
posed to increase angular resolution via view synthesis.

In classical DIBR approaches, scene depth is first esti-
mated and used to warp and combine the input views. This
has been done using user-defined image labeling [1] or super-
pixels [2]. However, methods relying on a hard depth prior to
render an image [3, 4, 5] have the problem that faulty depth
estimation yields very unpleasant artifacts in the rendered im-
age. Other methods focus on formulating view synthesis as
a maximum a posteriori estimation [6, 7]. A more recent
approach [8] proposes to propagate depth uncertainties from
depth estimation to image rendering. The results are numer-
ically and visually superior to prior methods but it has some
serious computational and memory issues.

In the last few years, deep learning approaches have been
proposed for view synthesis. The authors in [9] propose a
deep learning approach for light fields view synthesis. A
Plane Sweep Volume (PSV), i.e. a set of views warped with
disparities in a given range, is used as input of two twin net-
works towers with shared weights. The first network learns
masks on each slice of the PSV, selecting zones that corre-
spond to actual points in the scene. The second network learns

the most probable color at a given point. The final image is
rendered, as the linear combination of the two networks. Al-
though the results are visually stunning and work perfectly for
sparsely sampled views, the major problem of this approach
is its complexity and the number of parameters. Because of
this, the authors in [10] propose an approach tailored for nar-
row baseline light fields captured with plenoptic cameras. In
this approach, the mean and variance of each slice of the PSV
are fed to a first CNN, that learns a disparity on the synthetic
view coordinate system. The corner images are then warped
using the disparity and concatenated with the depth plus the
new view index and passed into a second CNN that learns to
refine and combine the warped corner images. The approach
gives very good results on Lytro images, however the PSV is
rather dense (100 slices), yielding a lot of operations on the
first layers of the network. Besides, the network is trained for
a fixed amount of slices and, as in [9], it requires to load the
entire network at once for the forward pass. This idea of light
field angular super-resolution has recently been improved (eg.
using microlens images [11]), but with similar limitations.

In addition to the very high number of parameters which
is an issue for computationally and memory limited devices,
all current architectures are, by design, bound to only one dis-
parity range. The features trained for a given device cannot
be re-used for devices with different baselines. To solve these
problems, in this paper we propose to use Recurrent Neural
Networks (RNNs), and in particular Long Short Term Mem-
ory (LSTM) RNNs, to directly learn view synthesis from a
PSV in a modular fashion with low complexity.

RNNs are neural networks in which instead of statically
chaining layers, recurrent connections are made between the
so-called cells with the particularity that all cells share its pa-
rameters. Each cell takes as input the output of the previous
cell and a different element of a sequence and outputs a value
and provides some information to the next cell. Such network
structure has several advantages. First and foremost the num-
ber of parameters is very small compared with CNNs, since
the cells have the same weights. Second, by changing the
number of cells, the RNN can be used with different sequence
lengths. Also, the recurrent loop can be run sequentially dur-
ing the forward pass, making the GPU memory requirement
a lot smaller than a conventional CNN.

We show that our approach can produce images of compa-
rable quality with state-of-the-art methods with significantly



lower number of weights. As an interesting byproduct, we
also show that RNNs somehow learn differently than CNNs
for view synthesis. Indeed, while a single CNN usually gives
blurred results when used for view synthesis, the proposed
approach does not suffer significantly from this defect. While
the approach is assessed with dense light fields, we show that
the approach can be extended to wider baselines.

2. LSTMS FOR VIEW SYNTHESIS

LSTMs [12] networks are a variation of RNNs where each
cell has a memory, a state, that is updated across the RNN
loop. This is to help the propagation of information across
RNN iterations. It also solves the problem of vanishing gra-
dients [13]. Classical LSTMs are made of 3 parts, composed
of neural layers activated by a sigmoid function, called gates.
In particular, we denote C the cell memory, h the cell out-
put. Because LSTMs are typically used to process temporal
sequences (e.g. text, sound), a RNN cell is run on temporal
steps noted t. The cell state is updated from Ct−1 to Ct by re-
moving information (with a point-wise multiplication), then
by adding new information (with an addition step). This is
done with an input gate σi, that filters relevant information
in the previous cell output and the current input, an update
layer Tanhu and gate σu, that computes and selects the up-
date to be done to the cell state, and finally an output gate σo

to select relevant feature to pass in the RNN loop. Specif-
ically, because we are dealing with images, we use convo-
lutional LSTMs [14], a variant of LSTMs that replaces the
matrix multiplication done at each layer with convolutions,
making the LSTMs cell effectively capturing both spatial and
sequence information.

The main idea behind our proposal is that, instead of es-
tablishing links in the z-dimension of the PSV via a single,
or multiple layers, we learn how to do it with a RNN. Fig. 1
offers a comprehensive overview of our approach. In partic-
ular, we try to learn directly the image to synthesize Îd from
the PSV, without any depth or selection map estimation. Each
LSTM cell takes as input the 4 corner views warped with a
depth plane d and concatenated along the color dimension
(the depth of the input is then 12). In other words, we treat
the depth dimension of the PSV as a temporal dimension for
LSTMs traditional approaches. As in other learning methods
[10, 9] a groundtruth view is used to evaluate the model pre-
diction and update the learned filter.

In our approach, the cell memory is used to encode the
most probable color for each pixel of the new view. One could
expect the LSTM to behave as follows. The input and update
gates σi and σu will select the most relevant color features
from the previous cell output and from the current PSV slice.
The update gate σu will deduce, from the previous RNN iter-
ations and the current PSV slice color values what color fea-
tures are unlikely to compose the true new view colors. The
update gate and layer σu and Tanhu will then compute the
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Fig. 1: The LSTM cell used in our approach. Each cell takes
as input the 4 corner views warped at a specific depth plane d.
It embeds a small CNN to learn features on each slice of the
PSV that are later concatenated with the input. At the very
last RNN iteration, we pass the cell state into a single layer
(in gray) to generate the final image Îd.

new color features to save, presumably because they are more
likely. After the new cell memory state is updated, the output
gate σo will filter out the color features that are important to
pass on to the next cell.

We use a fixed kernel size of 3 × 3 for all the gates and a
feature size of 32. Using fewer filters has a negative impact
on the approach performance and interestingly, adding more
as well. On the very last RNN iteration, we pass the state of
the cell through a simple convolutional layer σd with a kernel
size of 1 × 1 and depth of 3 in order to decode the learned
features into the final image. Interestingly, we have noticed
that using a deeper decoding step provides drastically worse
results. Since the gates of the LSTM are composed of only
one layer, the learnt filters and update function are rather lim-
ited. In order to learn more complex representations of each
slice of the PSV, we use a small CNN. In contrast to what has
been done in the past [15], we learn the features on the set of
4 views and not on each view independently. Equally, we do
not replace the cell input with the learned features but con-
catenate them. This is to introduce more context in-between
views rather than simple image features, but without replacing
the input signal, and in practice, we find out that it improves
significantly the results justifying the added parameters. The
used network is a simple CNN composed of 5 layers of 32-
features with a kernel size of 3×3. We perform the RNN loop
warping the views from foreground to background (as in the
rendering step of [8]). Note that reversing the order provides
a significantly worse result. Using a bi-directional scheme,
as in [16], does not improve the results but also gives slightly
worse results. We hypothesize this is due to the way the net-
work deals with occlusions, performing an operation akin to
z-clipping in the LSTM loop.

Because it has been shown to provide sharper image re-



Fig. 2: Visualization of the LSTM state at different RNN iterations (to be read from left to right). On top we show the decoded
memory state of the LSTM, on the bottom, we display the refocused 4 input views to see what depth plane is currently valid.

sults [17], our loss function is the L1 difference between the
groundtruth image I and the reconstructed image Îd at the
very last iteration of the LSTM loop: ||Îd − I||1.

3. EXPERIMENTS

We follow the training protocol proposed in [10]. That is to
say, we use Lytro Illum subaperture images as training input
and groundtruth. The central 7 × 7 views are extracted from
the microlens images, as they do not suffer from vignetting
and chromatic aberrations. The PSV is rendered for each in-
teger disparity in the range [−12, 12] for the central view. The
groundtruth central view is used as a reference to compute the
loss and the test metrics. In order to avoid color and optical
aberrations that are specific to each camera, we augment the
dataset of [10] with 3 other Lytro Illum datasets [18, 19, 20].
The network is trained using ADAM [21], with a learning
rate of 0.0003, and for 200K iterations. We use a batch size
of 10 and as in [10], we train our network on patches of size
128 × 128. We do not use batch norm and do not crop the
final images borders, neither during training nor during test-
ing. Tensorflow implementation of dynamic RNNs is used
for training with our custom cell. The overall training time is
slightly less than 2 days, although the results do not change
much after 100K iterations.

Note that we refer to our supplementary material1 for ex-
tra details that could not fit in the paper.
Model Validation: In order to verify that the network learns
as expected we employ the following strategy. We manually
unroll the RNN loop and apply the decoding layer σd of the
last iteration to the cell memory state at each iteration. Al-
though it is not strictly what the LSTM memory saves, this
technique gives us a visualization of what is happening from
an iteration to another. On Fig. 2, we clearly see that zones
that have been in focus in the previous iterations adopt their fi-
nal color, overwriting the previous features, at a current time
step. This is done independently at each scene depth plane,

1http://www.irisa.fr/temics/demos/
LSTMViewSynthesis/index.html

(a) Synthetic view [10] (b) Synthetic view LSTM

(c) Leaf [10] (d) Leaf LSTM (e) Petal [10] (f) Petal LSTM

Fig. 3: Comparison with [10]. (a&b) show the entire image.
In (c&d) we observe that our approach suffer less at objects
boundaries. However, as shown in (e&f), our approach is sub-
jects to color bleeding artifacts is some areas.

showing that our LSTM strategies do indeed learn features
about the best color its has seen so far. This result is consis-
tent across the entire test set. Also, we observe a correlation
between the artifacts in the selection done at each step and
artifacts in the final image. These artifacts mostly occur at the
edge of objects (as in the third slice of Fig. 2) and usually
yield blurred borders in the final image.
Quantitative Comparisons: The implementation of [10]
(done by its authors) is used as a baseline to evaluate our
method. We also use their test set composed of 30 Lytro
Illum images. Note that, as in their experiments, the interpo-
lation and metrics are computed on the input under-exposed
images, but gamma-corrected images are shown. For the sake
of comparison, we also re-implemented and re-trained the
frame interpolation method in [22] adapting slightly for the
view synthesis case. This method uses a deep, hierarchical
network, estimating an optical flow residual at 3 different
scales. Details about the modifications can be found in the
supplementary.

http://www.irisa.fr/temics/demos/LSTMViewSynthesis/index.html
http://www.irisa.fr/temics/demos/LSTMViewSynthesis/index.html


Fig. 4: Visualization of the LSTM memory state for a wide baseline dataset.

Table 1: Image quality metrics for the compared approaches

Dataset [22] LSTM [10]
PSNR SSIM PSNR SSIM PSNR SSIM

Cars 32.87 0.96 30.24 0.97 31.93 0.97
Flower1 31.36 0.97 34.21 0.97 33.43 0.97
Flower2 31.43 0.97 33.26 0.97 32.11 0.96

Rock 31.54 0.96 33.88 0.98 35.63 0.97
Seahorse 31.75 0.96 32.80 0.95 31.62 0.97
Average 34.51 0.96 38.03 0.96 37.18 0.97

We compare the three approaches for all the images of the
test set of [10]. We note that our approach is at least on par
with [10], with an average PSNR of 38 vs 37.2 for [10] and
34.5 for [22]. Our approach performs worse than [10], but
better than [22] in terms of MSE and SSIM. Tab. 1 shows the
results for the examples in [10] and the average for the entire
dataset. The full table of results is included in the supple-
mentary. The main reason why the two full-resolution images
are numerically and visually better than the hierarchical is
that they rely on full-resolution images for the entire pipeline.
Small details are not well captured in the depth estimation,
and are not recovered during the upper scale depth estimation
either, since the depth estimation is hierarchical. We show an
example of this in the supplementary material. Visually, it is
hard to distinguish the results from the two approaches. We
show a visual comparison in Fig. 3, note that in [10], an im-
portant portion of the image is cropped. For both approaches,
most of the error is contained in the objects boundaries. Our
approach suffers slightly less from these artifacts (e.g. with
the foreground leaf) but can sometimes introduce slight color
bleeding, in some objects (e.g. the purple flower petal on the
white wall). This could be explained by the fact that our net-
work has to reconstruct colors, while [10] warps the input tex-
tures. In terms of parameters, [10] has 1 644 204 while ours
only has 114 400.

Towards variable baseline view synthesis: as stated in the
introduction, one of the interest of LSTMs is that they can
be used on sequences with variable length. As a last exper-
iment, we test how generalizable is the network trained on
small disparities to a wide disparity setup. We use the Beer-
garten sequence in [23], as it is close to a Lytro sequence
(i.e. a rectified light field with the same vertical and horizon-

tal baseline). The PSV is composed of 43 slices against 25
for the Lytro case. On Fig. 4 we notice that the results are not
as good as for the densely sampled dataset, but the network
exhibits the same behavior at each iteration, even if it has not
trained for this kind of data.

4. CONCLUSION

Our experiments suggest that RNNs with the proposed archi-
tecture are suitable for view synthesis. Not only they provide
synthetic views with competitive quality with the state-of-the-
art, but also with a reduced number of parameters. However,
our experiments focused on generating the central view. Since
the input of the method is a PSV, we do not expect the re-
sults of a training on arbitrary views, done for instance by
inputting the PSV warped in the new view coordinate system
and concatenated with normalized view index, to be drasti-
cally significant. We also show that the approach can be used
with light fields with wider baselines despite not being trained
explicitly with this particular data. We believe that a LSTM
network trained with a dataset composed of both sparse and
dense corner views would be able to perform well on arbitrary
baselines.

They are numerous improvements that can be brought to
this method. First, the use of deeper gates (i.e. gates with
more than one layer) would allow the LSTM cells to learn
more complex representation about the best synthetic view
color. This might be necessary to extend the approach to
wider baselines and multi-view rendering. Another improve-
ment could be to follow classical approaches and decompose
the problem of view synthesis by learning depth. We could
imagine for instance passing the normalized disparity plane
as an extra channel in the cell input and instead of learning
features about the most probable color, let the network infer
the most probable depth of each pixel of the view to synthe-
size. The output would then be a disparity map and possi-
bly interpolation weights as in [22], used to generate the final
image. This would allow keeping a level of disparity range
genericity in contrast to the refinement network in [10].
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