Emmanuelle Anceaume

Marina Papatriantafilou

Maria Potop-Butucaru

Philippas Tsigas

Distributed Ledger Register: From Safe to Atomic

This paper continues the recent line of academic effort dedicated to formalizing distributed ledgers. This work is the first one to propose a specification of distributed ledger register that matches the Lamport hierarchy from safe to atomic. Moreover, we propose implementations of distributed ledger registers with safe, regular and atomic guaranties in a model of communication specific to distributed ledgers technology that we also formalize. Then, we propose an implementation of a distributed ledger register that satisfies the atomic specification and the k-consistency property that characterises the permissionless distributed blockchains such as Bitcoin and Ethereum.

Introduction

The blockchain is probably one of the hottest and most transformative topic in the current digital landscape. The bitcoin crypto-currency [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF], the leading application of the blockchain technology, has shown remarkably steady, and as such is often cited as the universal solution for managing a broad range of information.

A permissionless blockchain (or distributed ledger) is commonly presented as "an immutable distributed ledger with decentralised control", i.e., a continuously growing list of records that mimics the functioning of a traditional ledger, namely transparency and falsification-proof of documentation. However, a distributed ledger evolves in an untrusted and open environment. By entrusted, one means an environment in which participants cannot rely on a (shared or centralized) third authority to check and validate all the information that is contained in the blockchain. By open, one means an environment in which (non trustworthy) participants are free to join and leave the system at any time, and as often as they wish. To guarantee transparency and falsification-proof of information, the blockchain must be publicly accessible and consistently updated by every participant.

Distributed ledgers, beyond their incontestable qualities such as decentralisation, simple design and relatively easy use, are neither riskless nor free of limitation. The point is that an increasing number of areas promote the use of distributed ledgers for the development of their applications, and undeniably, the properties enjoyed by these technologies should be studied to fit such applications requirements, together with their relationships with blockchain-based applications.

Such challenges can be mitigated by laying down the theoretical foundations of distributed ledgers. Links between the distributed computing theory and distributed ledger has been pioneered by Garay et al [START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF]. The main focus of the distributed community [START_REF] Cachin | Blockchain -From the Anarchy of Cryptocurrencies to the Enterprise (Keynote Abstract)[END_REF][START_REF] Decker | Bitcoin Meets Strong Consistency[END_REF][START_REF] Eyal | Bitcoin-NG: A scalable blockchain protocol[END_REF][START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF][START_REF] Herlihy | Blockchains and the logic of accountability: Keynote address[END_REF][START_REF] Kokoris-Kogias | Enhancing bitcoin security and performance with strong consistency via collective signing[END_REF][START_REF] Pass | Analysis of the blockchain protocol in asynchronous networks[END_REF] has so far been the distributed ledger agreement aspects. Our paper investigates consistency properties of the distributed ledger technology to identify connections between this technology and read-write registers. This connection is important because it will help us for making possible to argue about the correctness of the ledger itself but also for the applications that will use it. We thus do need to deeply understand and formulate the properties of the state of distributed ledgers. In a previous work [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF], it was proven that the state of popular blockchain ledgers can be described as regular read-write registers. Regular registers provide weak guarantees that are not easy for the application programmer to use for building correct applications on top of those registers. More significantly they do not compose. Atomicity or linearizability is a state property that is composable [START_REF] Herlihy | Concurrency and availability as dual properties of replicated atomic data[END_REF], and thus would allow the combination of multiple distributed ledgers, and has clear strong semantics. Atomicity has been adopted as the standard property to have in the development of parallel and distributed systems. Previous work [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] left open the question of proposing distributed ledger registers with atomic semantics. In [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] the authors prove that Bitcoin and Ethereum verify only the specification of a distributed ledger register with regular semantic.

Our contribution. This paper extends the work of [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] in several ways. First, we propose a specification of distributed ledger register that matches the Lamport hierarchy [START_REF] Lamport | On inter-process communications, part I: basic formalism and part II: algorithms[END_REF] from safe to atomic. Furthermore, we propose an implementation of the distributed ledger register that verify safe, regular and atomic semantics in a model of communication specific to distributed ledgers technology ([START_REF] Decker | Information propagation in the bitcoin network[END_REF]) where the system provides a broadcast primitive satisfying ∆-delivery (if a node invokes broadcast(m) then every correct node eventually delivers m within ∆ time units). Then we propose an implementation of a distributed ledger register that satisfies the atomic specification and the k-consistency property defined in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] to mimic permissionless distributed blockchains.

Paper Roadmap Section 2 presents briefly the characteristics of permissionless blockchains (e.g Bitcoin or Ethereum). Section 4 presents the computational model. Section 5 provides a brief summary of shared registers and their specification. In Section 6 we specify the Distributed Ledger Register and propose implementations of Distributed Ledger Register satisfying safe, regular and atomic semantic. Section 7 makes the connection between the Distributed Ledger Register specification defined in Section 6 and distributed ledgers. Section 8 concludes and presents open problems.

In 2008, Satoshi Nakamoto, a pseudonymous author, published a white paper describing the Bitcoin network, a way to create, distribute and manage a currency that does not rely on a trusted third party [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]. Since then many crypto-currencies have been proposed, including the popular Ethereum [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF]. A permissionless blockchain is commonly presented as "an immutable append only ledger publicly readable and writable". By immutable append only ledger it is meant a continuously growing list of appended records (or blocks) that mimics the functioning of a traditional ledger, namely transparency and falsification-proof of documentation.

From an implementation point of view, each entity of the system locally maintains its own copy of the ledger. Each newly created block cryptographically depends on the current local ledger. Once created it is propagated within the system. Since blocks can be created concurrently, two or more blocks can reference the very same parent block, and hence the creation of a tree with several chains. This situation is known as ledger fork. In a chain of blocks, each block references an earlier block by inserting a cryptographic link to this earlier block in its header. This forms a tree of blocks, rooted at the genesis block, in which a branch is a path from a leaf block to the root of the tree. Each branch, taken in isolation, represents a consistent history of the crypto-currency system, that is, does not internally contain any conflicting transactions -double-spending transactions. On the other hand, any two branches of the tree do not need to be consistent with each other. The reason is that, at any time, each node of the system selects the best chain, a unique branch to represent the history of the crypto-systemthis branch being the longest one of the tree, or equivalently the one that required the most important quantity of work. The best chain in Bitcoin corresponds to the longest chain starting from the genesis block of the distributed ledger (the blockchain is bootstrapped with the genesis block), while in Ethereum, the best chain is the heaviest one. The level of confirmation of a block b belonging to the best chain of the distributed ledger is equal to the number of blocks included in the best chain starting from b. We say that a transaction is deeply confirmed once it reaches such a confirmation level.

Garay and Kiayias [START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF] have characterized Bitcoin blockchain via its quality and its common prefix properties. Specifically, they have shown that, by keeping the creation rate of blocks very low with respect to their propagation time in the network (i) if the adversary controls no more than 1/3 of the network hashing power then it provably controls less than a majority of the blocks in the blockchain and, (ii) if the adversary controls no more than 1/2 of the network hashing power then the blockchains maintained by any two honest nodes possess a large common prefix (up to the last k appended blocks), and the probability that they are not mutual prefix of each other decays exponentially in k.

In [START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF] the authors extract Bitcoin backbone and define invariant that this protocol has to satisfy in order to verify with high probability an eventual consistent prefix. This line of work has been continued by [START_REF] Pass | Fruitchains: A fair blockchain[END_REF]. However, to the best of our knowledge, no other previous attempt proposed a consistency unified framework and hierarchy capturing both Consensus-based and proof-of-work based blockchains. In [START_REF] Abraham | The blockchain consensus layer and BFT[END_REF], the authors present a study about the relationships between Byzantine fault tolerant consensus and distributed blockchains. In order to abstract out the proof-of-work mechanism the authors propose a specific oracle, in the same spirit of our oracle abstraction, but more specific than ours, since it makes a direct reference to proof-of-work properties. In parallel and independently of our work, [START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF] proposes a formalization of distributed ledgers modeled as an ordered list of records. The authors propose three consistency criteria: eventual consistency, sequential consistency and linearizability. Interestingly, they show that a distributed ledger that provides eventual consistency can be used to solve the consensus problem. These findings confirm our results about the necessity of Consensus to solve Strong Prefix. In [START_REF] Girault | Monotonic prefix consistency in distributed systems[END_REF] the authors present an implementation of the Monotonic Prefix Consistency (MPC) criterion and showed that no criterion stronger than MPC can be implemented in a partition-prone message-passing system. On the other hand, the proposed formalization does not propose weaker consistency semantics more suitable for proof-of-work blockchains as BitCoin. In [START_REF] Anceaume | Blockchain abstract data type[END_REF], the authors propose a new data type to formally model distributed ledgers and their behavior at runtime. They provide consistency criteria to capture the correct behavior of current blockchain proposals in a unified framework. It is already known that some blockchain implementations solve eventual consistency of an append-only queue using Consensus [START_REF] Androulaki | Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains[END_REF][START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF]. However, Bitcoin [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] and Ethereum [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF] that technically do not solve Consensus need to be characterized from the point of view of the consistency guaranties that they are able to offer. The question is about the consistency criterion of blockchains as Bitcoin [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] and Ethereum [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF] that technically do not solve Consensus, and their relation with Consensus in general. The first work that addressed this open question was proposed by [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF]. They proposed to connect distributed registers theory to distributed ledgers. They introduce the notion of Distributed Ledger Register (DLR) were the value of the register has a tree topology instead of a single value as in the classical theory of distributed registers. The nodes of the tree are blocks of transactions cryptographically linked. This work has been further extended in [START_REF] Anceaume | Blockchain abstract data type[END_REF]. They specify the consistency guarantees offered by various ledgers at runtime. A distributed ledger is the composition of two finite state automata enriched with a consistency criteria that specifies the behavior of the ledger in presence of concurrency. The first automaton, called blocktree abstract data type, describes the transition of the tree of blocks of when read and append of new blocks are executed. The second automaton, called token oracle, captures the cryptographical process, proof-of-work, specific to permissionless ledgers that condition the append of new blocks. Furthermore, [START_REF] Anceaume | Blockchain abstract data type[END_REF] proposes necessary conditions to implement a blocktree abstract data type and the study of consensus number of token oracle. This line of research paves the way to automatic design of distributed ledgers.

In their mutual objective to contribute in the provision of a proper formulation of distributed ledgers in terms of shared objects, the authors of [START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF] open a line of work complementary to the one presented in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] and the extension presented in the current paper. In [START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF] the ledger object is a totally ordered sequence of blocks (or records) while [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] and the current work consider a tree of blocks that specify both permissioned and permissionless ledgers. The work proposed in [START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF] was continued in [START_REF] Anta | Atomic appends: Selling cars and coordinating armies with multiple distributed ledgers[END_REF] by defining Multi-Distributed Ledger Objects (MDLO), which is the result of aggregating multiple Distributed Ledger Objects satisfying the definition proposed in [START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF]. In Section 8 we will discuss the research directions opened by [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF][START_REF] Anceaume | Blockchain abstract data type[END_REF][START_REF] Anta | Atomic appends: Selling cars and coordinating armies with multiple distributed ledgers[END_REF][START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF] and the current work.

Computational Model

We model the system as a partially synchronous distributed system composed of an arbitrary finite number of nodes, such that each node has enough computation resources to mine blocks.

Each node is a state machine, whose state, called "local state", is defined by the current values of its local variables. A configuration of the system is composed of the local state of each node in the system. The passage of time is measured by a fictional global clock. Nodes do not have access to the fictional global time. At each time t, each node is characterised by its local state.

It is assumed that the system has a built-in communication abstraction, denoted broadcast, that allows nodes to communicate by exchanging messages via broadcast() and deliver() operations. This communication abstraction is defined by the following properties.

-∆-delivery. There exists ∆ > 0 such that if a node invokes broadcast(m) then every correct node eventually delivers m within ∆ time units. -Validity. If a correct node delivers a message m from p then p has previously invoked broadcast(m).

By correct node, we mean a node that follows the prescribed protocols. We suppose on the other hand that some of them can suffer arbitrary failuressuch nodes are called incorrect. For instance, an incorrect node can manipulate the communication primitive by broadcasting inconsistent messages, or by not broadcasting messages or by stopping its execution. We assume that less than a third of the computational power of the system is owned by incorrect nodes. We do not make any restrictions regarding incorrect users.

Background on Distributed Registers

This section recalls the main properties of classical distributed read-write registers.

A distributed read-write register REG is a shared variable accessed by a set of processes through two operations, namely REG.write() and REG.read().

Informally, the REG.write() operation updates the value stored in the shared variable while the REG.read() obtains the value contained in the shared variable. Every operation issued on a register is, generally, not instantaneous and can be characterised by two events occurring at its boundaries: an invocation event and a reply event. Both events occur at two different instants with respect to the fictional global time: the invocation event of an operation op (i.e., op = REG.write() or op = REG.read()) occurs at the invocation time denoted by t B (op) and the reply event of op occurs at the reply time denoted by t E (op).

Given two operations op and op on a register, we say that op precedes op (op ≺ op) if and only if t E (op) < t B (op). If op does not precede op and op does not precede op, then op and op are concurrent (noted op||op). In case of concurrency while accessing the shared variable, the meaning of last written value becomes ambiguous. Depending on the semantics of the operations, three types of registers have been defined by Lamport [START_REF] Lamport | On inter-process communications, part I: basic formalism and part II: algorithms[END_REF]: safe, regular and atomic.

An operation op is terminated if both the invocation event and the reply event occurred (i.e., the process executing the operation does not crash between the invocation time and the reply time). A terminated operation can either be successful and thus returns true or can return abort when, for example, some operational conditions are not met. More details will be given in Section 7. On the other hand, an operation that does not terminate is called failed.

The semantic of a distributed read-write register (simply called read-write register) can be classified as safe, regular or atomic [START_REF] Lamport | On inter-process communications, part I: basic formalism and part II: algorithms[END_REF]. The safe register ensures that a read which does not overlap with a write returns the last completed write. The result of a read overlapping a write can be any value from the register domain. The regular register verifies the safe semantic when reads are not concurrent with writes. For reads concurrent with writes the read will return either the last written value or the value of the concurrent write. A safe distributed register REG is defined by the following properties:

-Liveness: Any invocation of REG.write() or REG.read() eventually terminates. -Safety: A REG.read() operation returns the last value written before its invocation (i.e. the value written by the latest REG.write() preceding this REG.read() operation), or any value of the register domain in case the REG.read() operation is concurrent to a REG.write() operation.

A regular distributed register REG is defined by the following properties:

-Liveness: Any invocation of REG.write() or REG.read() eventually terminates. -Safety: A REG.read() operation returns the last value written before its invocation (i.e. the value written by the latest REG.write() preceding this REG.read() operation), or a value written by a REG.write() operation concurrent with it.

An atomic register is a regular register that satisfies the no new/old inversion property defined as follows:

no new/old inversion: For any two read operations, the set of writes that do not strictly follow either of them must be perceived by both reads as occurring in the same order.

6 From Classical Distributed Registers to Distributed Ledger Registers

Interestingly enough, neither safety, regularity nor atomicity of distributed shared registers capture the behaviour of distributed ledgers. Classically, values written in a register are potentially independent, and during the execution, the size of the register remains the same. In contrast, a new block cannot be written in the blockchain if it does not depend on the previous one, and successive writings in the blockchain increase its size. Interestingly, blockchains behavior has some similarities with the stabilizing registers, line of research pioneered by [START_REF] Hoepman | Self-stabilization of wait-free shared memory objects[END_REF]. Looking at the stabilizing register, it implements some type of eventual consistency, in the sense that, there exists a prefix of the system execution for which there are no guarantees on the value of the shared register: register semantics hold only from a certain time in the execution. In contrast, the prefix of the blockchain eventually converges at every entity, while no guarantees hold for the last created blocks.

In [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] we have proposed a new register called the Distributed Ledger Register (DLR). However, the specification proposed in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] is tailored for Bitcoin and Ethereum as we further discuss in Section 7. In the following we refine this specification in order to match as closely as possible the classical distributed registers hierarchy.

The Distributed Ledger Register (DLR) has a tree structure, whose root is the genesis block, and where each branch is a sequence of blocks. The value of DLR is the best chain of the tree. The best chain(T B) is a chain in the tree T B that satisfies some predicate: the longest sequence of blocks, starting from the root (as in the case of Bitcoin) or the heaviest chain the tree (as in the case of Ethereum). The value of the DLR is called a blockchain and is denoted by B. The DLR is equipped with write and read operations. The DLR.write operation allows any process to append to the value of DLR a block b. The DLR.read() operation allows any miner to retrieve the value of DLR.

In the following, we present the implementations of the distributed ledger register that satisfy safe, regular and atomic semantics assuming the communication abstraction satisfies the ∆-delivery property (i.e. there exists ∆ > 0 such that if a process invokes broadcast(m) then every correct process eventually delivers m within ∆ time units.)

Safe Distributed Ledger Register

We propose an implementation of the Single Writer Multiple Reader (SWMR) Distributed Ledger Register that respects the safe semantic.

A safe distributed ledger register DLR is defined by the following properties:

-Liveness: Any invocation of DLR.write() or DLR.read() eventually terminates.

-Safety: A DLR.read() operation returns a chain B such that B has a prefix B 1 whose last(B 1) is the last value DLR.written before its invocation (i.e. the value DLR.written by the latest DLR.write() preceding this DLR.read() operation), or any value of the register domain in case the DLR.read() operation is concurrent to a DLR.write() operation. Note that in the case of a DLR register a value in the register domain may be any distributed ledger. ------------------ Proof. Let r be a DLR.read() operation issued by a process p. Let w be the last DLR.write before r and no concurrent DLR.write is executed with r. Let B be the chain broadcast by w. Since r starts after w returns and w waits ∆ before returning, then p receives B, and returns it.

Regular Distributed Ledger Register

A regular distributed ledger register DLR is defined by the following properties:

-Liveness: Any invocation of DLR.write() or DLR.read() eventually terminates.

-Safety: A DLR.read() operation returns a chain B such that B has a prefix B 1 whose last(B 1) is the last value DLR.written before its invocation (i.e. the value DLR.written by the latest DLR.write() preceding this DLR.read() operation), or a value DLR.written by a DLR.write() operation concurrent with it.

We propose an implementation of a SWMR Distributed Ledger Register that satisfies the regular semantic. ------------------- Proof. Algorithm 2 implements a safe register. Let r be a DLR.read() operation issued by process p such that r happened after some DLR.write() operation w. Let B be the chain broadcast during w. Since p waits ∆ time units before returning then p received B before returning. Hence p returns the last DLR.written value. We now prove that in presence of a concurrent DLR.write() operation, a DLR.read() operation returns either the concurrent DLR.written value or the previous one. Let r be a DLR.read() operation issued by some process p such that r is concurrent with a DLR.write() operation w 1 and let w be the last DLR.write() operation that precedes both w 1 and r. Let B be the chain broadcast by w. Since w 1 starts with a DLR.read() operation then chain B 1 broadcast by w 1 has B as prefix (by the safe property of the register). Operation r receives B (since r happened after w), hence the tree structure maintained by p has been updated with B. If p received B 1 then p updated its tree with B 1 hence its best chain now is B 1 . Hence, p returns either B or B 1 which are the result of the last DLR.write() or a concurrent DLR.write() operation.

Atomic Distributed Ledger Register

An atomic distributed ledger register is a regular distributed ledger register that verifies the no new/old inversion property defined as follows:

no new/old inversion: For any two DLR.read() operations r 1 and r 2 such that r 1 happens before r2 then the distributed ledger returned by r2 has the distributed ledger returned by r 1 as prefix.

In the following we first propose an implementation of the SWMR Atomic Distributed Ledger Register, and then an implementation of the MWMR Atomic Distributed Ledger Register, that is a DLR register that can be DLR.written (and DLR.read) by multiple processes. -------------------(09) upon deliver(<propose B>) [START_REF] Eyal | Bitcoin-NG: A scalable blockchain protocol[END_REF] update tree(T B, B) Fig. 3. DLR.read() and DLR.write() operations of the SWMR Atomic DLR register.

Lemma 3. Algorithm 3 implements a SWMR Atomic Distributed Ledger Register.

Proof. From Lemma 2 it trivially follows that Algorithm 3 satisfies the SWMR Regular DLR specification. Consider two DLR.read() operations r 1 and r 2 such that r 1 happens before r 2 . Let w be the last DLR.write() operation before r 1 , and w 1 be a DLR.write() operation concurrent with both r 1 and r 2 . Assume r 1 received the distributed ledger B broadcast during w 1 . Since r 2 happens after r 1 (hence after ∆ time units after the broadcast of B), then r 2 received B. Hence, Algorithm 3 satisfies no new/old inversion property. Lemma 4. Algorithm 4 implements a MWMR Atomic Distributed Ledger Register.

Proof. By Lemma 3 Algorithm 4 verifies the SWMR atomic register specification since it behaves exactly as Algorithm 3 except that the "wait ∆" line (line 8) has been added. Note that it has no impact in a single writer setting. Consider two concurrent DLR.write() operations w 1 and w 2 . Let w be the last DLR.write() operation that happens before both w 1 and w 2 (i.e., no DLR.write() operation happens between w and w 1 and w 2). Let B be the chain written by w. Let B 1 be the chain broadcast by w 1 and B 2 be the chain broadcast by w 2 . By definition B is prefix of both B 1 and B 2 . Both w 1 and w 2 update their local tree with the chains B 1 and B 2 and wait ∆ time units before returning. Let r be a read that happens after w 1 and w 2 . The process p that issues r waits ∆ before returning. Hence, p updates its local tree with both B 1 and B 2 and returns the best chain between B 1 and B 2 .

Distributed Ledger Register and Permissionless Blockchain Systems

In this section, we refine the specification of the Distributed Ledger Register proposed in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] that mimics the behaviour of the Bitcoin and Ethereum distributed ledger (i.e., Bitcoin blockchain). We recall the functioning of Bitcoin. As described in the introduction, each miner needs to locally manage a data structure from which it can extract the blockchain. Specifically, this data structure is a tree, denoted by T B, and the blockchain, denoted by B, is the longest chain in this tree. By construction, the root of T B is the genesis block, a common block for all the miners. In terms of read and write operations, the blockchain protocol informally translates as follows: When a miner wishes to create a new block, it first invokes a read operation on T B. This read returns the longest chain of T B, denoted by B. From B, the miner creates its new block, appends it to B, and broadcasts B in the system (see [START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF] for details). Note that from a practical point of view, only the new block is broadcast to the system, and if necessary miners wait from their neighbours for blocks in B they are not aware of. As recalled in Section 2, the level of confirmation k of a block b in a blockchain provides guarantees on the likelihood that b can be pruned from the blockchain. The blockchain properties are closely related to the value of k. Therefore, in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] is introduced the notion of k-valid write. Definition below is just a refinement of the definition proposed in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] considering that write operation is invoked with a block as parameter and not a chain.

Definition 1 (k-valid write). Operation DLR.write(b) is k-valid if and only if there exist a time t > 0 and an integer k > 0 such that a virtual DLR.read() invoked at time t > t after the invocation of DLR.write(b) returns a chain B such that ∃B prefix of B and length(B) ≥ length(B) + k and the last block of B is b, where function length(B) returns the number of blocks that compose chain B.

Operation write(b) returns true if write(b) is k-valid otherwise it returns abort. As described in Section 2 the value of k depends on the proportion β of malicious miners in the system. It has been shown by Nakamoto [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF], that if the proportion β of malicious miners is ≤ 10%, then with probability ≤ 0.1%, a transaction can be rejected if its level of confirmation in a local copy of the blockchain is less than or equal to than 6.

The presence of the genesis block is very similar to the classical assumption in registers theory which states that before the first read at least one virtual write operation happened. Therefore, for the distributed ledger register we consider that before the first read there was at least a virtual k-valid write.

A ledger multi-reader multi-writer register defined in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] that mimics Bitcoin/Ethereum has the following specification.

-Liveness Any invocation of a DLR.write(b) or a DLR.read() terminates.

-k-consistency Any DLR.read() returns a value B such that ∃B prefix of B with last(B) is the value of the register written by the last k-valid DLR.write() operation that precedes DLR.read().

In the following we propose to extend the implementation of an atomic DLR register in order to verify the k-consistency property specified above. Lemma 5. Algorithm 5 verifies the specification of SWMR Atomic Distributed Ledger Registers.

Proof. Consider an execution of Algorithm 5 such that any DLR.write() operation is followed by at least k DLR.write() operations. Let w 1 and r 1 be respectively a DLR.write() and DLR.read() operations such that r 1 happens after w 1 and no DLR.write() operation is concurrent with r 1 . Let B be the chain broadcast by w 1 . Since r 1 happens after w 1 and r 1 returns only after ∆ time units and the propagation of B takes at most ∆ time units then r 1 returns B. We now prove that in any execution of Algorithm 5 there is no new/old inversion. Consider two DLR.read() operations r 1 and r 2 such that r 1 happens before r 2 . Let w be the DLR.write() operation before r 1 and w 1 be a concurrent operation with both r 1 and r 2 . Assume r 1 received the blockchain broadcast during w 1 . Let B be this blockchain. Since r 2 happens after r 1 (hence ∆ time units after the broadcast of B by r 1), then r 2 received B. Hence, Algorithm 5 verifies no new/old inversion property. Lemma 6. Algorithm 5 verifies the specification of MWMR Atomic Distributed Ledger Registers. -------------------

Conclusions and Future directions

Recently several academic studies have been devoted to the formal specification of distributed ledgers [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF][START_REF] Anceaume | Blockchain abstract data type[END_REF][START_REF] Anta | Atomic appends: Selling cars and coordinating armies with multiple distributed ledgers[END_REF][START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF]. Our work continues this effort and extends the previous work in several ways. Our work is the first one to propose a specification of distributed ledger register that matches the Lamport hierarchy [START_REF] Lamport | On inter-process communications, part I: basic formalism and part II: algorithms[END_REF] from safe to atomic registers. We have proposed new algorithms to implement distributed ledger registers with safe, regular and atomic guarantees on top of a broadcast primitive specific to distributed ledgers [START_REF] Decker | Information propagation in the bitcoin network[END_REF]. We have also formalized this primitive. Then, we have proposed an implementation of a distributed ledger register that satisfies the atomic specification and the k-consistency property that characterizes the permissionless distributed blockchains such as Bitcoin and Ethereum as proved in [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF]. Therefore, we respond to an open problem raised by [START_REF] Anceaume | Bitcoin a distributed shared register[END_REF] where it has been proven that Bitcoin and Ethereum implement a distributed ledger register verifying only regular semantics. It should be noted that our work is complementary to the work proposed in [START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF] that focuses only on ledger objects that consist in a totally ordered sequence of blocks (or records). Unifying our framework with the one proposed in [START_REF] Anta | Formalizing and implementing distributed ledger objects[END_REF] and extending it to multi-objects operations [START_REF] Anta | Atomic appends: Selling cars and coordinating armies with multiple distributed ledgers[END_REF] is an interesting open direction. Moreover, connecting this new framework with the runtime specification proposed in [START_REF] Anceaume | Blockchain abstract data type[END_REF] in order to automatically design and verify distributed ledgers algorithms with various semantics is an interesting and important open research direction.

Fig. 1 .Lemma 1 .

 11 Fig. 1. DLR.read() and DLR.write() operations of the Safe Distributed Ledger Register.

Operation

 DLR.read () is % issued by a reader % (01) wait ∆ (02) return(best chain(T B)) Operation DLR.write (b) is % issued by a writer % (03) B = DLR.read() (04) append b to B (05) broadcast (<propose B>) (06) update tree(T B, B) (07) return true

Operation

 DLR.read () is % issued by a reader % (01) broadcast (<propose best chain(T B) >) (02) wait ∆ (03) return(best chain(T B)) Operation DLR.write (b) is % issued by a writer % (04) B = DLR.read() (05) append b to B (06) broadcast (<propose B>) (07) update tree(T B, B) (08) return true -

OperationFig. 4 .

 4 Fig. 4. DLR.read() and DLR.write() operations of the MWMR Atomic DLR register.

Fig. 5 . 1 . 7 .

 517 Fig. 5. DLR.read() and DLR.write() operations of the MWMR Atomic Distributed Ledger Register satisfying k-consistency property.