
HAL Id: hal-02201472
https://hal.science/hal-02201472v1

Preprint submitted on 31 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Ledger Register: From Safe to Atomic
Emmanuelle Anceaume, Marina Papatriantafilou, Maria Potop-Butucaru,

Philippas Tsigas

To cite this version:
Emmanuelle Anceaume, Marina Papatriantafilou, Maria Potop-Butucaru, Philippas Tsigas. Dis-
tributed Ledger Register: From Safe to Atomic. 2019. �hal-02201472�

https://hal.science/hal-02201472v1
https://hal.archives-ouvertes.fr

Distributed Ledger Register: From Safe to
Atomic

Emmanuelle Anceaume1, Marina Papatriantafilou2, Maria Potop-Butucaru3,
and Philippas Tsigas2

1 CNRS, Université Rennes, Inria, IRISA, Rennes, France
2 Dept. of Computer Science and Engineering (CSE), Chalmers University of

Technology, Sweden
3 LIP6, Sorbonne University, Paris, France

Abstract. This paper continues the recent line of academic effort ded-
icated to formalizing distributed ledgers. This work is the first one to
propose a specification of distributed ledger register that matches the
Lamport hierarchy from safe to atomic. Moreover, we propose imple-
mentations of distributed ledger registers with safe, regular and atomic
guaranties in a model of communication specific to distributed ledgers
technology that we also formalize. Then, we propose an implementation of
a distributed ledger register that satisfies the atomic specification and the
k-consistency property that characterises the permissionless distributed
blockchains such as Bitcoin and Ethereum.

1 Introduction

The blockchain is probably one of the hottest and most transformative topic
in the current digital landscape. The bitcoin crypto-currency [18], the leading
application of the blockchain technology, has shown remarkably steady, and
as such is often cited as the universal solution for managing a broad range of
information.

A permissionless blockchain (or distributed ledger) is commonly presented as
“an immutable distributed ledger with decentralised control”, i.e., a continuously
growing list of records that mimics the functioning of a traditional ledger, namely
transparency and falsification-proof of documentation. However, a distributed
ledger evolves in an untrusted and open environment. By entrusted, one means
an environment in which participants cannot rely on a (shared or centralized)
third authority to check and validate all the information that is contained in
the blockchain. By open, one means an environment in which (non trustworthy)
participants are free to join and leave the system at any time, and as often
as they wish. To guarantee transparency and falsification-proof of information,
the blockchain must be publicly accessible and consistently updated by every
participant.

Distributed ledgers, beyond their incontestable qualities such as decentral-
isation, simple design and relatively easy use, are neither riskless nor free of
limitation. The point is that an increasing number of areas promote the use of

distributed ledgers for the development of their applications, and undeniably,
the properties enjoyed by these technologies should be studied to fit such ap-
plications requirements, together with their relationships with blockchain-based
applications.

Such challenges can be mitigated by laying down the theoretical foundations
of distributed ledgers. Links between the distributed computing theory and
distributed ledger has been pioneered by Garay et al [11]. The main focus of
the distributed community [7, 8, 10,11,14,16,21] has so far been the distributed
ledger agreement aspects. Our paper investigates consistency properties of the
distributed ledger technology to identify connections between this technology
and read-write registers. This connection is important because it will help us
for making possible to argue about the correctness of the ledger itself but also
for the applications that will use it. We thus do need to deeply understand and
formulate the properties of the state of distributed ledgers. In a previous work [2],
it was proven that the state of popular blockchain ledgers can be described as
regular read-write registers. Regular registers provide weak guarantees that are
not easy for the application programmer to use for building correct applications
on top of those registers. More significantly they do not compose. Atomicity or
linearizability is a state property that is composable [13], and thus would allow
the combination of multiple distributed ledgers, and has clear strong semantics.
Atomicity has been adopted as the standard property to have in the development
of parallel and distributed systems. Previous work [2] left open the question of
proposing distributed ledger registers with atomic semantics. In [2] the authors
prove that Bitcoin and Ethereum verify only the specification of a distributed
ledger register with regular semantic.

Our contribution. This paper extends the work of [2] in several ways. First, we
propose a specification of distributed ledger register that matches the Lamport
hierarchy [17] from safe to atomic. Furthermore, we propose an implementation
of the distributed ledger register that verify safe, regular and atomic semantics in
a model of communication specific to distributed ledgers technology ([9]) where
the system provides a broadcast primitive satisfying ∆-delivery (if a node invokes
broadcast(m) then every correct node eventually delivers m within ∆ time units).
Then we propose an implementation of a distributed ledger register that satisfies
the atomic specification and the k-consistency property defined in [2] to mimic
permissionless distributed blockchains.

Paper Roadmap Section 2 presents briefly the characteristics of permissionless
blockchains (e.g Bitcoin or Ethereum). Section 4 presents the computational
model. Section 5 provides a brief summary of shared registers and their speci-
fication. In Section 6 we specify the Distributed Ledger Register and propose
implementations of Distributed Ledger Register satisfying safe, regular and atomic
semantic. Section 7 makes the connection between the Distributed Ledger Regis-
ter specification defined in Section 6 and distributed ledgers. Section 8 concludes
and presents open problems.

2 Permissionless Blockchains

In 2008, Satoshi Nakamoto, a pseudonymous author, published a white pa-
per describing the Bitcoin network, a way to create, distribute and manage
a currency that does not rely on a trusted third party [18]. Since then many
crypto-currencies have been proposed, including the popular Ethereum [22]. A
permissionless blockchain is commonly presented as “an immutable append only
ledger publicly readable and writable”. By immutable append only ledger it is
meant a continuously growing list of appended records (or blocks) that mimics the
functioning of a traditional ledger, namely transparency and falsification-proof of
documentation.

From an implementation point of view, each entity of the system locally
maintains its own copy of the ledger. Each newly created block cryptographically
depends on the current local ledger. Once created it is propagated within the
system. Since blocks can be created concurrently, two or more blocks can reference
the very same parent block, and hence the creation of a tree with several chains.
This situation is known as ledger fork. In a chain of blocks, each block references
an earlier block by inserting a cryptographic link to this earlier block in its header.
This forms a tree of blocks, rooted at the genesis block, in which a branch is a
path from a leaf block to the root of the tree. Each branch, taken in isolation,
represents a consistent history of the crypto-currency system, that is, does not
internally contain any conflicting transactions – double-spending transactions.
On the other hand, any two branches of the tree do not need to be consistent
with each other. The reason is that, at any time, each node of the system selects
the best chain, a unique branch to represent the history of the crypto-system –
this branch being the longest one of the tree, or equivalently the one that required
the most important quantity of work. The best chain in Bitcoin corresponds to
the longest chain starting from the genesis block of the distributed ledger (the
blockchain is bootstrapped with the genesis block), while in Ethereum, the best
chain is the heaviest one. The level of confirmation of a block b belonging to the
best chain of the distributed ledger is equal to the number of blocks included
in the best chain starting from b. We say that a transaction is deeply confirmed
once it reaches such a confirmation level.

Garay and Kiayias [11] have characterized Bitcoin blockchain via its quality
and its common prefix properties. Specifically, they have shown that, by keeping
the creation rate of blocks very low with respect to their propagation time
in the network (i) if the adversary controls no more than 1/3 of the network
hashing power then it provably controls less than a majority of the blocks in the
blockchain and, (ii) if the adversary controls no more than 1/2 of the network
hashing power then the blockchains maintained by any two honest nodes possess
a large common prefix (up to the last k appended blocks), and the probability
that they are not mutual prefix of each other decays exponentially in k.

3 Related works

In [11] the authors extract Bitcoin backbone and define invariant that this
protocol has to satisfy in order to verify with high probability an eventual
consistent prefix. This line of work has been continued by [20]. However, to the
best of our knowledge, no other previous attempt proposed a consistency unified
framework and hierarchy capturing both Consensus-based and proof-of-work
based blockchains. In [1], the authors present a study about the relationships
between Byzantine fault tolerant consensus and distributed blockchains. In order
to abstract out the proof-of-work mechanism the authors propose a specific oracle,
in the same spirit of our oracle abstraction, but more specific than ours, since it
makes a direct reference to proof-of-work properties. In parallel and independently
of our work, [6] proposes a formalization of distributed ledgers modeled as an
ordered list of records. The authors propose three consistency criteria: eventual
consistency, sequential consistency and linearizability. Interestingly, they show
that a distributed ledger that provides eventual consistency can be used to solve
the consensus problem. These findings confirm our results about the necessity of
Consensus to solve Strong Prefix. In [12] the authors present an implementation of
the Monotonic Prefix Consistency (MPC) criterion and showed that no criterion
stronger than MPC can be implemented in a partition-prone message-passing
system. On the other hand, the proposed formalization does not propose weaker
consistency semantics more suitable for proof-of-work blockchains as BitCoin.
In [3], the authors propose a new data type to formally model distributed ledgers
and their behavior at runtime. They provide consistency criteria to capture the
correct behavior of current blockchain proposals in a unified framework. It is
already known that some blockchain implementations solve eventual consistency
of an append-only queue using Consensus [4, 6]. However, Bitcoin [19] and
Ethereum [22] that technically do not solve Consensus need to be characterized
from the point of view of the consistency guaranties that they are able to offer.
The question is about the consistency criterion of blockchains as Bitcoin [19]
and Ethereum [22] that technically do not solve Consensus, and their relation
with Consensus in general. The first work that addressed this open question
was proposed by [2]. They proposed to connect distributed registers theory to
distributed ledgers. They introduce the notion of Distributed Ledger Register
(DLR) were the value of the register has a tree topology instead of a single value
as in the classical theory of distributed registers. The nodes of the tree are blocks
of transactions cryptographically linked. This work has been further extended
in [3]. They specify the consistency guarantees offered by various ledgers at
runtime. A distributed ledger is the composition of two finite state automata
enriched with a consistency criteria that specifies the behavior of the ledger
in presence of concurrency. The first automaton, called blocktree abstract data
type, describes the transition of the tree of blocks of when read and append of
new blocks are executed. The second automaton, called token oracle, captures
the cryptographical process, proof-of-work, specific to permissionless ledgers
that condition the append of new blocks. Furthermore, [3] proposes necessary
conditions to implement a blocktree abstract data type and the study of consensus

number of token oracle. This line of research paves the way to automatic design
of distributed ledgers.

In their mutual objective to contribute in the provision of a proper formulation
of distributed ledgers in terms of shared objects, the authors of [6] open a line of
work complementary to the one presented in [2] and the extension presented in
the current paper. In [6] the ledger object is a totally ordered sequence of blocks
(or records) while [2] and the current work consider a tree of blocks that specify
both permissioned and permissionless ledgers. The work proposed in [6] was
continued in [5] by defining Multi-Distributed Ledger Objects (MDLO), which
is the result of aggregating multiple Distributed Ledger Objects satisfying the
definition proposed in [6]. In Section 8 we will discuss the research directions
opened by [2, 3, 5, 6] and the current work.

4 Computational Model

We model the system as a partially synchronous distributed system composed of
an arbitrary finite number of nodes, such that each node has enough computation
resources to mine blocks.

Each node is a state machine, whose state, called “local state”, is defined by
the current values of its local variables. A configuration of the system is composed
of the local state of each node in the system. The passage of time is measured by
a fictional global clock. Nodes do not have access to the fictional global time. At
each time t, each node is characterised by its local state.

It is assumed that the system has a built-in communication abstraction,
denoted broadcast, that allows nodes to communicate by exchanging messages
via broadcast() and deliver() operations. This communication abstraction is defined
by the following properties.

– ∆-delivery. There exists ∆ > 0 such that if a node invokes broadcast(m) then
every correct node eventually delivers m within ∆ time units.

– Validity. If a correct node delivers a message m from p then p has previously
invoked broadcast(m).

By correct node, we mean a node that follows the prescribed protocols. We
suppose on the other hand that some of them can suffer arbitrary failures—
such nodes are called incorrect. For instance, an incorrect node can manipulate
the communication primitive by broadcasting inconsistent messages, or by not
broadcasting messages or by stopping its execution. We assume that less than a
third of the computational power of the system is owned by incorrect nodes. We
do not make any restrictions regarding incorrect users.

5 Background on Distributed Registers

This section recalls the main properties of classical distributed read-write registers.
A distributed read-write register REG is a shared variable accessed by a

set of processes through two operations, namely REG .write() and REG .read().

Informally, the REG .write() operation updates the value stored in the shared
variable while the REG .read() obtains the value contained in the shared variable.
Every operation issued on a register is, generally, not instantaneous and can be
characterised by two events occurring at its boundaries: an invocation event and a
reply event. Both events occur at two different instants with respect to the fictional
global time: the invocation event of an operation op (i.e., op = REG .write() or
op = REG .read()) occurs at the invocation time denoted by tB(op) and the reply
event of op occurs at the reply time denoted by tE(op).

Given two operations op and op′ on a register, we say that op precedes op′

(op ≺ op′) if and only if tE(op) < tB(op′). If op does not precede op′ and op′

does not precede op, then op and op′ are concurrent (noted op||op′). In case of
concurrency while accessing the shared variable, the meaning of last written value
becomes ambiguous. Depending on the semantics of the operations, three types
of registers have been defined by Lamport [17]: safe, regular and atomic.

An operation op is terminated if both the invocation event and the reply
event occurred (i.e., the process executing the operation does not crash between
the invocation time and the reply time). A terminated operation can either be
successful and thus returns true or can return abort when, for example, some
operational conditions are not met. More details will be given in Section 7. On
the other hand, an operation that does not terminate is called failed.

The semantic of a distributed read-write register (simply called read-write
register) can be classified as safe, regular or atomic [17]. The safe register ensures
that a read which does not overlap with a write returns the last completed write.
The result of a read overlapping a write can be any value from the register domain.
The regular register verifies the safe semantic when reads are not concurrent with
writes. For reads concurrent with writes the read will return either the last written
value or the value of the concurrent write. A safe distributed register REG is
defined by the following properties:

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.

– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest REG .write() preceding this
REG .read() operation), or any value of the register domain in case the
REG .read() operation is concurrent to a REG .write() operation.

A regular distributed register REG is defined by the following properties:

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.

– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest REG .write() preceding this
REG .read() operation), or a value written by a REG .write() operation con-
current with it.

An atomic register is a regular register that satisfies the no new/old inversion
property defined as follows:

– no new/old inversion: For any two read operations, the set of writes that
do not strictly follow either of them must be perceived by both reads as
occurring in the same order.

6 From Classical Distributed Registers to Distributed
Ledger Registers

Interestingly enough, neither safety, regularity nor atomicity of distributed shared
registers capture the behaviour of distributed ledgers. Classically, values written
in a register are potentially independent, and during the execution, the size of
the register remains the same. In contrast, a new block cannot be written in the
blockchain if it does not depend on the previous one, and successive writings in
the blockchain increase its size.

Interestingly, blockchains behavior has some similarities with the stabilizing
registers, line of research pioneered by [15]. Looking at the stabilizing register, it
implements some type of eventual consistency, in the sense that, there exists a
prefix of the system execution for which there are no guarantees on the value
of the shared register: register semantics hold only from a certain time in the
execution. In contrast, the prefix of the blockchain eventually converges at every
entity, while no guarantees hold for the last created blocks.

In [2] we have proposed a new register called the Distributed Ledger Register
(DLR). However, the specification proposed in [2] is tailored for Bitcoin and
Ethereum as we further discuss in Section 7. In the following we refine this
specification in order to match as closely as possible the classical distributed
registers hierarchy.

The Distributed Ledger Register (DLR) has a tree structure, whose root is
the genesis block, and where each branch is a sequence of blocks. The value of
DLR is the best chain of the tree. The best chain(T B) is a chain in the tree T B
that satisfies some predicate: the longest sequence of blocks, starting from the
root (as in the case of Bitcoin) or the heaviest chain the tree (as in the case of
Ethereum). The value of the DLR is called a blockchain and is denoted by B.
The DLR is equipped with write and read operations. The DLR.write operation
allows any process to append to the value of DLR a block b. The DLR.read()
operation allows any miner to retrieve the value of DLR.

In the following, we present the implementations of the distributed ledger reg-
ister that satisfy safe, regular and atomic semantics assuming the communication
abstraction satisfies the ∆-delivery property (i.e. there exists ∆ > 0 such that if
a process invokes broadcast(m) then every correct process eventually delivers m
within ∆ time units.)

6.1 Safe Distributed Ledger Register

We propose an implementation of the Single Writer Multiple Reader (SWMR)
Distributed Ledger Register that respects the safe semantic.

A safe distributed ledger register DLR is defined by the following properties:

– Liveness : Any invocation of DLR.write() or DLR.read() eventually terminates.
– Safety : A DLR.read() operation returns a chain B such that B has a prefix
B1 whose last(B1) is the last value DLR.written before its invocation (i.e. the
value DLR.written by the latest DLR.write() preceding this DLR.read() oper-
ation), or any value of the register domain in case the DLR.read() operation
is concurrent to a DLR.write() operation. Note that in the case of a DLR
register a value in the register domain may be any distributed ledger.

Operation DLR.read () is % issued by a reader %
(01) return(best chain(T B))

Operation DLR.write (b) is % issued by a writer %
(02) B = DLR.read()
(03) append b to B
(04) broadcast (<propose B>)
(05) update tree(T B, B)
(06) wait ∆
(07) return true
———————————————————–
(08) upon deliver(<propose B>)
(09) update tree(T B, B)

Fig. 1. DLR.read() and DLR.write() operations of the Safe Distributed Ledger Register.

Lemma 1. Algorithm 1 implements a SWMR Safe Distributed Ledger Register.

Proof. Let r be a DLR.read() operation issued by a process p. Let w be the last
DLR.write before r and no concurrent DLR.write is executed with r. Let B be
the chain broadcast by w. Since r starts after w returns and w waits ∆ before
returning, then p receives B, and returns it.

6.2 Regular Distributed Ledger Register

A regular distributed ledger register DLR is defined by the following properties:

– Liveness : Any invocation of DLR.write() or DLR.read() eventually terminates.
– Safety : A DLR.read() operation returns a chain B such that B has a prefix
B1 whose last(B1) is the last value DLR.written before its invocation (i.e.
the value DLR.written by the latest DLR.write() preceding this DLR.read()
operation), or a value DLR.written by a DLR.write() operation concurrent
with it.

We propose an implementation of a SWMR Distributed Ledger Register that
satisfies the regular semantic.

Operation DLR.read () is % issued by a reader %
(01) wait ∆
(02) return(best chain(T B))

Operation DLR.write (b) is % issued by a writer %
(03) B = DLR.read()
(04) append b to B
(05) broadcast (<propose B>)
(06) update tree(T B, B)
(07) return true
———————————————————–
(08) upon deliver(<propose B>)
(09) update tree(T B, B)

Fig. 2. DLR.read() and DLR.write() operations of the SWMR Regular Distributed
Ledger Register.

Lemma 2. Algorithm 2 implements a SWMR Regular Distributed Ledger Regis-
ter.

Proof. Algorithm 2 implements a safe register. Let r be a DLR.read() operation
issued by process p such that r happened after some DLR.write() operation w. Let
B be the chain broadcast during w. Since p waits ∆ time units before returning
then p received B before returning. Hence p returns the last DLR.written value.

We now prove that in presence of a concurrent DLR.write() operation, a
DLR.read() operation returns either the concurrent DLR.written value or the
previous one. Let r be a DLR.read() operation issued by some process p such that
r is concurrent with a DLR.write() operation w1 and let w be the last DLR.write()
operation that precedes both w1 and r. Let B be the chain broadcast by w. Since
w1 starts with a DLR.read() operation then chain B1 broadcast by w1 has B
as prefix (by the safe property of the register). Operation r receives B (since r
happened after w), hence the tree structure maintained by p has been updated
with B. If p received B1 then p updated its tree with B1 hence its best chain now
is B1. Hence, p returns either B or B1 which are the result of the last DLR.write()
or a concurrent DLR.write() operation.

6.3 Atomic Distributed Ledger Register

An atomic distributed ledger register is a regular distributed ledger register that
verifies the no new/old inversion property defined as follows:

– no new/old inversion: For any two DLR.read() operations r1 and r2 such
that r1 happens before r2 then the distributed ledger returned by r2 has the
distributed ledger returned by r1 as prefix.

In the following we first propose an implementation of the SWMR Atomic
Distributed Ledger Register, and then an implementation of the MWMR Atomic

Distributed Ledger Register, that is a DLR register that can be DLR.written
(and DLR.read) by multiple processes.

Operation DLR.read () is % issued by a reader %
(01) broadcast (<propose best chain(T B) >)
(02) wait ∆
(03) return(best chain(T B))

Operation DLR.write (b) is % issued by a writer %
(04) B = DLR.read()
(05) append b to B
(06) broadcast (<propose B>)
(07) update tree(T B, B)
(08) return true
———————————————————–
(09) upon deliver(<propose B>)
(10) update tree(T B, B)

Fig. 3. DLR.read() and DLR.write() operations of the SWMR Atomic DLR register.

Lemma 3. Algorithm 3 implements a SWMR Atomic Distributed Ledger Regis-
ter.

Proof. From Lemma 2 it trivially follows that Algorithm 3 satisfies the SWMR
Regular DLR specification.

Consider two DLR.read() operations r1 and r2 such that r1 happens before
r2. Let w be the last DLR.write() operation before r1, and w1 be a DLR.write()
operation concurrent with both r1 and r2. Assume r1 received the distributed
ledger B broadcast during w1. Since r2 happens after r1 (hence after ∆ time
units after the broadcast of B), then r2 received B. Hence, Algorithm 3 satisfies
no new/old inversion property.

Lemma 4. Algorithm 4 implements a MWMR Atomic Distributed Ledger Reg-
ister.

Proof. By Lemma 3 Algorithm 4 verifies the SWMR atomic register specification
since it behaves exactly as Algorithm 3 except that the ”wait ∆” line (line 8)
has been added. Note that it has no impact in a single writer setting. Consider
two concurrent DLR.write() operations w1 and w2. Let w be the last DLR.write()
operation that happens before both w1 and w2 (i.e., no DLR.write() operation
happens between w and w1 and w2). Let B be the chain written by w. Let B1 be
the chain broadcast by w1 and B2 be the chain broadcast by w2. By definition
B is prefix of both B1 and B2. Both w1 and w2 update their local tree with the
chains B1 and B2 and wait ∆ time units before returning. Let r be a read that

Operation DLR.read () is % issued by a reader %
(01) broadcast (<propose best chain(T B) >)
(02) wait ∆
(03) return(best chain(T B))

Operation DLR.write (b) is % issued by a writer %
(04) B = DLR.read()
(05) append b to B
(06) broadcast (<propose B>)
(07) update tree(T B, B)
(08) wait ∆
(09) return true
———————————————————–
(10) upon deliver(<propose B>)
(11) update tree(T B, B)

Fig. 4. DLR.read() and DLR.write() operations of the MWMR Atomic DLR register.

happens after w1 and w2. The process p that issues r waits ∆ before returning.
Hence, p updates its local tree with both B1 and B2 and returns the best chain
between B1 and B2.

7 Distributed Ledger Register and Permissionless
Blockchain Systems

In this section, we refine the specification of the Distributed Ledger Register
proposed in [2] that mimics the behaviour of the Bitcoin and Ethereum distributed
ledger (i.e., Bitcoin blockchain). We recall the functioning of Bitcoin. As described
in the introduction, each miner needs to locally manage a data structure from
which it can extract the blockchain. Specifically, this data structure is a tree,
denoted by T B, and the blockchain, denoted by B, is the longest chain in this
tree. By construction, the root of T B is the genesis block, a common block for
all the miners. In terms of read and write operations, the blockchain protocol
informally translates as follows: When a miner wishes to create a new block, it
first invokes a read operation on T B. This read returns the longest chain of T B,
denoted by B. From B, the miner creates its new block, appends it to B, and
broadcasts B in the system (see [11] for details). Note that from a practical point
of view, only the new block is broadcast to the system, and if necessary miners
wait from their neighbours for blocks in B they are not aware of.

As recalled in Section 2, the level of confirmation k of a block b in a blockchain
provides guarantees on the likelihood that b can be pruned from the blockchain.
The blockchain properties are closely related to the value of k. Therefore, in [2]
is introduced the notion of k-valid write. Definition below is just a refinement of
the definition proposed in [2] considering that write operation is invoked with a
block as parameter and not a chain.

Definition 1 (k-valid write). Operation DLR.write(b) is k-valid if and only
if there exist a time t > 0 and an integer k > 0 such that a virtual DLR.read()
invoked at time t′ > t after the invocation of DLR.write(b) returns a chain B′
such that ∃B prefix of B′ and length(B′) ≥ length(B) + k and the last block of B
is b, where function length(B) returns the number of blocks that compose chain B.

Operation write(b) returns true if write(b) is k-valid otherwise it returns abort.

As described in Section 2 the value of k depends on the proportion β of malicious
miners in the system. It has been shown by Nakamoto [18], that if the proportion
β of malicious miners is ≤ 10%, then with probability ≤ 0.1%, a transaction can
be rejected if its level of confirmation in a local copy of the blockchain is less
than or equal to than 6.

The presence of the genesis block is very similar to the classical assumption in
registers theory which states that before the first read at least one virtual write
operation happened. Therefore, for the distributed ledger register we consider
that before the first read there was at least a virtual k-valid write.

A ledger multi-reader multi-writer register defined in [2] that mimics Bit-
coin/Ethereum has the following specification.

– Liveness Any invocation of a DLR.write(b) or a DLR.read() terminates.

– k-consistency Any DLR.read() returns a value B such that ∃B′ prefix of B
with last(B′) is the value of the register written by the last k-valid DLR.write()
operation that precedes DLR.read().

In the following we propose to extend the implementation of an atomic DLR
register in order to verify the k-consistency property specified above.

Lemma 5. Algorithm 5 verifies the specification of SWMR Atomic Distributed
Ledger Registers.

Proof. Consider an execution of Algorithm 5 such that any DLR.write() operation
is followed by at least k DLR.write() operations. Let w1 and r1 be respectively
a DLR.write() and DLR.read() operations such that r1 happens after w1 and no
DLR.write() operation is concurrent with r1. Let B be the chain broadcast by
w1. Since r1 happens after w1 and r1 returns only after ∆ time units and the
propagation of B takes at most ∆ time units then r1 returns B. We now prove
that in any execution of Algorithm 5 there is no new/old inversion. Consider two
DLR.read() operations r1 and r2 such that r1 happens before r2. Let w be the
DLR.write() operation before r1 and w1 be a concurrent operation with both r1
and r2. Assume r1 received the blockchain broadcast during w1. Let B be this
blockchain. Since r2 happens after r1 (hence ∆ time units after the broadcast of
B by r1), then r2 received B. Hence, Algorithm 5 verifies no new/old inversion
property.

Lemma 6. Algorithm 5 verifies the specification of MWMR Atomic Distributed
Ledger Registers.

Operation DLR.read () is % issued by a reader %
(01) broadcast (<propose best chain(T B) >)
(02) wait ∆
(03) return(best chain(T B))

Operation DLR.write (b) is % issued by a writer %
(04) B = DLR.read()
(05) append b to B
(06) broadcast (<propose B>)
(07) update tree(T B, B)
(08) repeat
(09) B′ = DLR.read ()
(10) until length(B′) ≥ length(B) + k
(11) if B= prefix(B′)
(12) return true
(13) else return abort
———————————————————–
(14) upon deliver(<propose B>)
(15) update tree(T B, B)

Fig. 5. DLR.read() and DLR.write() operations of the MWMR Atomic Distributed
Ledger Register satisfying k-consistency property.

Proof. By Lemma 5 Algorithm 5 verifies the SWMR Atomic Distributed Ledger
Registers specification. Consider two concurrent DLR.write() operations w1 and
w2. Let B be the chain DLR.written by the DLR.write() operation that happens
before w1 and w2. Let B1 be the chain broadcast by w1 and, B2 be the chain
broadcast by w2. B1 and B2 have both B as prefix. Both w1 and w2 after
broadcasting enter the repeat loop and invoke a DLR.read() operation. Hence,
both w1 and w2 wait ∆ time units (the time necessary for B1 and B2 to be
broadcast in the network). After ∆ time units all nodes in the network have B1

and B2 in their local blockchain. Let ≺ be the total order defined by the function
best chain. Hence, either B1 ≺b B2 or B2 ≺b B1. Assume without loosing the
generality that B1 ≺b B2. Let r be a DLR.read() operation that happens after
w1 and w2 and no concurrent write executes. r will return B1.

Lemma 7. Algorithm 5 verifies the k-consistency property.

Proof. Let r be a DLR.read() operation that happens after the last valid DLR.write()
operation w. Let B the blockchain broadcast by w. Since w finished without
abort then, by Lemma 5 r returns B′ with B prefix of B′.

8 Conclusions and Future directions

Recently several academic studies have been devoted to the formal specification
of distributed ledgers [2, 3, 5, 6]. Our work continues this effort and extends the

previous work in several ways. Our work is the first one to propose a specification
of distributed ledger register that matches the Lamport hierarchy [17] from safe
to atomic registers. We have proposed new algorithms to implement distributed
ledger registers with safe, regular and atomic guarantees on top of a broadcast
primitive specific to distributed ledgers [9]. We have also formalized this primitive.
Then, we have proposed an implementation of a distributed ledger register that
satisfies the atomic specification and the k-consistency property that characterizes
the permissionless distributed blockchains such as Bitcoin and Ethereum as
proved in [2]. Therefore, we respond to an open problem raised by [2] where
it has been proven that Bitcoin and Ethereum implement a distributed ledger
register verifying only regular semantics. It should be noted that our work is
complementary to the work proposed in [6] that focuses only on ledger objects that
consist in a totally ordered sequence of blocks (or records). Unifying our framework
with the one proposed in [6] and extending it to multi-objects operations [5] is
an interesting open direction. Moreover, connecting this new framework with
the runtime specification proposed in [3] in order to automatically design and
verify distributed ledgers algorithms with various semantics is an interesting and
important open research direction.

References

1. I. Abraham and D. Malkhi. The blockchain consensus layer and BFT. Bulletin of
the EATCS, 3(123):1–23, 2017.

2. E. Anceaume, R. Ludinard, M. Potop-Butucaru, and F. Tronel. Bitcoin a distributed
shared register. In Proceedings of the International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), 2017.

3. E. Anceaume, A. Del Pozzo, R. Ludinard, M. Potop-Butucaru, and S. Tucci
Piergiovanni. Blockchain abstract data type. In Proceedings of the 31st ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2019.

4. E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolic, S. Weed Cocco, and J. Yellick. Hyperledger Fabric: A Distributed Oper-
ating System for Permissioned Blockchains. https://arxiv.org/pdf/1801.10228v1.pdf,
2018.

5. A. F. Anta, C. Georgiou, and N. C. Nicolaou. Atomic appends: Selling cars
and coordinating armies with multiple distributed ledgers. Tokenomics 2019,
abs/1812.08446, 2018. URL: http://arxiv.org/abs/1812.08446.

6. A. F. Anta, K. Konwar, C. Georgiou, and N. Nicolaou. Formalizing and implement-
ing distributed ledger objects. ACM SIGACT News, 49(2):58–76, 2018.

7. C. Cachin. Blockchain - From the Anarchy of Cryptocurrencies to the Enterprise
(Keynote Abstract). In Proc. of the OPODIS International Conference, 2016.

8. C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin Meets Strong Consistency. In
Proc. of the ICDCN International Conference, 2016.

9. C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In
13th IEEE International Conference on Peer-to-Peer Computing, IEEE P2P 2013,
Trento, Italy, September 9-11, 2013, Proceedings, pages 1–10, 2013.

10. I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse. Bitcoin-NG: A scalable
blockchain protocol. In Procs of the USENIX NSDI Symposium, 2016.

11. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Proc. of the EUROCRYPT International Conference, 2015.

12. A. Girault, G. Gössler, R. Guerraoui, J. Hamza, and D.-A. Seredinschi. Monotonic
prefix consistency in distributed systems. In International Conference on Formal
Techniques for Distributed Objects, Components, and Systems, pages 41–57, Berlin,
Germany, 2018. Springer.

13. M. Herlihy. Concurrency and availability as dual properties of replicated atomic
data. J. ACM, 37(2):257–278, 1990.

14. M. Herlihy and M. Moir. Blockchains and the logic of accountability: Keynote
address. In Proc. of the ACM/IEEE LICS Symposium, 2016.

15. J.-H. Hoepman, M. Papatriantafilou, and P. Tsigas. Self-stabilization of wait-free
shared memory objects. J. Parallel Distrib. Comput., 62(5):818–842, 2002.

16. E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing bitcoin security and performance with strong consistency via collective
signing. In Proc. of the USENIX Security Symposium, 2016.

17. L. Lamport. On inter-process communications, part I: basic formalism and part II:
algorithms. Distributed Computing, 1(2):77–101, 1986.

18. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
19. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

https://bitcoin.org/bitcoin.pdf, 2008.
20. R. Pass and E. Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM

Symposium on Principles of Distributed Computing, PODC 2017, pages 315–324,
New York, NY, USA, 2017. ACM.

21. R. Pass R., L. Seeman, and A. Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Proc. of the EUROCRYPT International Conference,
2017.

22. G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
http://gavwood.com/Paper.pdf.

