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Abstract—Current Model-Based Systems Engineering (MBSE)
practices to design and implement complex systems require
modeling and analysis based on many representations: structure,
dynamics, safety, security, etc. This induces a large volume of
overlapping heterogeneous artefacts which are subject to frequent
changes during the project life cycle. In order to verify and
validate systems requirements and ensure that models meet user’s
needs, MBSE techniques shall rely on consistent traceability
management.

In this paper, we investigate the benefits of Information
Retrieval (IR) techniques and the latest advances in Natural
Language Processing (NLP) approaches to suggest stakeholders
with candidate semantic links generated from the processing of
structured and unstructured contents.

We illustrate our approach called ATLaS (Aggregation Trace
Links Support) through an application on the design and analysis
of a mobility service gathering several industrial partners. We
provide an empirical evaluation regarding its limitations as
part of an industrial MBSE process. Most importantly, we
highlight how our method drastically reduces the false positive
links generated compared to current IR techniques. The results
obtained suggest a good synergy between the presented approach
and MBSE techniques.

Index Terms—Model-Based Systems Engineering, Require-
ments, Traceability, Information Retrieval, Natural Language
Processing, Semi-supervised techniques

I. INTRODUCTION

System complexity is a very pragmatic reality that project
stakeholders must face and overcome throughout the life
cycle of an industrial system. In the case of Systems of
Systems (SoS), another level of complexity is added as the
development of such systems implies collaborations between
different companies.

Within such collaborations, each company has to share
knowledge and know-how (tooled methodology) as well as
requirements and models. The design and implementation of
the SoS under study require productions of many artefacts
correlated with each other and that evolve most of the time
independently. Therefore, this collaboration requires a perma-
nent and accurate synchronization of information.

Considering the large number of models that evolve inde-
pendently in silos, it is very difficult to measure the impact of a
local decision over all the requirements and models of the SoS.
This issue requires then almost full traceability, including the
linking of heterogeneous engineering artefacts encapsulated in
black boxes [1]. Spatial and temporal decomposition of orga-
nizations and activities hamper traceability and thus assurance
of the overall consistency of requirements [2].

In such a context, it is important to provide a framework for
improving awareness regarding the impact of decisions beyond
technological or organizational silos [3]. Such a framework
shall provide facilities to recover traceability links to avoid a
snowball effect due to not shared hypotheses.

From the perspective of Requirements Management (RM),
tracking is generally performed manually by system analysts
using specific-purpose RM tools. Analysts visually examine
each pair of artefacts documented in the RM tools to build
a traceability matrix. Most existing RM tools like Rational
DOORS or Rational RequisitePro support traceability anal-
ysis. Besides, dedicated traceability management tools exist.
Among them, we can cite the Eclipse Capra (open-source) or
Reqtify (commercial).

Requirements are most commonly expressed as informal
text. Then, the elicitation of traceability links requires a human
intervention to understand and determine the validity of links.
Existing rule-based approaches can be used to provide au-
tomation for the elicitation process, but with significant effort
to obtain a precise and complete result. Moreover, although IR
techniques are promising, their main drawback is the important
amount of false positive links generated.

Following the trend of IR methods, promising machine
learning approaches are emerging to improve their accuracy
[4].

1) On Word and Sentence Embeddings: Unlike “conven-
tional” IR techniques like Latent Semantic Indexing (LSI) [5]
or Vector Space Model (VSM) [6], which are based on word
frequency and treat each word as a unique symbol, Word
Embeddings approaches do not consider words independently



from each other. It can be actually considered as one of
the primary reasons justifying the success of recent machine
learning models for NLP tasks [7]. Therefore, it has been
successfully used for recovering traceability links [8]–[10].
Some Word Embeddings techniques use neural networks to
process words as d-dimensional vectors of real numbers cap-
turing their contextual semantic meaning. These techniques,
based on Harris’ distributional hypothesis [11], consider that
words with the same context tend to have similar meanings,
thus similar vector representations. Therefore, words can be
characterized by other words surrounding them and syntactic
and semantic relationships between words can be encoded as
linear relationships between them [8].

To go further, the success of Word Embeddings has moti-
vated new methods for generating semantic embeddings using
longer pieces of text, such as sentences and paragraphs [12]–
[14]. While Word Embeddings represents words as vectors,
Sentence Embeddings captures the meaning of a chunk or a
full sentence in a single vector.

Sentence Embeddings can be used to improve the ac-
curacy of traceability links recovery between requirements
and models. For instance, Arora methods [12], also called
Smooth Inverse Frequency (SIF), achieve significantly better
performance than the unweighted average on a variety of
textual similarity tasks.

2) Learning and semi-supervised techniques: Machine
learning techniques have been widely used to improve in-
formation retrieval approaches [4]. In the literature, machine
learning techniques are usually classified into three groups:
the unsupervised, the supervised and the semi-supervised ones.
Semi-supervised techniques make use of a small amount of -
labeled - validated data (or considered validated) and a large
number of invalidated data. Many researchers have found that
unlabeled data, when used in conjunction with a small amount
of labeled data, can produce a considerable improvement in
learning accuracy [15].

Labeling often requires expensive human effort while un-
labeled data is far easier to obtain. As such, semi-supervised
learning has shown its relevance in many real-world prob-
lems [16].

Semi-supervised learning algorithms depend on the assump-
tion that nearby points are likely to have the same label
or points on the same cluster are likely to have the same
label. This hypothesis has been verified on multiple occasions
in communities of machine learning [17], [18], information
retrieval [19], [20] and traceability management [6], [21]. This
assumption referred to as the cluster hypothesis, states that
closely associated documents tend to be relevant to the same
requests [22] in terms of traceability, i.e. that true links tend
to be more similar to each other than false ones.

Besides, the label propagation algorithm and its variant
the label spreading are semi-supervised machine learning
techniques that are used for the detection of common features
in large complex networks. Among these existing techniques,
the label spreading algorithm is the most robust to reduce noise
in text classification [23].

Semi-supervised approaches need a first set of representative
links to start learning which can be provided by rule-based
approaches. Regarding the improvement of IR techniques, one
major challenge addressed in this paper is the accuracy of
identification of semantics similarities, between words and
sentences used with the same meaning. Doing so, we can
be able to tackle the well-known drawback of usual IR
techniques, i.e. the generation of a large number of false
positives.

In this paper, we investigate the benefits of the latest
advances in semi-supervised approaches and NLP approaches
in order to improve the performances of IR techniques. We
aim to enhance candidate traceability links generation and
suggestion to the analysts. Thus, we propose an approach,
called ATLaS (Aggregation Trace Links Support). It is based
on the clustering hypothesis that combines different strategies
of IR and NLP techniques (i.e. word-embeddings and sentence
embeddings) to improve the accuracy of IR techniques. Fol-
lowing an industrial case study from the automotive domain,
we provide an empirical evaluation and discussion on our
approach.

The remainder of the paper is organized as follows. Sec-
tion II presents a concrete industrial case study. Then, Sec-
tion III formalizes our approach for the particular issue il-
lustrated in the motivating example. Section IV presents the
implementation and evaluation performed. Next, Section VI
provides some related works. Finally, the last Section draws
our conclusion and narrows down possible future works.

II. THE AUTOMOTIVE CASE STUDY

The experiments for the validation of our approach have
been conducted over an industrial case study build upon the
publicly available datasets ARC-IT (Architecture Reference
for Cooperative and Intelligent Transportation) in version 8.2.
This reference architecture is provided by the U.S. Department
of Transportation and is freely available on the ARC-IT
website1. It provides a common framework for designing
intelligent transportation systems (ITS). It includes a set of
interconnected engineering artefacts organized into four views
focusing on different architecture perspectives: Enterprise,
Functional, Physical and Communications.

From a tooling perspective, requirements are managed in
ProR2 (open-source), system models (operational, functional,
physical or product) have been captured in the Capella tool3.

Additional models have been used at the system level. For
instance, behaviours of operational actors have been captured
using the BPMN2 tool, while their interactions have been
captured using Colored Petri Nets tools4; finally, their modes
and states have been captured using the UPPAAL tool5. The
choice of those tools has been driven by the necessity to assist
engineers with more formal tools to make rational decisions.

1https://local.iteris.com/arc-it/index.html
2https://www.eclipse.org/rmf/pror/
3https://www.polarsys.org/capella/
4http://cpntools.org/
5http://www.uppaal.org/



For the purpose of our demonstration, we limit the scope
of our experiment only on the traceability elicitation between
requirements (2395 in total) and system functions models (802
in total). System functions cover among others the following
concerns: Manage ITS, Manage Traffic, Manage Commercial
Vehicles, Provide Vehicle Monitoring and Control, Manage
Transit, Manage Emergency Services and Support Secure
Transportation Services.

Sharing and linking (manually) engineering artefacts are
performed thanks to the use of collaborative spaces, based on
semantic web technologies [3]. The Tracelink support (ATLaS)
described in Section III generates candidate traceability links
to the collaborative space for validation.

III. ATLAS: AGGREGATION TRACE LINKS SUPPORT

In this section, we provide a description of our approach to
identify traceability links between requirements and models.
ATLaS takes as input requirements documents described in
natural language and models in XML Metadata Interchange
(XMI) format and generates a list of traceability links with
their confidence measures, see Figure 1. To this aim, the
framework performs three main steps.

In step 1 “Pre-processing artefacts”, requirements and mod-
els are taken as inputs and transformed into bags of words and
sentences. In step 2 “Compute similarities”, these bags are
used to compute syntactic and semantic similarities between
them (i.e. requirements and models). These similarities are
used to build the descriptor matrix. In step 3 “confidence
metrics computation”, we defined a heuristic to identify the
most likely true and false links by using the syntactic simi-
larities, and we build the labeled links set. This labeled links
set associated with the descriptor matrix are used as inputs to
compute a predictive model which will provide a confidence
measure on whether or not the potential links are true or false.
Figure 1 and the following sections describe in details the 3
steps of our approach.

1) Pre-processing artefacts: The aim of this step is to
convert data in natural language for further processing by
IR and NLP techniques. It consists in extracting text from
requirements and models and performing some basic textual
pre-processing actions to divide them into bags of words and
sentences.

a) Artefacts extraction: A first step is to extract text from
artefacts. Two kinds of artefacts are considered: requirements
and models.

• Requirements are by nature text-oriented and their ex-
traction in the ProR tool is quite trivial. Basically, id
and description of each requirement are extracted and
concatenated into a text. For example, a requirement
with id equals to “R255” and description equals to
“The center shall provide the collected border activities
statistics data to archived data and planning systems.”
will be represented as “R255 The center shall provide
the collected border activities statistics data to archived
data and planning systems.”;

• Models and more precisely model elements are a little
bit more complex to process since it is important to
define the appropriate granularity which will capture the
maximum amount of textual information and its seman-
tics. For instance, in a UML class diagram, the ideal
granularity would be the class because it would gather
enough information through the attributes and operations.
Actually for any given type of models, one needs to define
the appropriate granularity (model elements) to be taken
into account by ATLaS.
In our case study, the functional architecture model of
the system was used as input and for each function, the
id, the name, the type and the description were extracted
and concatenated into a text and given as output. For
example, a function with id equals to “F474”, name
equals to “TransportationInformationCenter”, type equals
to “system function” and the description equals to “Traffic
Regulation Dissemination disseminates rules, regulations,
and statutes that govern motor vehicle operation.” will be
represented as “F474 TransportationInformationCenter
system function Traffic Regulation Dissemination dissem-
inates rules, regulations, and statutes that govern motor
vehicle operation.”
b) Sentence Splitting: consists in splitting each artefact

into sentences. To perform this operation, NLP techniques
require as inputs, symbols that indicate the beginning and end
of a sentence. A sentence must begin with a capital letter and
ends with a punctuation mark.

c) “Stopword” removal: “Stopwords” [22] are words
that appear so frequently in the artefacts that they become
irrelevant for link recovery, for example, article “a” or “the”.
They are therefore removed and the result is sent to the
tokenization and text chunking actions.

d) Tokenization: Tokens are built by splitting the sen-
tences into words. Then, punctuations and numbers are re-
moved.

Note that tokenization is done differently for models and
requirements. In the case of models, compound words are split
by upper camel case rule. For example, “VehicleIntersection-
Warning” is split into “Vehicle”, “Intersection” and “Warning”.

e) Text chunking: is a natural language technique that
decomposes a sentence into non-overlapping segments [24].
We use text chunking to detect phrases in the sentences.
We only consider the noun and verbal phrases because they
are the main elements that give the meaning of sentences.
For example, the text chunking of the requirement “R255”
with the description “The center shall provide the collected
border activities statistics data to archived data and planning
systems.” will be “The center, “shall provide”, “the collected
border activities statistics data”, “to archived”, “data and
planning systems.”.

Finally, all words, noun and verbal phrases of pre-processed
artefacts, namely requirements and models are converted to
lower case and are sent to the dictionary builder (see Figure 1).

2) Compute similarities: takes as input bags of words,
nouns and verbal phrases and computes syntactic and se-



Fig. 1. Overview of ATLaS (Aggregation Trace Links Support)

mantic similarities. A vector containing similarity scores is
constructed for each pair of artefacts. Each vector constitutes
a row of the descriptor matrix, which is the output of this step.

a) syntactic measures computation: For each pair of
artefacts, we quantify LSI [5], Latent Dirichlet Allocation -
LDA [25] and VSM [6] scores. These scores are used to build
a labeled links set for the semi-supervised technique. They are
also inserted into the descriptor matrix.

b) Semantic measures computation: In a previous work
[26], we proposed an approach that combines syntactic and
semantic measures. Results reached were better than conven-
tional IR techniques but were still not satisfactory. In order
to improve these results, we investigate word and sentence
embeddings to build contextual dictionaries to capture more
semantics. These dictionaries have been used to define three
similarity scores that will be defined a little bit further. The
construction of the contextual dictionaries and computation of
the similarity scores are described below.

Dictionary builder. This activity is used to determine the
vector representations of words and phrases contained in re-
quirements and models according to their contextual meaning.
We use bags of words and phrases as inputs. The output of
this activity is a list of synonymous words and phrases.

Word Embeddings learning refers to finding vector repre-
sentations of words such that words with similar meaning are
associated with similar vector embeddings [27]. Many words
embeddings pre-trained models are available publicly. Among
these Word Embeddings pre-trained models, google Word2Vec
model [7] is popular for its simplicity and efficiency. It was
trained on about 100 billion words from Google News. The
training was performed using the continuous bag of words
architecture and its vocabulary size is 3 million entities.

Besides Google Word2Vec, we have also used GloVe [28]
pre-trained Word Embeddings. Like Google Word2Vec model,
GloVe model is significantly efficient to word analogy and

similarity tasks. GloVe stands for “Global Vectors for Word
Representation”. It is an embedding technique, which tabulates
how frequently words co-occur with one another in a given
corpus. The GloVe is used in the Smooth Inverse Frequency
(SIF) methods of Arora et al. [12] to compute noun and verbal
phrases embeddings.

Both pre-trained models are used to determine the contex-
tual words, noun and verbal phrases dictionaries to identify
synonymous words, noun and verbal phrases.

Similarity score computation. With the list of synonymous
words and phrases, we defined three similarity scores. The
first similarity score S1 is one of the most popular similarity
scores in the traceability community, the Naive Satisfaction
Method [29], [30]. Like most similarity scores used in text
classification and traceability, S1 focuses on common terms
shared by related pairs of artefacts. The second similarity score
S2 is similar to the first one (S1) but at the phrase level.
It computes the ratio of common noun and verbal phrases
between related artefacts, including synonyms. Finally, the last
one, S3, is also computed at the word level like S1, but after
filtering out some words that have been considered irrelevant.

For example, in systems engineering, words like “system”
or “shall” are recurrent in requirements and yet, irrelevant
with respect to requirements traceability. These words can,
therefore, yield numerous false links if not taken into account.
We make the assumption that these words are more frequent
than the ones that are actually useful for identifying true links.

With this assumption, we compute the frequency of each
word in the corpus and we filter out words with a frequency
above a chosen threshold. We can then compute a new simi-
larity score S3 as the ratio of semantically related important
words (i.e. words that have not been filtered out at the previews
step) between two artefacts.

These similarity scores are computed using the following
equation:



S1 =
Ncommon

NTotalWords
. (1)

S2 =
NcommonNounAndV erbalPhrases

NTotalPhrases
. (2)

S3 =
NcommonImportantWords

NTotalWords
. (3)

Where :
• Ncommon is the number of common terms including

synonyms,
• NTotalWords is the total number of terms of the two

artefacts,
• NcommonNounAndV erbalPhrases is the number of identi-

cal noun and verbal phrases and their synonyms between
two artefacts,

• NTotalPhrasesis the total number of noun and verbal
phrases of the two artefacts,

• and NcommonImportantWords is the number of common
important words between two artefacts including syn-
onyms.

3) Confidence metrics computation: We use the descriptor
matrix as input. All similarity scores (S1, S2, S3) described
above along with IR measures (LSI, LDA, VSM) provide
similarity measures for each pair of artefacts in the form of a
vector. This vector is used to decide whether a link exists or
not between two given artefacts.

In order to overcome the low performance of syntactic
measures, we associate a weight to each similarity score. Each
pair of artefacts is described by a descriptor vector. Thus, for
a pair of artefacts (x, y) with (m1, m2, m3, mLSI , mLDA,
mV SM ), the similarity measures assigned by the 3 similarity
scores and the 3 IR techniques, the associated descriptor vector
would be equal to (weight ∗ m1(x, y), weight ∗ m2(x, y),
weight ∗m3(x, y), mLSI (x, y), mLDA(x, y) mV SM (x, y)).

As mentioned earlier, semi-supervised algorithms need a
small number of validated links. Unfortunately, training dataset
(i.e. a set of artefacts with validated links) was not available
for our experiments. The following paragraphs describe how
we coped with this issue.

a) Building labeled links set: We have implemented a
heuristic to label some pairs of artefacts as related or non-
related. This heuristic is motivated by the statistical ranking
of IR techniques [31], which sets good links on top and bad
links (false positives) to the bottom. Thus, for each similarity
measure, we select a small percentage of links with the highest
and lowest similarity scores.

b) Build a discriminative model: We use the weighted
similarity scores (weight ∗ S1, weight ∗ S2, weight ∗ S3),
the IR measures (LSI, LDA, VSM) and the labeled of true
and false links defined by the heuristic as inputs to build the
discriminative model. Based on these inputs, the discriminative
model finds the community structures in order to group them
in true and false links. In our approach, the training set is
built, i.e. it is not manually validated. In order to build our

discriminative model, we use label spreading [32] among other
semi-supervised learning methods. This choice is justified by
the ability of the technique to modify initially provided labels.

As output, the resulting predictive model provides a proba-
bility for any link that belongs to the class of true links. We
refer to this probability as a confidence measure.

The ATLaS generates this way candidate traceability links to
the semantic web collaborative space for validation; each link
being coupled with a confidence measure. From a practical
point of view, it provides a prioritization criterion to the analyst
during the phase of links validation.

IV. IMPLEMENTATION AND EXPERIMENTATIONS

The implementation relies on existing tools and libraries.
First, VSM has been implemented via the Tracelab tool [33].
Then, LSI and LDA have been implemented with Gensim6.
As mentioned in the previous section, words and phrases dic-
tionaries have been build using word embeddings pre-trained
models available publicly: Google Word2Vec and GloVe vec-
tors; Both sets are 300-dimensional. The GloVe model is
used inside the SIF method which source code is available
on GitHub7. The size of the dataset, which is the case for
industrial-size case studies, requires a good computation power
along with a significant amount of working memory. For this
purpose, we used a computer with 176 physical CPU cores
and 2 TB of RAM.

Table I shows the total number of requirements and model
elements, the corpus and vocabulary size of the dataset, as
well as the number of validated links (golden standard).

ARC-IT Req- Functions
Nb Requirements 2395

Nb models elements 802
Corpus size 76643

Vocabulary size 2731
Golden Standard 2395 links

TABLE I
DESCRIPTIVE STATISTICS OF DATASETS.

The current implementation of label-spreading in scikit-
learn8 is not scalable. Thus, failing to find a label-spreading
implementation solution that scales up, we opted to learn from
a subset of the dataset from which we can extrapolate for the
whole dataset. We have defined two algorithms to build the
subset for learning.

Algorithm 1 consists of building the subset by selecting the
reference links of the heuristic and randomly adding to these
links, a defined number of links that have not been chosen
by the heuristic. This algorithm is very simple to implement.
The result of this algorithm is represented by aggreg0 V1 (see
Figure 4).

Algorithm 2 aims to ensure that the subset of links selected
is representative of the complete links set. The core idea

6https://radimrehurek.com/gensim/index.html
7https://github.com/PrincetonML/SIF/blob/master/README.md
8https://scikit-learn.org/stable/modules/generated/

sklearn.semi supervised.LabelSpreading.html



is the following: when a link is retained for the subset, it
is not necessary to have the nearest neighborhood of this
link within the subset because they are likely to belong to
the same class. The neighborhood is defined in terms of
Euclidean distance between the links descriptor vectors. The
subset is built as follow: first, we compute the neighborhood
graph of the complete dataset. Then, we divide this graph
in multiple neighborhoods. The number of neighborhoods is
equal to a defined down-sampling factor. When a link is
randomly selected, its nearest neighbors are discarded. This
operation is repeated until there is no link left. This algorithm
is more suitable for label-spreading technique since its goal is
to let every link iteratively spread its label information to its
neighbors until a global stable state is achieved [23]. The result
of this algorithm is represented by aggreg0 V2 (see Figure 4).

In the following, we present the experimental results ob-
tained on the ARC-IT dataset.

A. Evaluation of the capture of the semantic

The evaluation analyses the contribution of semantic tech-
niques versus syntactic ones. At the optimum threshold, syn-
tactic methods missed some links compared to our approach.
For instance, the link between requirement “R2539 The vehicle
shall present information to the driver in audible or visual
forms without impairing the driver s ability to control the
vehicle in a safe manner.” and the function “F405 Vehicle
Control Warning. Monitors areas around the vehicle and
provides warnings to a driver so the driver can take action to
recover and maintain safe control of the vehicle.” was missed
by the syntactic techniques. Nonetheless, some links identified
by the syntactic methods were missed by our approach.

Syntactic methods identify those links because they are
based on common terms between artefacts. For instance, the
link between the requirement “R6396 The center shall ag-
gregate updates to rules, regulations, and statutes in order to
define updates to be sent to vehicles and other mobile devices.”
and “F474 Transportation Information Center. Traffic Reg-
ulation Dissemination disseminates rules, regulations, and
statutes that govern motor vehicle operation.” was identified
by syntactic techniques.

Some links were missed by both kinds of methods due
to the fact that semantic captured lacks precision: The link
between the requirement “R255 The center shall provide the
collected border activities statistics data to archived data and
planning systems.” and the function “F188 Border Inspection
Administration performs administrative functions relating to
the inspection of goods and vehicles at the border” illustrates
such a situation.

B. Discrimination with LDA-LSI-VSM

Pairs of artefacts are represented with the similarity mea-
sures LDA, LSI, and VSM. Links of the golden standard
(referred as “true links”) and others links (referred as “false
links”) are represented with different colors in order to observe
resulting clusters in Figure 2. Clusters of “true links” and

“false links” appear very distinctly and this observation rein-
forces the clustering hypothesis at the heart of our approach.
It appears that in the ARC-IT dataset, similarity measures are
strongly discriminating against each other.

Fig. 2. Scatter plot representing requirements-models pairs described by the
similarity measures of VSM, LSI, LDA techniques; blue points correspond to
true links and red points to false links.

C. Evaluation of the build training set

The reference links used to build the predictive model
were automatically created by our heuristic. To evaluate the
relevance of this model, we have compared the reference
true links and false links to the actual true links and false
links. Table II shows the percentage of coverage; aggreg0 V1
represents the result obtained by the heuristic described in
section III and computed with Algorithm 1. It shows that the
percentage of coverage of false links is above 99%, while
the percentage of coverage of true links is under 5% for the
10% lowest and the 10% highest similarity scores respectively.
One conclusion we can draw is that the proposed heuristic
is very good to identify false links but it requires significant
improvement for the identification of true links.

This can be explained by the well-known curse of dimen-
sionality problem [34], or in our case “curse of cardinality
problem”. The curse of dimensionality refers to various phe-
nomena that arise when analyzing data in high-dimensional
spaces. When the dimensionality increases, the volume of the
space increases so fast that available data becomes sparse.
The ARC-IT dataset contains 2395 high-level requirements
and 802 logical functions; so the number of candidate links
will be 2395 x 802 = 1920790 links for 2395 true links.

Indeed, the number of false links increases drastically when
the limit of the number of true links barely reaches the number
of requirements. In this Cartesian product of artefacts, true
links become negligible regarding the number of false links.
It is more likely to find false links than true ones. This raises
one question: how to increase the percentage of coverage of
true links?

To answer this question, we have defined three strategies.
Table II shows the percentage of coverage of true links for



each of these strategies. Note that the heuristic to obtain false
links remains unchanged. aggreg1, aggreg2, and aggreg3 in
Table II represent the results obtained for strategy 1, strategy
2, and strategy 3 respectively.

In strategy 1, either the analyst identifies a number of true
links equal to 5% of the number of requirements (randomly or
with a distribution on the concerns of the systems), or a rule is
defined that allows random identification of the same number
of true links. Example of such rule could be a linguistic pat-
tern based on syntactic analysis and grammatical heuristics
like the detection of the modal shall in requirements in order
to link them to existing system functions (note that these
rules may require human validation).
Strategy 2 and strategy 3 use the confidence measure
obtained with the proposed heuristic (aggreg0 V1). With
this strategy, 20% of the links with the highest confidence
measures are considered as true links.
In strategy 3, the analyst has to examine the 20% of the
links with the highest confident measures. The false links
identified are added to the computed reference false links.
These links are then used as inputs for the predictive model.

For each of these strategies, the percentage defined is based
on the number of requirements and the time for an analyst
to validate suggested links. Strategies 1 and 3 involve the
expertise of an analyst, thus the percentage of coverage of true
links is equal to 100%. However, the number of true links is
still low compared to the number of false links. With strategy
2, the percentage of coverage of true links is improved by
approximately 3% compared to the initial heuristic. Still, the
resulting percentage of true links remains low compared to the
percentage of false links.

Datasets True links correctness False links correctness
aggreg0 V1 4.81% 99.7%

aggreg1 100% 99.7%
aggreg2 7.5% 99.7%
aggreg3 100% 99.9%

TABLE II
TRUE AND FALSE LINKS CORRECTNESS IN THE BUILD TRAINING SET

D. Evaluation of the correlation of the similarity measures

The complementarity of similarity measures constitutes
another important hypothesis that stands at the heart of our
approach. Our intuition is that the more similarity measures
are diverse and complementary, the more the descriptor matrix
will contain enough information to discriminate true and false
links. One way to evaluate the complementarity of similarity
measures is to identify how they are correlated with each
other. Correlation refers to the degree to which similarity
measures are linearly related. For instance, Figure 3 shows
the dependence between each similarity measure. We can see
that syntactic and semantic measures are weakly correlated
(under 0.25). However, LDA-VSM, S1-S3 have an average
dependence (between 0.25 and 0.5). One conclusion we can
draw from this correlation matrix is the following: although

IR methods capture almost the same information, the differ-
ences between captured information add value to the collected
information for each pair of artefacts.

ARC-IT2

Fig. 3. Correlation between similarity scores and similarity of IR techniques

E. Evaluation with F-measure and recall-precision curves

The metrics most used for evaluating any IR techniques are:
recall, precision, and F-measure. The recall is the fraction
of relevant instances that have been retrieved over the total
amount of relevant instances. The precision is the fraction of
relevant instances among the retrieved instances. F-measure is
the harmonic mean of the recall and precision. It shows the
trade-offs between precision and recall. It can then be used to
provide insights regarding the performance of a method.

Fig. 4. F-measure curves of LSI, LDA, VSM and the two implementations of
our approach (aggreg0 V1 and aggreg0 V2) and the previous paper approach
(combinaison of V SM − LSI − LDA)

As mentioned at the beginning of section IV, we use two
algorithms to build the discriminative model. The result of
Algorithm 1 is represented by aggreg0 V1 and the result of
Algorithm 2 is represented by aggreg0 V2.

Note that, it is not relevant to give strong weights to the
semantics measures because this would make the information
provided by the syntactic measures negligible. For this reason
in this experimentation, we used empirically a weight equals
to 2.

We have evaluated the results of the previous paper ap-
proach (combinaison of V SM − LSI − LDA), aggreg0 V1,
aggreg0 V2, LSI, LDA and VSM for different thresholds. The



F-measure of all these techniques is illustrated in Figure 4. It
shows that our approaches aggreg0 V1 and aggreg0 V2 are
more effective than VSM, LSI, LDA for any threshold. We
can see that precision and recall are significantly improved
by these techniques. In particular, precision and recall of ag-
greg0 V2 are much higher than all other results. In summary,
aggreg0 V1 achieves 94% of recall and 0.51% of precision
at its optimum (threshold=0.1) and narrow the percentage of
false links down to 50%, while aggreg0 V2 achieves 76% of
recall and 1.15% of precision at the same threshold and filters
out 80% of false links.

Fig. 5. recall-precision curves of the proposed heuristic and all the proposed
strategies

In this sub-section, we have also evaluated the 3 proposed
strategies in sub-section IV-C at different thresholds. Thus,
we evaluated the results by plotting the best result F-measure
curves aggreg0 V2 and the results of all the three strategies
with Algorithm 2 (aggreg1, aggreg2, aggreg3). The recall-
precision curves in Figure 5 show that Strategy 1 has better
results than all the other strategies. However, its recall is
very low in front of the recall of aggreg0 V1. The other two
strategies are victims of the curse of cardinality, explained in
sub-section IV-C, and therefore do not produce satisfactory
results.

In summary, ATLaS can significantly reduce the number of
false links that developers would need to manually identify and
can potentially reduce errors during the validation process. The
study results show that ATLaS outperforms the conventional
IR Techniques and our previous works, but still has room
for improvement. In future work, we plan to explore more
strategies to improve the low coverage of true links of the
built training set. We also plan to implement an algorithm of
labelSpreading for industrial-sized datasets.

V. THREATS TO VALIDITY

Two primary threats to validity potentially impact our work.
First, due to the challenge of evaluating a large industrial
dataset and the time needed to generating trace links. Indeed,
given the size of the dataset and the severe imbalance in data
(2395 true links and 1918395 false links) standard measures
such as F-measure might be inappropriate for measuring the
performance of trace links recovery. However, the metrics we
used (i.e. Recall, Precision, and F-measure) are all accepted
research standards for evaluating traceability results [35]. In

future work, we plan to use more robust techniques to such
imbalances and to compare our approach with other state-of-
the-art approaches.

Second, the threat to validity comes from the dataset used
in this experiment. Indeed, this work focused on a single
dataset. As a result, we cannot generalize the result beyond
the underlying experimental setting. However, this traceability
dataset is of large and do not raise some scalability concerns.

VI. RELATED WORKS

There are few works that address the problem of traceability
in the context of an MBSE approach. These approaches
usually propose traceability information models to capture
the semantic integration of artefacts. For instance, Taromirad
et al. [4] propose an approach for building a multi-domain
traceability framework. They define a Traceability Information
Model (TIM) that represents artefacts from different domains
and their relationships. This Traceability Model can be used
to derive traceability information from sources, record the
information in the model and perform traceability analyses
based on traceability goals. As mentioned in section I, and
even though this approach contributes to the identification of
links through the use of rules, it requires a significant effort
from experts.

In Maro et al. [36], authors have provided a framework
for traceability management and an implementation in the
Eclipse Modeling Framework (EMF). Provided tool supports
basic services for managing traceability links: creation, re-
moval, modification as well as typing. Besides the aforemen-
tioned limitations, the approach is constrained by technological
choices, which does not reflect industrial practices. Indeed, we
shall be able to manage traceability links beyond technological
silos.

Some approaches have been proposed to address this
limitation. In particular, approaches combining different IR
techniques have been proposed in order to improve their
effectiveness while compensating for their weaknesses. For
instance, Cleland-Huang et al. [37] propose three enhance-
ment strategies: hierarchical modeling, logical clustering of
artefacts, and semi-automated pruning of the Probabilistic
Network (PN). Results indicate that these strategies effectively
improve trace retrieval performance.

In the same way, Wang et al. [5] present four strate-
gies: source code clustering, identifier classifying, similar-
ity thesaurus, and hierarchical structure enhancement. These
strategies aim to improve LSI. Their approach has higher
precision but lower recall. Le Tien-Duy et al. [38] propose
an approach to predict the effectiveness of an IR technique on
a bug localization tool for a given bug report. Their proposed
approach extracts many features from the textual contents
of the bug report and similarity scores outputted by the IR
techniques.

Sannier and Baudry [39] proposed combining both MBSE
approaches and IR techniques to improve traceability of re-
quirements while addressing the ambiguity of textual content
of requirements. The drawback of their proposition is that



it still requires a significant effort from experts to reach
a relevant set of rules, that can lead to the generation of
traceability links with a high level of confidence.

Indeed, IR techniques aim to match a set of pairs of artefacts
and rank the retrieved pairs based on predefined similarity
measures. These techniques automate a tedious task that does
not require expertise in any specific domain.

IR techniques heavily investigate in recovering traceability
links in the literature, including VSM [6], LSI [5], and un-
supervised machine learning approach - LDA [25]. However,
due to their limited accuracy, candidate links are systematically
checked by an analyst that manually classifies them into two
groups: the approved links called true-links and the rejected
ones called false-links. Thereby, candidate links evaluation
is really time-consuming [40] as the number of false links
represents 90% of the candidate links at a low threshold.

To improve this situation, machine learning techniques
have been widely used to improve information retrieval ap-
proaches [4]. They are used to capture knowledge about pairs
of artefacts, to define strategies for link classification and to
make predictive models. For instance, Mills et al. [41] use a
predictive model with two features (text retrieval rankings and
query quality metrics) to automatically classify links as true
or false. Their approach achieves high accuracy on average
using both types of features but there are still a high number
of miss-classified links. Sultanov et al. [42] use reinforcement
learning and improve the results compared to VSM. Niu and
Mahmoud [6] use clustering to group links in high-quality
and low-quality clusters respectively to improve accuracy.

Our proposed approach is most related to these approaches,
which have been applied to traceability links recovery. Our
work differs from the ones presented above in that it combines
IR techniques with recent NLP techniques to capture more
semantics in order to reduce the number of false links.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we investigate the benefits of IR techniques
and the latest advances in NLP approaches to suggest stake-
holders with candidate semantics links generated from the
processing of structured and unstructured documents. We aim
to fill the gap between formal and informal contents of MBSE
models to free engineers from an important workload by
providing them with relevant assistance.

The empirical evaluation of our approach applied to the case
study from the automotive industry shows good results as it
drastically reduces the number of false positive, compared to
usual IR techniques.

However, the interpretation of behavioral models was not
considered in this study as we have considered only the
static aspects of behavioral specifications. In practice, we note
that these kind of models are usually less documented than
structural ones and the rules concerning their interpretation
are subject to several semantic variation points. Then, more
effort is required to transform elements of models with the
interpretations given by experts.

Considering encouraging results from the combinaision of
techniques, future work will investigate the combination of
different strategies with the aim of improving the coverage
of true links of the built training set in order to get better
accuracy for the generated candidate links.

Another direction will be to consider in the implementation
of label spreading for big data. Building a predictive model
for the whole dataset graph can probably increase the results
making good use of all data in the process.
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