
HAL Id: hal-02201382
https://hal.science/hal-02201382

Submitted on 31 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating the ability of community-protected forests in
Cambodia to prevent deforestation and degradation

using temporal remote sensing data
Minerva Singh, Damian Evans, Jean-Baptiste Chevance, Boun Suy Tan,

Nicholas Wiggins, Leaksmy Kong, Sakada Sakhoeun

To cite this version:
Minerva Singh, Damian Evans, Jean-Baptiste Chevance, Boun Suy Tan, Nicholas Wiggins, et al.. Eval-
uating the ability of community-protected forests in Cambodia to prevent deforestation and degra-
dation using temporal remote sensing data. Ecology and Evolution, 2018, 8 (20), pp.10175-10191.
�10.1002/ece3.4492�. �hal-02201382�

https://hal.science/hal-02201382
https://hal.archives-ouvertes.fr


Ecology and Evolution. 2018;8:10175–10191.	 		 	 | 	10175www.ecolevol.org

 

Received:	19	March	2018  |  Revised:	5	July	2018  |  Accepted:	23	July	2018
DOI:	10.1002/ece3.4492

O R I G I N A L  R E S E A R C H

Evaluating the ability of community- protected forests in 
Cambodia to prevent deforestation and degradation using 
temporal remote sensing data

Minerva Singh1  | Damian Evans2 | Jean-Baptiste Chevance3 | Boun Suy Tan4 |  
Nicholas Wiggins5 | Leaksmy Kong2 | Sakada Sakhoeun3

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2018	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Imperial	College	London,	South	Kensington,	
London,	UK
2École	française	d’Extrême-Orient,	Paris,	
France
3Phnom	Kulen	Program,	Archaeology	and	
Development	Foundation,	London,	UK
4Angkor	International	Research	and	
Documentation	Centre,	APSARA	National	
Authority,	Siem	Reap	City,	Siem	Reap	
Province,	Cambodia
5School	of	Earth	and	Environmental	
Sciences,	The	University	of	Queensland,	St	
Lucia,	QLD,	Australia

Correspondence
Minerva	Singh,	Imperial	College	London,	
South	Kensington,	London,	UK.
Email:	minerva_singh@yahoo.co.in

Abstract
Community	 forests	 are	 known	 to	 play	 an	 important	 role	 in	 preserving	 forests	 in	
Cambodia,	a	country	that	has	seen	rapid	deforestation	 in	recent	decades.	The	de-
tailed	evaluation	of	the	ability	of	community-	protected	forests	to	retain	forest	cover	
and	prevent	degradation	in	Cambodia	will	help	to	guide	future	conservation	manage-
ment.	In	this	study,	a	combination	of	remotely	sensing	data	was	used	to	compare	the	
temporal	variation	in	forest	structure	for	six	different	community	forests	located	in	
the	Phnom	Kulen	National	Park	(PKNP)	in	Cambodia	and	to	assess	how	these	dynam-
ics	 vary	 between	 community-	protected	 forests	 and	 a	wider	 study	 area.	Medium-	
resolution	Landsat,	ALOS	PALSAR	data,	and	high-	resolution	LiDAR	data	were	used	to	
study	 the	 spatial	 distribution	 of	 forest	 degradation	 patterns	 and	 their	 impacts	 on	
above-	ground	 biomass	 (AGB)	 changes.	 Analysis	 of	 the	 remotely	 sensing	 data	 ac-
quired	 at	 different	 spatial	 resolutions	 revealed	 that	 between	2012	 and	2015,	 the	
community	 forests	 had	 higher	 forest	 cover	 persistence	 and	 lower	 rates	 of	 forest	
cover	 loss	 compared	 to	 the	 entire	 study	 area.	 Furthermore,	 they	 faced	 lower	 en-
croachment	from	cashew	plantations	compared	to	the	wider	landscape.	Four	of	the	
six	community	forests	showed	a	recovery	in	canopy	gap	fractions	and	subsequently,	
an	increase	in	the	AGB	stock.	The	levels	of	degradation	decreased	in	forests	that	had	
an	increase	in	AGB	values.	However,	all	community	forests	experienced	an	increase	
in	understory	damage	as	a	result	of	selective	tree	removal,	and	the	community	for-
ests	with	the	sharpest	increase	in	understory	damage	experienced	AGB	losses.	This	
is	the	first	time	multitemporal	high-	resolution	LiDAR	data	have	been	used	to	analyze	
the	impact	of	human-	induced	forest	degradation	on	forest	structure	and	AGB.	The	
findings	of	this	work	indicate	that	while	community-	protected	forests	can	improve	
conservation	outcomes	to	some	extent,	more	interventions	are	needed	to	curb	the	
illegal	selective	logging	of	valuable	timber	trees.
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1  | INTRODUC TION

Protected	 areas	 (PAs)	 are	 widely	 regarded	 as	 an	 important	 bul-
wark	against	deforestation	and	biodiversity	loss	(Klein	et	al.,	2015).	
However,	 PAs	 are	 a	 partial	 and	 imperfect	 conservation	 solution	
for	the	tropical	 forests	of	the	world.	Analysis	of	the	Global	Forest	
Cover	Change	dataset	 (Hansen	et	al.,	2013)	 revealed	 that	globally,	
protected	 areas	 lost	 3%	 of	 their	 forest	 cover,	 intact	 forest	 land-
scapes	have	lost	2.5%,	while	protected	intact	forest	landscapes	have	
lost	 1.5%	of	 their	 forest	 cover	 (Heino	 et	al.,	 2015).	 An	 analysis	 of	
60	tropical	forest	protected	areas	revealed	that	half	of	these	have	
faced	significant	biodiversity	erosion	as	a	result	of	forest	resource	
extraction	and	wildlife	hunting.	Furthermore,	overharvesting,	defor-
estation,	and	degradation	outside	the	reserve	boundaries	can	have	
a	detrimental	effect	on	biodiversity	persistence	within	the	reserve	
boundaries	(Laurance	et	al.,	2012).

International	 Union	 for	 Conservation	 of	 Nature	 (IUCN)	 cat-
egorizes	 protected	 areas	 into	 six	 broad	 management	 categories,	
ranging	from	strict	nature	reserves	that	limit	human	activity	to	re-
serves	that	allow	for	sustainable	resource	extraction	(Hayes	et	al.,	
2013).	Categories	V	and	VI	are	more	amenable	to	human	resource	
extraction	 compared	 to	 categories	 I	 and	 II	 which	 focus	more	 on	
preserving	natural	features	and	curtailing	human	activities	within	
the	boundaries	of	the	PA	(IUCN,	2013).	In	addition	to	enforcement,	
PA	 efficacy	 also	 depends	 on	 the	 benefits	 and	 compensation	 ac-
crued	by	local	communities	(Liu	et	al.,	2001).	Strict	PA	categoriza-
tions	which	 do	 not	 provide	 benefits	 to	 the	 local	 community	 can	
also	cause	forest	loss	to	worsen.	A	temporal	analysis	of	land-	cover	
change	in	the	Wolong	PA,	an	IUCN	Category	I	PA	in	China,	revealed	
that	the	area	had	undergone	considerable	degradation	subsequent	
to	its	designation	as	a	PA	(Liu	et	al.,	2001).	On	the	other	hand,	co-
operation	 of	 the	 local	 communities	 can	 increase	 the	 chances	 of	
PAs	 being	 able	 to	 avoid	 forest	 loss.	 A	 Latin	 America-	wide	 study	
carried	out	by	Porter-	Bolland	et	al.	(2012),	which	compared	annual	
forest	loss	within	40	protected	areas	and	33	community-	managed	
forests,	discovered	that	the	latter	had	a	lower	rate	of	annual	forest	
loss.	 The	 authors	 suggest	 that	 accounting	 for	 local	 tenure	 rights	
and	the	socio-	economic	welfare	of	the	local	 inhabitants	can	yield	
better	conservation	outcomes.	Community	forestry	was	found	to	
better	 protect	 forests	 from	 anthropogenic	 disturbances	 and	 log-
ging	 in	 the	 Prey	 Long	 district	 of	 Cambodia	 where	 a	 substantial	
proportion	of	people	depend	on	forests	for	sustenance	(Lambrick,	
Brown,	Lawrence,	&	Bebber,	2014).	However,	 satellite	 land	cover	
change	analysis	from	2003	to	2013	indicated	that	protected	areas	
in	Paraguay’s	Atlantic	forest	helped	slow	deforestation	(Da	Ponte	
et	al.,	2017a).	A	meta-	analysis	of	African	and	Latin-	American	PAs	
revealed	 that	while	 strict	 PAs	 delivered	 fire-	prevention	 benefits,	
multiuse	community	PAs	were	more	effective	in	fire	prevention	and	
could	contribute	to	both	biodiversity	conservation	and	AGB	stock	
retention	(Nelson	&	Chomitz,	2011).	Community	forests	can	facil-
itate	 long-	term	 forest	protection	 in	 certain	 situations	and	deliver	
benefits	 to	 the	 local	 community	 (Bray	 et	al.,	 2008).	On	 the	basis	
of	the	existing	 literature,	 it	may	be	 inferred	that	both	community	

forests	 and	 protected	 areas	 deliver	 different	 outcomes	 across	
different	 regions.	 Evaluating	 the	 ability	 of	 different	 protection	
schemes,	to	counter	forest	cover	change	(in	the	form	of	deforesta-
tion	and	degradation)	 is	 important	 (Da	Ponte,	Roch,	 Leinenkugel,	
Dech,	&	Kuenzer,	2017b).

Different	 magnitudes	 of	 forest	 degradation	 and	 regeneration	
impact	 forest	 structure	parameters	 such	as	AGB	storage	and	can-
opy	 structure-	related	variables	 such	as	gap	 fraction	differently.	 In	
fact,	even	low	logging	volumes	can	lead	to	a	decline	in	the	carbon	
stocks	 of	 tropical	 forests	 (Bryan,	 Shearman,	 Ash,	 &	 Kirkpatrick,	
2010).	However,	 forests	 regenerating	 after	 shifting	 cultivation	are	
vital	AGB	sinks	and	their	ability	to	store	biomass	increases	with	the	
length	of	abandonment	(Mukul,	Herbohn,	&	Firn,	2016).	Forest	re-
generation	and	associated	increases	in	forest	cover	facilitate	a	rapid	
increase	 in	carbon	stocks	storage	 (Lohbeck,	2016).	Even	degraded	
forests	 can	 act	 as	 valuable	 carbon	 sinks	 under	 certain	 conditions	
(Alamgir	et	al.,	2016).

In	addition	to	the	AGB	storage,	other	forest	structure	parame-
ters	such	as	canopy	cover	and	tree	height	also	vary	across	a	degra-
dation	gradient	(Mehta,	Sullivan,	Walter,	Krishnaswamy,	&	DeGloria,	
2008;	Pfeifer	et	al.,	2016).	Gap	fractions	in	the	forest	canopy	(open	
gaps	in	forest	canopy	not	covered	by	foliage)	vary	considerably	be-
tween	primary	forests	compared	and	forests	that	have	been	logged	
(Pinagé,	Matricardi,	Osako,	&	Gomes,	2014).	In	the	Brazilian	Amazon,	
it	was	discovered	that	forest	canopy	gaps	undergo	rapid	regenera-
tion	and	that	within	a	three-	year	period,	and	no	detectable	differ-
ence	remained	between	the	canopy	gaps	of	undisturbed	and	logged	
forests	 (Espirito-	Santo,	 Keller,	 Braswell,	 &	 Palace,	 2006).	 Canopy	
gaps	resulting	from	conventional	 logging	had	lower	rates	of	recov-
ery	compared	to	those	caused	by	reduced-	impact-	logging	3.5	years	
after	logging	in	the	Brazilian	Amazon	(Asner,	Keller,	Pereira,	Zweede,	
&	Silva,	2004).

Different	types	of	remote	sensing	(RS)	data	have	been	used	(ei-
ther	alone	or	in	conjunction	with	each	other)	to	study	the	variation	
in	forest	structure,	greenness	and	degradation	in	time	and	space	for	
tropical	 forests.	Optical	 data	 such	 as	 those	 derived	 from	Landsat	
have	been	extensively	used	 for	mapping	 temporal	 changes	 in	 for-
est	 cover	and	 land	use	 types	 in	 the	 tropics	 (Potapov	et	al.,	 2014).	
A	 freely	 available	 software	 system	 CLASlite	 developed	 by	 the	
Carnegie	Institute	of	Science	has	employed	Landsat	data	to	detect	
temporal	forest	cover	change	in	Madagascar	(Allnutt,	Asner,	Golden,	
&	 Powell,	 2013)	 and	 distinguish	 plantations	 from	 natural	 forests	
in	 Borneo	 (Bryan	 et	al.,	 2013).	 In	 addition	 to	 Landsat	 data,	 ALOS	
PALSAR	radar	data	have	been	employed	for	studying	the	patterns	
of	forest	degradation	and	recovery	in	Cambodia,	Laos,	and	Vietnam	
(Mermoz	&	Le	Toan,	2016)	and	mapping	varying	levels	of	forest	deg-
radation	 in	Laos	 (Singh,	Tokola,	Hou,	&	Notarnicola,	2017).	LiDAR	
data,	which	have	a	higher	spatial	resolution	than	optical	and	radar	
data,	have	also	been	extensively	used	for	mapping	the	variation	in	
AGB	stocks	and	other	forest	structure	parameters	in	degraded	for-
ests	of	 tropical	Asia	 (Kronseder,	Ballhorn,	Böhm,	&	Siegert,	2012;	
Singh	et	al.,	 2016).	The	ability	of	 LiDAR	 to	 capture	 canopy	height	
at	a	 fine	 scale	makes	 it	 a	useful	 tropical	 forest	mapping	 tool	with	
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other	 datasets,	 notably	 Landsat	 (Leinenkugel,	Wolters,	 Oppelt,	 &	
Kuenzer,	2015;	Peou,	Natarajan,	Tianhua,	&	Philippe,	2016).	LiDAR	
data	offer	the	distinct	advantage	of	being	able	to	identify	individual	
trees	and	measures	of	their	biophysical	parameters	such	as	height,	
crown	volume,	and	area.	These	measurements	in	turn	can	be	used	
to	model	AGB	variation	at	a	landscape	scale	(DeFries,	Rudel,	Uriarte,	
&	Hansen,	2010;	Motzke,	Wanger,	Zanre,	Tscharntke,	&	Barkmann,	
2012).	Temporal	LiDAR	data	have	been	used	for	monitoring	the	im-
pact	 of	 selective	 logging	 on	AGB	 stocks	 in	 the	Brazilian	Amazon.	
Using	 these	 data,	 locations	 that	 had	 lost	 their	 tallest	 trees	 were	
identified,	 along	with	 changes	 in	 the	 proportion	 of	 logging	 trails,	
landings,	and	gaps.	Furthermore,	 the	 role	of	 large	 tree	 removal	 in	
influencing	AGB	stocks	 from	2010	 to	2011	was	examined	 (Asner,	
Knapp,	Balaji,	&	Páez-	Acosta,	2009).

RS	data	can	play	a	vital	role	in	monitoring	the	efficacy	of	con-
servation	management	schemes	and	PAs.	Landsat	data	have	been	
extensively	 used	 for	 examining	 the	 ability	 of	 protected	 areas	 to	
retain	 forest	 cover	 at	 both	 local	 and	global	 scales	 (Allnutt	 et	al.,	
2013;	 Heino	 et	al.,	 2015).	 While	 ALOS-	PALSAR	 and	 airborne	
LiDAR	 data	 have	 not	 been	 extensively	 used	 for	 mapping	 and	
monitoring	 the	 efficacy	 of	 protected	 areas	 and	 conservation	

management	schemes,	we	hypothesize	that	use	of	these	different	
RS	 data	 can	 help	 to	monitor	 different	 aspects	 of	 tropical	 forest	
cover	change	dynamics	(their	impacts	on	forest	structure	dynam-
ics	such	as	AGB)	and	improve	our	understanding	of	the	ability	of	
community-	protected	 forests	 to	 retain	 forest	 cover	 and	prevent	
degradation	in	Cambodia.

The	main	objective	of	this	research	was	to	compare	the	temporal	
variation	in	forest	cover	(including	the	expansion	of	cashew	planta-
tions)	and	structure	of	six	different	community	forests	located	in	a	
National	Park	in	Cambodia	and	assess	how	these	dynamics	vary	be-
tween	this	community-	protected	forests	and	the	wider	study	area.

The	specific	aims	of	this	study	are	as	follows:

1. to	 quantify	 the	 variation	 in	 Landsat-derived	 forested	 areas	 in	
the	 study	 area	 and	 across	 the	 different	 community-protected	
forests;

2. to	use	a	combination	of	LiDAR	and	Landsat	data	to	map	and	moni-
tor	the	changes	in	forest	cover,	cashew	plantation,	and	bare	soil	
from	2012	to	2015;

3. to	quantify	the	variation	in	LiDAR-derived	forest	structure	param-
eters	(such	as	AGB)	from	2012	to	2015;	and

F IGURE  1 Phnom	Kulen	National	Park	(PKNP),	Cambodia
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4. to	quantify	the	variation	in	the	vegetation	greenness	and	forest	
degradation	for	both	the	study	area	and	the	different	community	
forests.

In	 addition	 to	 these,	 the	 impact	 of	 selective	 logging	 from	 2012	
to	2015	will	be	estimated	by	identifying	tree	height	classes	that	have	
faced	losses	(at	the	individual	tree	scale).

It	 is	 expected	 that	 the	 findings	 of	 our	 research	 will	 help	 us	 to	
quantify	 the	 efficacy	 of	 community-	protected	 forests	 in	 preventing	
deforestation	 and	 facilitating	 regeneration	 (compared	 to	 the	 wider	
landscape)	and	their	ability	to	curb	the	selective	illegal	logging	of	indi-
vidual	tree	species.	The	countries	of	Greater	Mekong	region	have	high	
rates	of	deforestation	 resulting	 from	factors	 ranging	 from	plantation	
agriculture	to	selective	logging,	with	the	latter	being	more	difficult	to	
detect	(Leinenkugel	et	al.,	2015).	Quantifying	the	ability	of	community	
forests	to	facilitate	forest	regeneration	and	curb	selective	logging	can	
help	to	inform	conservation	management	strategies.

2  | MATERIAL S AND METHODS

2.1 | Study area

Phnom	Kulen	National	Park	(PKNP)	is	located	48km	from	Siem	Reap	
in	northwestern	Cambodia	(Figure	1).	It	is	an	important	archaeologi-
cal	site,	a	critical	area	for	biodiversity,	and	a	significant	component	
of	the	regional	watershed	which	includes	the	World	Heritage	listed	
Angkor	Archaeological	Park.	In	terms	of	composition,	PKNP	is	mainly	
dominated	by	semi-	evergreen	forests	(with	isolated	patches	of	dry	
dipterocarp	forests).	However,	in	terms	of	land	use	forests	that	have	
undergone	varying	levels	of	degradation	as	a	result	of	activities	such	
as	selective	logging	and	swidden	agriculture	and	land	use	types	such	
as	cashew	plantations	now	dominate	PKNP.	Notably,	PKNP	is	home	
to	several	IUCN-	listed	species	of	international	concern,	including	the	
Pileated	Gibbon,	Indochinese	Silver	Langur,	Bengal	Slow	Loris,	and	
Binturong	(Hayes	et	al.,	2013;	Peou	et	al.,	2016).

F IGURE  2 Location	of	study	area	and	community	forests	in	PKNP
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Over	 recent	 decades,	 Cambodia	 has	 experienced	 some	 of	 the	
highest	rates	of	deforestation	globally	(Hansen	et	al.,	2013).	Despite	
its	protected	status,	PKNP	has	experienced	high	deforestation	and	
degradation	 rates	 and,	 as	 with	 other	 PAs	 in	 Cambodia,	 faces	 sig-
nificant	 threats	 from	 local	 resource	 extraction	 activities	 (Motzke	
et	al.,	 2012).	Additionally,	 several	 villages	 are	 located	within	or	on	
the	 boundary	 of	 PKNP.	Many	 of	 these	 villages	 have	 experienced	
significant	population	growth	due	to	people	relocating	in	search	of	
cheap	farmland	(DeFries	et	al.,	2010).	Furthermore,	the	villages	lo-
cated	within	the	boundary	of	PKNP	have	high	rates	of	poverty,	low	
educational	levels,	and	depend	heavily	on	forest	resources	for	their	
sustenance.

Community-	protected	 areas	 (CPAs)	 were	 established	 in	 dif-
ferent	 parts	 of	 PKNP	 2001	 onwards	 with	 assistance	 from	 the	
Food	and	Agriculture	Organization	 (FAO).	The	purpose	of	 these	
CPAs	was	 to	 promote	 the	 participation	 of	 local	 communities	 in	
forest	 conservation	 and	 allow	 the	 recovery	 of	 forest	 resources.	
The	 study	 area	 under	 consideration	 is	 a	 32	km2	 mixed	 forest-	
cashew	plantation	landscape	located	in	the	southwest	portion	of	
PKNP	(Figure	2).	It	comprises	of	two	CPAs:	Anlong	Thom	(CPA-	AT:	
2.7	km2)	 and	Khlah	Khmum	 (CPA-	KK:	 3.06	km2).	 Aside	 from	 the	
two	CPAs,	Archaeological-	Protected	Areas	(APAs)	have	also	been	
created	 within	 PKNP	 to	 protect	 vulnerable	 archaeological	 sites	
and	 forests	 from	 destructive	 agricultural	 practices	 and	 to	 build	
awareness	 in	 the	 local	 population	 about	 the	 natural	 environ-
ment	 and	 historical	 heritage	 (LiForest,	 2016).	 In	 addition	 to	 the	
CPAs,	four	APAs	are	present	in	our	study	area:	Neak	Ta	(APA-	NT:	
0.52	km2),	 Khlah	 Khmum	 (APA-	KK:	 0.94	km2),	 Rong	 Chen	
(APA-	RC:	3.98	km2),	and	Thma	Dap	(APA-	TD:	1.48	km2).	While	the	
establishment	of	the	CPAs	and	APAs	was	driven	by	slightly	differ-
ent	motives,	the	management	plans	of	both	the	community	forest	
types	seek	to	prevent	forest	loss	within	their	bounds	and	reduce	
human	encroachment.

2.2 | Field data collection

Field	 survey	was	 conducted	 in	March	2016	and	during	 this	 the	
geo-	locations	 of	 the	 different	 land	 cover	 types,	 including,	 for-
ests,	 cashew	 plantations	 and	 bare	 earth	 were	 collected.	 The	
standard	FAO	definitions	of	forests	(which	is	common	for	all	the	
countries	in	the	world)	was	used;	“land	of	at	least	0.5	ha	covered	
by	trees	higher	than	5	m	and	with	a	canopy	cover	of	more	than	
10%,	 or	 by	 trees	 able	 to	 reach	 these	 thresholds,	 and	 predomi-
nantly	 under	 forest	 land	 use”	 (Hansen	 et	al.,	 2013).	 The	 survey	
revealed	 that	 the	community	 forests	were	comprised	mostly	of	
regenerating/secondary	 forests	while	 areas	outside	 these	were	
comprised	of	severely	degraded	forests,	agricultural/bare	areas	
and	cashew	plantations.	Bearing	in	mind	the	criticism	of	the	be-
spoke	 standard	definition	and	 for	 the	purpose	of	 this	 research,	
cashew	plantation	monocultures	were	given	their	own	category	
as	opposed	 to	 categorizing	 them	as	 forests.	The	 field-	collected	
geo-	locations	 were	 cross-	verified	 using	 high-	resolution	 Google	
Earth	imagery.

2.3 | Remote sensing data used

2.3.1 | Spaceborne optical and radar data

Spaceborne	optical	and	radar	data	 in	 the	form	of	Landsat	TM	and	
ALOS	 PALSAR,	 respectively,	 were	 used	 in	 this	 research.	 Landsat	
TM	data	 (path	127,	 row	51	with	spatial	 resolution	30m)	for	March	
2011–2015	were	 downloaded	 from	 Earth	 Explorer.	 The	month	 of	
Landsat	data	acquisition	was	selected	to	match	the	season	of	LiDAR	
data	 acquisition.	Raw	Landsat	 data	were	 converted	 to	 surface	 re-
flectance	by	applying	both	radiometric	and	atmospheric	correction	
to	these	data	through	the	freely	available	software	CLASlite	(Asner,	
Lactayo,	Tupayachi,	&	Luna,	2013;	Asner	et	al.,	2009).	In	addition	to	
atmospheric	corrections,	masking	of	clouds	and	haze	was	carried	out	
by	 the	software.	An	Automated	Monte	Carlo	Un-	mixing	algorithm	
that	uses	a	probabilistic	subpixel	analysis	approach	was	used	to	de-
compose	 the	 surface	 reflectance	data	 into	 fractional	 cover	 (Asner	
et	al.,	2009).	Under	the	subpixel	analysis	approach,	each	pixel	of	the	
data	 is	 decomposed	 into	 a	 fraction	 of	 photosynthetic	 vegetation	
(PV),	nonphotosynthetic	vegetation	(NPV),	and	bare	substrate	(BS).	
The	recommended	threshold	values	of	PV	>	80%	and	BS	<	20%were	
used	to	decompose	the	fractional	cover	image	into	binary	maps	of	
forest	and	nonforest	cover	 (Asner	et	al.,	2009;	Bryan	et	al.,	2013).	
The	 binary	maps	of	 forest–nonforest	 areas	 have	been	 extensively	
derived	using	CLASLite	 for	other	parts	of	 the	world	 including	 the	
Peruvian	Amazon	where	they	helped	to	identify	the	increased	forest	
cover	loss	within	the	protected	areas	as	a	result	of	mining	(Asner	&	
Tupayachi,	2017).

The	 surface	 reflectance	 data	 obtained	 from	 CLASlite	 were	
used	 to	 derive	 the	 Normalized	 Vegetation	 Index	 (NDVI),	 which	 is	
a	 commonly	 used	 indicator	 of	 vegetation	 greenness	 and	 health.	
More	degraded	ecosystems	have	 lower	values	of	NDVI	 (Meneses-	
Tovar,	2011).	NDVI	values	for	both	2011	and	2015	were	computed	
from	 the	near	 infra-	red	 and	 red	bands	of	 the	 Landsat	 data.	ALOS	
PALSAR	 data	 with	 a	 spatial	 resolution	 of	 25m	 were	 downloaded	
from	the	 JAXA	website	 (EORC-	JAXA,	2016).	These	data	are	avail-
able	 at	 5-	year	 intervals	 and	were	 thus	 downloaded	 for	 2010	 and	
2015.	 These	 data	 have	 dual	 polarization:	HH	 (horizontal	 transmit,	
horizontal	receive)	and	HV	(horizontal	transmit,	vertical	receive)	and	
are	provided	in	the	Digital	Number	(DN)	format.	In	order	to	obtain	
the	 backscatter	 values,	 the	 DN	 values	 of	 both	 HH	 and	 HV	were	
converted	to	the	normalized	radar	cross-	section	(σ0)	(Avtar,	Suzuki,	
Takeuchi,	&	Sawada,	2013).	An	Enhanced	Lee	filter	was	applied	to	
reduce	speckles.	HH	and	HV	values	were	used	to	calculate	the	Radar	
Forest	Degradation	Index	(RFDI),	a	radar-	derived	measure	of	forest	
degradation	(Mitchard	et	al.,	2011)	using	the	Equation	1	(Singh	et	al.,	
2017):

The	 backscatter	 values	 of	HH	 and	HV	 are	 strongly	 associated	
with	 the	 forest	 structural	 components,	 orientation,	 and	 canopy	
cover	(Mitchard	et	al.,	2011).	RFDI	values	are	obtained	on	a	scale	of	

(1)RFDI= (HH−HV)∕(HH+HV)
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0	to	1.	When	the	canopy	opens	up	(as	a	consequence	of	logging	and	
deforestation),	 RFDI	 values	 go	 up.	 Completely	 cleared	 areas	 have	
RFDI	value	of	1,	while	undisturbed	forests	have	RFDI	values	ranging	
from	0.3	to	0.4	(Saatchi,	Houghton,	Dos	Santos	Alvala,	Soares,	&	Yu,	
2007).	Lower	values	of	RFDI	indicate	higher	levels	of	forest	canopy	
cover	and	intactness	(Singh	et	al.,	2017).

2.3.2 | Airborne LiDAR

LiDAR	data	were	acquired	over	the	study	area	 in	March	2012	and	
April	2015	(Evans,	2016;	Evans	et	al.,	2013).	For	both	data	acquisi-
tions,	a	Leica	ALS60	laser	system	and	a	40	megapixel	Leica	RCD105	
medium-	format	camera	within	an	external	pod	were	used	by	mount-
ing	to	the	left	skid	of	a	Eurocopter	AS350	B2	helicopter	(Evans,	2016).	
For	our	study	area,	the	2012	data	were	derived	from	discretized	full	
waveform	data	acquired	in	both	N-	S	and	E-	W	strips,	while	the	2015	
data	represent	a	combination	of	discrete-	return	data	(NW-	SE	strips)	
and	discretized	points	from	full	waveform	data	acquired	in	NW-	SE	
strips.	The	point	density	of	the	2012	LiDAR	data	was	12	points/m2 
(Singh	et	al.,	2016)	and	the	LiDAR	data	collected	 in	2015	were>15	
points/m2	 (Evans,	2016).	 In	order	 to	achieve	 this	 level	of	accuracy	
and	point	density,	was	achieved	by	flying	at	altitudes	of	800–1000	
m	above-	ground	level	at	a	speed	of	80	knots,	with	the	ALS70	config-
ured	to	Multipulse	in	Air	(MPiA).	The	pulse	rate	was	500	kHz	with	a	
scan	angle	of	45°	from	nadir	and	a	swath	side-	lap	of	50%	(i.e.,	almost	
all	terrain	was	scanned	twice	from	different	angles).	Aircraft	attitude	
was	measured	by	a	Honeywell	CUS6	IMU	at	a	rate	of	200	kHz	and	
positional	data	was	logged	at	2	Hz	using	a	survey-	grade	L1/L2	GNSS	
receiver	mounted	in	the	tail	rotor	assembly	(Evans,	2016).	These	data	
were	classified	into	ground	and	nonground	points	using	the	LiForest	
software	 (LiForest,	 2016).	 It	 has	 been	 suggested	 that	 LiDAR	 data	
with	point	density	>0.5	pulses/m2	produce	reliable	estimates	of	the	
forest	canopy	(Hansen	et	al.,	2013)	and	LiDAR	data	with	pulse	den-
sity	greater	than	1	pulse/m2	have	limited	impact	on	estimating	forest	
structure	 variables	 (Andersen,	 Reutebuch,	McGaughey,	 d’Oliveira,	
&	Keller,	2014).	Hence,	no	thinning	of	the	2015	LiDAR	dataset	was	
carried	out.

Ground	 returns	were	used	 to	derive	 a	Digital	 Elevation	Model	
(DEM)	 while	 vegetation	 returns	 were	 used	 to	 generate	 a	 Canopy	
Height	 Model	 (CHM)	 giving	 the	 upper	 boundary	 of	 the	 canopy	
(Popescu	&	Zhao,	2008).	The	CHM	and	DEM	were	generated	at	a	
resolution	 of	 1m	 (LiForest,	 2016).	 Furthermore,	 LiForest	 software	
was	 used	 for	 isolating	 individual	 trees	 from	 the	 LiDAR	 data	 and	
extracting	 their	 individual	 locations,	 associated	 tree	 heights	 and	
crown	area	(LiForest,	2016).	The	individual	scale	LiDAR-	derived	tree	
heights	were	scaled	to	the	plot	scale	for	both	2012	and	2015	(Singh	
et	al.,	2016).

Points	with	elevation	values	greater	than	the	height	break	of	
2m	were	considered	to	be	tree	points	and	the	ratio	of	LiDAR	re-
turns	less	than	the	height	break	to	the	total	number	of	returns	was	
computed	to	produce	estimates	of	gap	fractions	at	a	15m	resolu-
tion	 (LiForest,	 2016).	 The	 resulting	 point	 densities	 for	 the	 2012	
data	within	 our	 study	 area	 are	 12	 points/m2	 for	 the	 2015	 data,	

point	densities	are	16	points/m2	 (Evans,	2016).	The	gap	 fraction	
values	 range	 from	0%	 to	100%	where	0	means	 a	 closed	 canopy	
and	 100%	 means	 an	 open	 canopy	 [19].	 Canopy	 cover	 was	 also	
extracted	 for	 the	 entire	 study	 area	 (Chen	 et	al.,	 2014).	 Previous	
research	 conducted	 in	 the	 degraded	 tropical	 forests	 of	 Angkor	
Thom	(which	too	are	located	in	this	region	and	have	a	similar	land	
use	 context	 of	 forests;	 Singh	 et	al.,	 2016)	 established	 a	 log–log-	
based	aerial	data-	derived	canopy	cover	allometric	model	 is	most	
robust	for	scaling	up	the	field	estimates	of	AGB	and	produces	the	
best	 estimates	 of	 landscape	 scale	 forest	 biomass	 for	 the	 region	
(equation	2).

This	 equation	 was	 used	 to	 produce	 AGB	 estimates	 for	 both	
2012	and	2015	using	the	aerial	imagery-	derived	canopy	cover	as	
previously	done	 in	 (Singh,	Evans,	Friess,	Tan,	&	Nin,	2015;	Singh	
et	al.,	 2016).	 Similar	 log–log-	based	 models	 have	 been	 used	 for	
landscape	 scale	 biomass	 mapping	 with	 LiDAR-	derived	 variables	
in	other	tropical	forest	ecosystems	as	well	 (Réjou-	Méchain	et	al.,	
2015).

In	addition	to	these,	relative	density	models	 (RDMs)	were	com-
puted	from	the	LiDAR	data	of	2012	and	2015.	This	metric	helps	to	
map	the	impact	of	logging	roads,	skid	trails,	and	landings.	It	is	a	ras-
ter	 layer	 indicating	 the	percentage	of	LiDAR	 returns	within	a	user-	
specified	above-	ground	height	category	(Andersen	et	al.,	2014).	This	
was	derived	using	LAStools	by	using	the	return	data	both	1m	above	
the	ground	and	from	1m	to	10m	above	the	ground	as	done	previously	
(LiForest,	2016).	High	RDM	values	suggest	a	relatively	intact	under-
story	with	low	skidding	impact	and	lower	RDM	values	indicate	under-
story	damage	(Ellis,	Griscom,	Walker,	Gonçalves,	&	Cormier,	2016).

2.4 | Data analysis

Wilcoxon	 paired	 sample	 tests	were	 applied	 to	 examine	whether	
the	 LiDAR-	derived	 forest	 structure	 variables	 had	 changed	 sig-
nificantly	 between	2012	 and	2015.	 This	 is	 a	 nonparametric	 test	
that	 does	 not	 need	 the	 assumption	 of	 normally	 distributed	 data	
(Gaveau	 et	al.,	 2009;	 Grandin,	 2011).	 The	 temporal	 changes	 in	
LiDAR-	derived	 tree	 heights,	 crown	 area,	 and	 LiDAR-	derived	 %	
gap	 fraction	 from	2012	 to	2015	were	evaluated	using	Wilcoxon	
paired	sample	tests.	Additionally,	the	temporal	variation	in	NDVI	
from	2011	to	2015	and	RFDI	from	2010	to	2015	were	examined	
using	this	technique	as	well.	The	temporal	NDVI	evaluates	how	the	
greenness	 value	 had	 changed	between	 the	 different	 community	
forest	 areas	 in	 the	given	 two	 time	periods	while	RFDI	evaluates	
the	change	in	forest	degradation	for	the	two	time	periods.	While	
the	 initial	LiDAR	data	were	collected	 in	2012,	 the	 initial	Landsat	
and	ALOS-	PALSAR	data	were	collected	in	2011	and	2010	respec-
tively.	In	case	of	Landsat,	the	data	were	collected	in	March	2011	
(same	 season	 as	 LiDAR	 2012	 acquisition)	 to	 minimize	 the	 pho-
nological	 interference	 from	 seasonality.	 Further	 since	 very	 little	

(2)Ln(AGB)=6.05+2.828∗Ln(Canopy Cover)+error
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large-	scale	forest	cover	changes	are	reported	to	have	occurred	in	
the	immediate	study	area	after	2010,	the	2011	Landsat	and	2010	
ALOS	are	deemed	appropriate	for	our	purpose.

CLASlite-	derived	 Landsat	 forest/nonforest	maps	were	used	 to	
compute	forest	gain,	loss	and	persistence	from	2012	to	2015	using	
a	cross-	tabulation	module	provided	within	the	IDRISI	Land	Change	
Modeller	 (Kitzberger,	 Raffaele,	 &	 Veblen,	 2005;	 Schulz,	 Cayuela,	
Echeverria,	 Salas,	&	Benayas,	 2010).	 This	 is	 a	 statistical	 technique	
to	 identify	patterns	of	 land	cover	change	and	map	spatial	distribu-
tions	of	forest	persistence,	gain,	and	loss	(Schulz	et	al.,	2010).	One	
of	 the	 leading	causes	of	deforestation	 in	 the	study	area	 is	 the	es-
tablishment	of	cashew	plantation	monocultures.	The	binary	forest/
nonforest	 cover	 maps	 derived	 from	 CLASLite	 cannot	 identify	 ca-
shew	 plantations.	Hence,	 a	 combination	 of	 Landsat-	derived	NDVI	
and	 LiDAR-	derived	 canopy	 heights	 was	 used	 in	 conjunction	 with	
field	data	(locations	of	the	different	land	use	types)	to	produce	a	3	
class	forest	map	(forests,	cashew	plantations,	and	bare	earth)	using	
a	machine	 learning	 algorithm,	 random	 forests	 (RF)	 for	 both	 2012	
and	2015.	RF	 is	a	nonparametric	technique	developed	by	Brieman	
in	 2001	 (Breiman,	 2001).	 It	 is	 an	 ensemble-	based	modelling	 tech-
nique	where	individual	classifiers	are	built	and	later	combined	to	im-
prove	predictive	performance	(Devaney,	Barrett,	Barrett,	Redmond,	
&	John,	2015).	This	technique	can	work	with	high-	dimensional	data	
and	 correlated	 predictors	 and	 has	 thus	 been	 extensively	 used	 for	
land	use	classification	(Gislason,	Benediktsson,	&	Sveinsson,	2006).	
For	classification	purposes,	an	ensemble	of	individual	decision-	tree	
classifiers	is	created	and	these	are	combined	using	a	majority	voting	
scheme.	The	individual	trees	are	constructed	using	a	bootstrap	sam-
ple	of	the	training	data,	whereby	the	training	is	performed	on	two-	
thirds	of	the	data	samples	and	the	remaining	one-	third	of	the	data	
samples	are	omitted.	The	latter	is	used	for	testing	the	robustness	of	
the	developed	model	(Devaney	et	al.,	2015).	In	this	research,	the	RF	
classification	was	carried	out	by	using	70%	of	the	data	for	training	
and	30%	for	testing	in	the	R	programming	language.

3  | RESULTS

3.1 | Overall forest cover change patterns

The	binary	Landsat	 forest/nonforest	cover	maps	derived	 for	2011	
and	2015	were	examined	for	the	temporal	changes	in	forest	cover	

using	IDRISI	(Figure	3).	It	was	discovered	that	over	a	4-	year	period,	
the	forest	cover	in	the	study	area	had	declined	by	more	than	20%.

The	 forest	 cover	persistence	and	gain	 in	 the	entire	 study	area	
from	2011	to	2015	was	53%	and	16%,	respectively	(Figure	4).

Compared	 to	 the	 overall	 study	 area,	 the	 persistence	 of	 forest	
cover	was	much	higher	in	the	community	forests	(Table	1).

A	visual	inspection	of	the	forest	cover	loss,	gain,	and	persistence	
map	 (Figure	3)	 also	 reveals	 that	 the	 community-	protected	 forests	
are	dominated	by	persistent	forest	cover.

Furthermore,	the	three	class	Landsat-	LiDAR	forest	maps	devel-
oped	for	both	the	time	periods	using	random	forests	showed	high	
levels	 of	 accuracy.	 The	 2012	 Landsat-	LiDAR	 based	 3	 class	 forest	
cover	map	was	found	to	have	an	overall	accuracy	of	98%	and	kappa	
of	0.97	on	the	test	data.	The	2015	Landsat-	LiDAR-	based	3	class	for-
est	 cover	map	was	 found	 to	have	an	overall	 accuracy	of	99%	and	
kappa	of	0.98	on	the	test	data.

Analysis	of	these	two	random	forest-	based	maps	also	indicated	
high	levels	of	forest	cover	retention	within	the	community	forests.	
Further	analysis	of	these	data	also	revealed	that	overall	forest	cover	
declined	by	20.4%	across	 the	entire	 study	 area.	 This	 is	 consistent	
with	the	findings	of	Figure	3,	which	also	indicate	a	similar	decline	in	
forest	cover	values	(with	the	Landsat-	based	forest–nonforest	maps).

Analysis	 of	 the	 random	 forest-	derived	 Landsat-	LiDAR	 maps	
also	 revealed	 that	 cashew	 plantations	 increased	 by	 7.5%	 and	 the	
bare	ground	increased	by	70.8%.	In	all,	4	km2	of	forests	in	the	area	
were	converted	to	cashew	plantations	from	2012	to	2015	(Figure	5).	
Figure	5	shows	the	areas	converted	to	cashew	plantations	by	2015.

A	visual	examination	of	Figure	5	indicates	that	cashew	plantations	
have	penetrated	the	community	forests	marginally	and	that	most	of	
the	forest-	cashew	plantation	conversions	have	occurred	outside	the	
community	 forests.	 In	addition	to	examining	the	changes	 in	 forest	
cover	and	cashew	plantation	expansion,	we	have	examined	the	spa-
tial	distribution	of	canopy	height	changes	using	LiDAR.	Furthermore,	
the	changes	 in	forest	structural	and	spectral	properties	within	the	
community	forests	from	2012	to	2015	were	also	examined.

3.2 | Changes in forest structure from 2012 to 2015

Wilcoxon	paired	sample	test	discovered	that	tree	heights	for	all	com-
munity	forests	varied	significantly	between	2012	and	2015.	Except	
for	APA-	KK,	 average	 tree	 heights	 increased	 slightly	 from	2012	 to	

F IGURE  3 Landsat-	derived	forest	
cover	change	from	2011	to	2015
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F IGURE  4 Forest	persistence,	gains,	and	losses	from	2011	to	2015
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2015	as	 in	APA-	RC.	Except	 for	APA-	RC,	 the	average	crown	diam-
eters	varied	significantly	between	2012	and	2015	and	an	 increase	
in	crown	diameter	was	seen	in	all	cases.	The	average	values	of	these	
parameters	 (along	with	 their	 standard	 deviations)	 have	 been	 pro-
vided	in	Table	2:

In	addition	to	tree	heights	and	crown	areas,	there	was	a	statis-
tically	 significant	 difference	 in	 the	 percentage	 gap	 fraction	 from	
2012	to	2015	for	all	the	community	forests	except	APA-	TD.	The	gap	
fractions	 show	 signs	 of	 recovery	 in	 all	 the	APAs	 except	 the	CPAs	
and	have	 increased	 slightly	 in	 the	CPAs.	 Some	of	 the	AGB	values	
decline	in	community	forests	while	others	increase	(i.e.,	except	for	
CPA-	KK	and	CPA-	AT	where	the	AGB	value	declined	by	3%	and	4.4%,	
respectively,	the	AGB	values	of	all	the	community	forests	increased	
significantly	from	2012	to	2015).

In	addition	to	the	analysis	of	the	variation	in	LiDAR-	derived	for-
est	 canopy	 structure,	 ALOS	 PALSAR	 and	 Landsat	 data	 were	 also	
used	to	derive	measures	of	forest	degradation	(RFDI)	and	green	veg-
etation	 concentration	 (NDVI)	 across	 the	 community	 forests	 in	 the	
two	time	periods	(Table	3).

NDVI	was	significantly	different	for	all	the	community-	protected	
areas	 between	 2012	 and	 2015,	 and	 it	 increased	 by	 29.6%,	 17%,	
18.2%,	 20.3%,	 22.6%,	 and	 24.1%	 for	 APA-	KK,	 APA-	NT,	 APA-	RC,	
APA-	TD,	CPA-	KK,	and	CPA-	AT,	respectively,	 indicating	an	 increase	
in	 greenness	 of	 all	 community	 forests.	 RFDI	was	 significantly	 dif-
ferent	between	2012	and	2015	for	APA-	NT,	APA-	RC,	CPA-	AT,	and	
CPA-	KK.	 For	 both	 CPA-	AT	 and	 CPA-	KK,	 the	 RFDI	 increased	 by	
4.17%	and	3.7%,	 respectively,	 indicating	a	slight	 increase	 in	 forest	
degradation.	RFDI	of	APA-	NT	decreased	by	3.2%,	 indicating	a	de-
cline	in	forest	degradation.

3.3 | Impacts of selective logging

Visual	inspection	of	the	LiDAR-	derived	CHM	shows	that	individual	
canopy	 trees	 that	were	 present	 in	 2012	 are	 no	 longer	 present	 in	
2015	in	the	differently	selected	community	forests	(Figure	6):

Loss	of	individual	trees	in	different	community	forests	took	place	
across	 the	 different	 tree	 height	 classes.	 CPA-	AT	 lost	 3.46%	 trees	
with	heights	 less	 than	10m.	APA-	KK	 lost	4.5%	 trees	 in	 the	height	
category	20–30	m	and	3.15%	trees	in	the	height	category	30–40	m.	
APA-	TD	 lost	 5.12%	 and	 5.7%	 of	 trees	 in	 categories	 20–30	m	 and	

30–40	m,	respectively.	The	RDM	values	declined	for	all	the	commu-
nity	forests	from	2012	to	2015	(Table	4).

The	decline	 in	RDM	was	5.2%,	10.3%,	14.5%,	6.3%,	50%,	 and	
48.4%	in	APA-	KK,	APA-	NT,	APA-	RC,	CPA-	KK,	and	CPA-	AT,	respec-
tively.	 An	 analysis	 of	 road	 density	 obtained	 by	 digitizing	 Google	
Earth	maps	from	2003	to	2014	revealed	that	the	community	forests	
can	be	accessed	via	logging	trails	(see	Supplementary	Material	1).

4  | DISCUSSION

4.1 | Changes in forest cover and structure of the 
community forests

Analysis	of	the	Landsat-	based	binary	forest–nonforest	map	revealed	
that	all	 the	community	 forests	have	much	higher	 level	persistence	
of	forest	cover	persistence	(72%–99%)	compared	to	the	wider	land-
scape,	where	more	than	20%	of	forest	cover	was	lost	in	these	three	
years.	However,	binary	forest	cover	maps	are	unable	to	distinguish	
between	different	 forest	 types,	 including	plantation	monocultures	
(Tropek	et	al.,	2014).	The	3	class	Landsat-	LiDAR	map	also	indicates	
a	forest	cover	decline	of	20%	in	the	time	period.	These	findings	are	
consistent	with	 the	 research	 done	 by	Davies,	Murphy,	 and	 Bruce	
(2016)	 in	 PKNP,	which	 indicated	 an	 increase	 in	 the	 proportion	 of	
PKNP	undergoing	forest	decline.

Unlike	 the	binary	 forest	 cover	 class	 produced	by	ClaSLite,	 the	
3	class	LiDAR-	Landsat	map	helped	spatially	map	 forest	areas	con-
verted	 to	 cashew	 plantations	 and	 indicated	 limited	 encroachment	
of	these	plantations	into	community	forests.	We	note	that	the	area	
under	cashew	plantations	 increased	by	15%	from	7.4	 to	13.3	km2. 
Field	research	indicates	that	one	of	the	community	forests,	APA-	NT,	
has	high	levels	of	cashew	plantations,	which	had	mainly	been	estab-
lished	before	the	APA	was	formally	designated.	Hence	the	cashew	
plantations	observed	within	the	community	forest	predate	the	pe-
riod	of	analysis.

All	 community	 forests	 have	 also	 seen	 a	 significant	 increase	 in	
NDVI	values	which	may	be	attributed	to	an	increase	in	forest	cover	
(Song,	Huang,	Sexton,	Channan,	&	Townshend,	2014).	NDVI	is	a	ro-
bust	 indicator	 for	 mapping	 forest	 degradation,	 regeneration,	 and	
successional	patterns	and	has	been	used	for	quantifying	these	in	the	
tropical	 forests	of	Mexico	and	Congo	 (Hartter,	 Lucas,	Gaughan,	&	
Aranda,	2008;	Njomo,	2008).	The	forest	cover	gain	in	the	different	
community	forests	ranges	from	0.2%	to	24.6%.	However,	NDVI	in-
creases	do	not	always	correspond	to	forest	cover	increase	which	is	
why	RFDI,	a	measure	of	forest	degradation	change	was	computed	as	
well.	It	is	remarked	that	in	cases	where	an	increase	in	NDVI	corre-
sponds	to	a	decrease	in	RFDI	(this	being	an	indicator	of	decreasing	
forest	degradation),	 it	may	be	argued	that	forest	regeneration	may	
be	underway.	A	combination	of	RFDI	and	Landsat-	based	greenness	
measures	was	previously	used	to	quantify	the	varying	levels	of	deg-
radation	in	a	human-	modified	tropical	forest	ecosystem	in	Lao	PDR	
(Singh	et	al.,	2017).

The	analysis	of	LiDAR-	derived	canopy	heights	and	crown	areas	
indicates	that	in	all	cases	except	one,	these	have	increased	in	all	the	

TABLE  1 Forest	cover	persistence,	gain,	and	loss	in	the	
community	forests	2011–2015

%Forest cover 
persistence

%Forest cover 
loss

%Forest 
cover gain

APA-	KK 71.9 3.6 24.6

APA-	NT 76.9 9.12 14

APA-	RC 72.4 14.3 13

APA-	TD 84.2 7.06 8.7

CPA-	KK 78 11 11.1

CPA-	AT 98.9 0.8 0.2
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F IGURE  5 The	spread	of	cashew	plantations	from	2011	to	2015
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community	forests.	The	canopy	gap	fractions	have	declined	for	all	
the	APAs	(but	increased	slightly	for	the	CPAs).

While	 the	 AGB	 of	 the	 APAs	 has	 increased	 considerably	 from	
2012	to	2015,	it	has	undergone	a	slight	decline	in	the	CPAs	(which	
have	also	had	a	slight	increase	in	the	canopy	gap	fractions).	Previous	
research	has	established	that	regenerating	forests	can	accumulate	a	
large	amount	of	carbon	(Lasco,	Visco,	&	Pulhin,	2001;	Mukul	et	al.,	
2016).	Forest	regeneration	and	associated	increases	in	forest	cover	
facilitate	 the	 rapid	 increase	 in	carbon	stocks	 (Lohbeck,	2016).	The	
decline	 in	 canopy	 gap	 fractions	 (and	 consequently	 an	 increase	 in	
canopy	cover)	is	a	sign	of	regeneration	in	tropical	forests	(Espirito-	
Santo	et	al.,	 2006;	Filer,	Keenan,	Allen,	&	Mcalpine,	2009).	 This	 is	
reflected	 in	 the	 AGB	 changes	 of	 the	 different	 community	 forests	
as	well.	Moreover,	analysis	of	the	ALOS-	derived	forest	degradation	
metric	(RFDI)	indicated	that	forest	degradation	has	increased	slightly	
in	the	CPAs	and	decreased	in	the	APAs.	It	may	be	inferred	that	the	
increase	in	forest	degradation	(measured	by	RFDI)	has	had	a	detri-
mental	effect	on	the	canopy	cover/gap	fraction	of	the	CPAs	which	in	
turn	led	to	a	decline	in	AGB	stocks.	Findings	by	Pfeifer	et	al.	indicate	
that	canopy	cover	(and	AGB)	declines	as	we	move	from	virtually	in-
tact	forests	to	 logged	forests	to	oil	palm	plantations	(Pfeifer	et	al.,	
2016).

RFDI	was	previously	used	by	Mitchard	et	al.	(2012)	to	help	distin-
guish	between	the	different	forest	classes	(Mitchard	et	al.,	2011)	and	
mapping	 the	 temporal	 variation	 in	 forest	 degradation	 (Joshi	 et	al.,	
2015)	in	African	forests.	RFDI	was	also	used	for	mapping	forest	deg-
radation	in	the	different	forest	types	of	human-	modified	ecosystems	
of	 Laos	 (Singh	 et	al.,	 2017).	While	 developing	 formal	 relations	 be-
tween	AGB	and	RFDI	is	not	the	focus	of	this	research,	the	findings	
suggest	 that	RFDI	mapping	can	be	undertaken	as	a	way	of	 identi-
fying	areas	that	have	undergone	high	levels	of	degradation	and	are	
susceptible	to	 losing	their	AGB	stocks.	This	can	be	especially	ben-
eficial	 for	monitoring	degradation	 (and	 its	 impacts)	 in	areas	where	
LiDAR	and	other	high-	resolution	data	sources	are	not	available	for	
fine-	scale	AGB	mapping.

Forest	 degradation	 is	 a	 spatially	 diverse	 phenomenon	 which	
unlike	deforestation	can	also	occur	 in	forest	ecosystems	that	have	
high	 or	 even	 near-	intact	 canopy	 coverage	 (Joshi	 et	al.,	 2015).	Our	
research	backs	up	these	findings;	even	though	the	community	for-
ests	have	retained	>70%	forest	cover	and	see	an	increase	in	NDVI,	
the	CPAs	continue	to	suffer	from	small	levels	of	degradation	which	
is	reflected	in	the	increase	in	canopy	gap	fraction	and	decline	in	AGB	
stocks.

Selective	 logging	 for	 valuable	 tree	 species	 is	 a	 leading	 cause	
of	 forest	degradation	 in	the	countries	of	Southeast	Asia,	 including	
Cambodia	 (Miettinen,	Stibig,	&	Achard,	2014).	This	has	an	adverse	
impact	 on	 forest	 structure	 parameters	 such	 as	 stand-	scale	 tree	
heights,	AGB,	gap	fractions,	and	species	composition	 (Asner	et	al.,	
2004;	Gatti	et	al.,	2015;	Osazuwa-	Peters,	Chapman,	&	Zanne,	2015;	
Rutishauser,	Hérault,	Petronelli,	&	Sist,	2016).	However,	selectively	
logged	forests	have	been	known	to	recover	a	substantial	proportion	
of	their	AGB	stocks	within	a	few	decades,	although	the	impact	still	
persists	in	the	tree	species	composition	and	distribution	after	several	TA
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decades	 (Gourlet-	Fleury	 et	al.,	 2013;	 Ngo	 et	al.,	 2013;	 Osazuwa-	
Peters	et	al.,	2015).	A	research	of	175	1-	ha	plots	indicated	that	large	
dominant	tree	species	contribute	significantly	to	AGB	stocks;	1.5%	
of	 the	dominant	 species	 accounted	 for	50%	of	 the	AGB	 stocks	 in	
Africa	(Bastin	et	al.,	2015).	However,	since	details	of	the	individual	
tree	species	composition	of	the	community	forests	are	not	known,	it	
is	not	possible	to	measure	how	the	removal	of	specific	tree	species	
influences	 AGB	 stocks	 in	 these	 forests.	 However,	 identifying	 and	
monitoring	 selective	 logging	 and	 its	 impacts	 can	 help	 to	 facilitate	
improved	conservation	management	including	the	tracking	of	large	
trees	in	the	target	areas.

4.2 | Monitoring selective logging

An	 examination	 of	 the	 prominent	 roads/logging	 trails	 presents	
within	the	study	area	indicates	that	all	the	community	forests	within	
the	 study	 area	 can	 be	 accessed	 using	 them	 and	 that	many	 of	 the	
community	 forests	 are	 located	 in	 or	 near	 areas	 of	 high	 road	 den-
sity	 (see	 Supporting	 information	 Figure	 S1).	 It	 should	 be	 stressed	
that	 about	 two-	thirds	 of	 over	 4,500	 people	 that	 are	 living	 on	 the	
plateau	across	10	villages	are	farmers	who	practice	slash	and	burn	
clearing	and	cashew	nut	cultivation.	When	interviewed,	park	rangers	
stated	that	ongoing	resource	extraction	from	the	community	forests	

remains	 an	ongoing	 concern.	These	 interviews	also	 confirmed	 the	
ongoing	problem	of	selective	luxury	hardwood	removal	in	PKNP,	and	
that	a	pervasive	network	of	roads/logging	trails	contributes	substan-
tially	to	that	problem.

Interviewees	 also	 indicated	 that	 individual	 tree	 removal	 was	
being	 carried	 out	 on	 an	 ad	 hoc,	 opportunistic	 basis	 rather	 than	 a	
planned,	systematic	program	of	timber	extraction.	Future	research	
will	benefit	 from	a	detailed	analysis	of	both	 the	 temporal	changes	
in	road	density	and	its	impact	on	individual	tree	removal	and	forest	
cover	loss.

An	analysis	of	relative	density	measure	(RDM)	also	revealed	that	
all	community	forests	had	faced	an	increase	in	understory	damage	

NDVI 2011 (%) NDVI 2015 (%) RFDI 2010 (%) RFDI 2015 (%)

APA-	KK 54 70 58 57.7

APA-	NT 53 62 61.7 60

APA-	RC 55 65 56.7 57.1

APA-	TD 59 71 56.4 56.3

CPA-	KK 58 71.1 54 56.2

CPA-	AT 62 79 49 51

Notes.	NVDI	stands	for	Normalized	Vegetation	Index,	APA	stands	for	Archeological-	Protected	Area	
which	is	classified	into	four	such	as	Khlah	Khmum	(KK),	Neak	Ta	(NT),	Rong	Chen	(RC),	and	Thma	Dap	
(TD),	 and	 CPA	 stands	 for	 Community-	Protected	 Area	 with	 its	 two	 classifications	 such	 as	 Khlah	
Khmum	(KK)	and	Anlong	Thom	(AT).

TABLE  3 Variation	in	forest	greenness	
and	degradation	(2012–2015)

F IGURE  6  Individual	tree	difference	in	
forest	canopy	of	a	community	forest	from	
2012	to	2015

TABLE  4 RDM	values	of	community	forests	from	2012	to	2015

RDM 2012 (%) RDM 2015 (%)

APA-KK 95 90

APA-NT 97 87

APA-RC 96 82

APA-TD 96 90

CPA-KK 96 48

CPA-AT 95 49
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caused	by	skidding	and	haulage,	which	are	the	hallmarks	of	selective	
logging	for	specific	tree	species	(the	RDM	had	decreased	for	all	the	
community	 forests;	 Andersen	 et	al.,	 2014;	 d’Oliveira,	 Reutebuch,	
McGaughey,	&	Andersen,	2012).	However,	the	decline	in	RDM	was	
especially	large	for	the	CPAs.	This	is	arguably	linked	to	an	increase	
in	forest	degradation	 in	these	from	2012	to	2015	 (measures	using	
RFDI)	and	a	consequent	increase	in	the	canopy	gap	fraction	and	de-
cline	 in	 the	AGB	 stocks.	 The	RDM	metric	was	previously	 used	by	
Andersen	et	al.	to	quantify	the	increase	in	the	area	impacted	by	the	
hallmarks	 of	 selective	 logging-		 skidding	 trails,	 haulage,	 and	 roads	
from	2010	to	2011	in	the	Brazilian	Amazon	(Andersen	et	al.,	2014).	
It	was	also	discovered	that	areas	impacted	by	these	activities	related	
to	selective	 logging	had	a	higher	 rate	of	AGB	 loss	as	compared	 to	
the	 nonimpacted	 areas	 (Andersen	 et	al.,	 2014).	 This	 research	 also	
establishes	that	areas	with	a	steep	decline	in	RDM	values	lost	AGB	
from	2012	to	2015.	Additionally,	the	findings	would	indicate	that	the	
impact	of	 selective	 logging	 in	 terms	of	 increased	skidding	and	un-
derstory	damage	is	reflected	in	the	RFDI	metric,	which	is	essentially	
based	on	the	radar-	measured	changes	in	the	forest	canopy	(Mitchard	
et	al.,	2011;	Saatchi	et	al.,	2007).	ALOS	data	are	sensitive	to	patterns	
of	disturbance	and	 regrowth	and	were	used	 to	 characterize	 these	
patterns	from	2007	to	2010	for	the	Greater	Mekong	countries,	in-
cluding	Cambodia	(Chheng,	Mizoue,	Khorn,	Kao,	&	Sasaki,	2015).

A	 previous	 study	 carried	 out	 in	 the	 semi-	evergreen	 forests	 of	
Cambodia	 revealed	 that	 during	 selective	 logging,	 felling	 of	 larger	
trees	caused	severe	damage	to	the	surrounding	forest	(Chheng	et	al.,	
2015).	Meta-	scale	analysis	by	Martin	et	al.	revealed	different	logging	
techniques	influence	tree	damage,	AGB	storage,	and	tree	species	dy-
namics	differently	(Martin,	Newton,	Pfeifer,	Khoo,	&	Bullock,	2015).	
While	we	do	not	seek	to	establish	any	causality	between	RDM	and	
radar-	measured	 degradation,	 this	 research	 has	 demonstrated	 the	
utility	 of	 different	 sources	 in	 evaluating	 forest	 loss	 and	 degrada-
tion.	We	suggest	that	temporal	monitoring	of	forest	cover	change,	
especially	 in	 areas	 impacted	by	 selective	 logging	will	 benefit	 from	
evaluating	the	impact	of	different	 logging	regimes	and	methods	of	
felling	different	sized	trees	on	the	overall	forest	canopy.	Use	of	mul-
tiscale	remote	sensing	techniques	(together	with	field	data)	can	help	
to	quantify	 forest	degradation	and	 its	 impact	on	both	biodiversity	
and	carbon	(Bustamante	et	al.,	2016).

4.3 | Can community forests deliver conservation 
outcomes?

Our	study	area	covers	only	a	small	proportion	of	PKNP.	However,	
analysis	of	the	study	area	does	suggest	that	community-	protected	
forests	are	an	effective	bulwark	against	 large-	scale	deforestation/
slash-	burn	 clearance	 and	 plantation	 establishment.	 Indeed,	within	
our	 study	 area,	 the	 community	 forests	 had	 higher	 rates	 of	 forest	
cover	 retention	 as	 compared	 to	 areas	outside	 the	 community	 for-
ests.	 Furthermore,	 higher	 levels	 of	 forest-	to-	cashew	 plantation	
conversions	 were	 observed	 outside	 the	 community	 forests	 than	
inside.	 While	 our	 study	 area	 is	 relatively	 small	 and	 the	 changes	
were	examined	at	a	 relatively	narrow	 temporal	 scale,	on	 the	basis	

of	these	findings,	it	is	suggested	that	analysis	at	larger	spatial	scales	
and	 longer	 temporal	 scales	 could	be	undertaken	 to	better	help	 to	
understand	 the	 spatiotemporal	 dynamics	 of	 forest	 cover	 change.	
Specifically,	 future	 research	 proposes	 to	 scale	 up	 the	 analysis	 to	
the	scale	of	the	whole	of	PKNP	(and	include	other	Cambodian	PAs)	
to	conduct	a	detailed	analysis	of	 forest	cover	 retention	and	biodi-
versity	conservation	benefits	provided	by	different	protection	and	
management	 schemes,	 including	 community	 forests	 and	 strict	 na-
ture	reserves.

A	 meta-	scale	 study	 of	 the	 community	 forests	 in	 South	 and	
South-	East	Asia	 revealed	 that	 community	 forests	have	had	a	pos-
itive	 impact	on	 improving	tree	species	biodiversity	and	forest	bio-
mass	 production	 (Ravindranath,	Murali,	 &	 Sudha,	 2006).	 Previous	
research	has	discovered	that	community	forests	established	in	con-
sultation	with	local	people	had	higher	AGB	storage,	reduced	canopy	
openness	and	lower	anthropogenic	disturbance	in	the	district	of	Prey	
Long	 in	 Cambodia	 (Lambrick	 et	al.,	 2014).	 Policy	 research	 further	
suggests	including	local	rulemaking	autonomy	may	aid	national	scale	
REDD+	programs	(Hayes	&	Persha,	2010),	and	that	programs	man-
aged	by	local	organizations	garner	more	support	from	local	people	
(Clements	et	al.,	2010).	Virachey	National	Park,	an	IUCN	category	II	
park	 located	 in	northeastern	Cambodia,	partially	encompasses	the	
ancestral	home	of	an	ethnic	minority	group.	It	was	discovered	that	
the	resource	tenure	regimes	developed	locally	had	a	positive	impact	
on	 biodiversity	 and	 local	 livelihood	 outcomes	 (Baird	 &	 Dearden,	
2003).	However,	a	significant	drawback	of	this	research	is	that	it	has	
not	mapped	the	different	forest	types,	especially	forests	that	have	
faced	varying	levels	of	degradation.	While	this	literature	along	with	
the	 findings	of	 this	 research	do	 indicate	 the	positive	conservation	
outcomes	that	community	 forests	can	deliver,	 future	conservation	
prioritization	 may	 benefit	 from	 a	 more	 formalized	 comparison	 of	
community	 forests	 and	 more	 stricter	 categories.	 Future	 research	
will	 focus	on	 identifying	 the	 role	of	management	 regimes	 (of	both	
community	 forests	 and	 other	management	 schemes)	 in	 delivering	
conservation	outcomes.

Furthermore,	 it	 is	 important	 to	 identify	and	separate	out	plan-
tations	with	 the	higher	 level	 of	 accuracy.	A	 remote	 sensing-	based	
mapping	of	cashew	plantations	has	not	been	undertaken	before.	Our	
research	has	demonstrated	how	a	combination	of	remote	sensing-	
based	 data	within	 a	machine	 learning	 framework	 can	 help	 to	 dif-
ferentiate	land	use	types	and	facilitate	the	monitoring	the	changes	
in	 cashew	 plantation.	 Practical	 conservation	 management	 on	 the	
ground	will	significantly	benefit	from	detailed	mapping	of	the	differ-
ent	forest	types	in	the	study	area	using	multiple	RS	data	sources	and	
other	machine	learning	algorithms.

In	spite	of	the	ability	of	the	community	forests	to	retain	forest	
cover	and	allow	for	 the	recovery	of	 the	canopy	cover	 (and	associ-
ated	AGB	increases),	the	problem	of	selective	logging	of	luxury	hard-
woods	still	persists	within	them.	The	removal	of	large	trees	can	have	
an	 adverse	 impact	 on	 the	AGB	 stocks	 and	 trees	with	DBH>70cm	
have	a	considerable	impact	on	the	AGB	stocks	of	the	different	trop-
ical	 forests	across	 the	globe	 (Slik	et	al.,	2013).	Not	much	 is	known	
about	the	specific	hardwood	species	being	harvested	(or	their	size	
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variations)	 in	 the	study	area.	Hence,	 it	cannot	be	ascertained	how	
much	AGB	loss	can	be	attributed	to	the	removal	of	specific	tree	spe-
cies.	The	possibility	of	forest	patches	losing	AGB	stocks	as	a	result	of	
fragmentation	and	edge	effects,	in	the	long	run,	cannot	be	ignored	
(Pütz	et	al.,	2014).

A	detailed	analysis	of	field-	collected	forest	mensuration	data	in	
the	mixed	species	Dipterocarp	forests	of	Vietnam	revealed	that	al-
lometric	 equations	 developed	 for	 one	 site	may	 overestimate	AGB	
in	 other	 regions	 such	 as	 Indonesia,	 and	 allometric	 equations	 can	
produce	more	robust	AGB	estimates	(Huy	et	al.,	2016).	One	of	the	
major	shortcomings	of	the	research	is	the	lack	of	site-	specific	forest	
mensuration	data	and	allometric	equations.	Hence,	while	we	can	es-
tablish	that	community	forests	still	continue	to	suffer	from	oppor-
tunistic	selective	logging	of	individual	trees,	we	cannot	quantify	the	
impact	of	 this	on	AGB	stock	variation.	While	 field-	based	plots	are	
a	 cornerstone	 of	modelling	 forest	 structure	 properties	 (especially	
those	 related	 to	AGB	storage	and	changes),	 it	has	been	suggested	
that	shifting	to	landscape	scale	aerial	imagery-	based	estimates	could	
help	to	overcome	the	inherent	biases	of	field	inventory	data	(Marvin	
et	al.,	2014).	This	 research	demonstrates	how	different	 sources	of	
RS	data	can	help	to	map	and	monitor	the	temporal	patterns	of	forest	
change.	Their	 impact	on	 forest	 structure	properties	at	a	 relatively	
small	 scale	 investigated	 using	 both	 regeneration	 and	 degradation	
at	 different	 spatial	 resolutions.	 Future	 research	 will	 benefit	 from	
expanding	analyses	to	the	full	area	of	the	PKNP.	Furthermore,	this	
research	 focused	on	mapping	 the	 spatial	 distribution	of	 three	 dif-
ferent	forest	types.	Forests	in	PKNP	have	undergone	varying	levels	
of	degradation	and	cashew	plantations	have	different	ages.	Future	
research	will	also	benefit	by	explicitly	mapping	forests	that	have	un-
dergone	varying	 levels	of	degradation	and	are	 in	varying	stages	of	
regeneration.

5  | CONCLUSIONS

The	 temporal	 patterns	 of	 forest	 cover	 change,	 degradation,	 and	
recovery	in	community	forests	located	within	an	IUCN	Category	II	
park	have	been	examined	using	 remotely	 sensed	data	 acquired	 at	
different	 spatial	 resolutions.	 An	 examination	 of	 Landsat-	derived	
forest	cover	revealed	that	the	community	forests	had	higher	forest	
cover	persistence	and	lower	rates	of	forest	cover	loss	compared	to	
the	overall	study	area.	The	role	of	community	forests	in	facilitating	
forest	cover	retention	and	regeneration	is	well	established.	The	anal-
ysis	of	high-	resolution	aerial	LiDAR	data	also	confirms	these	findings	
and	except	for	the	two	CPAs,	the	remaining	community	forests	have	
seen	a	recovery	in	canopy	gap	fractions	and	AGB	stock.	The	patterns	
of	fine-	scale	canopy	gap	recovery	and	AGB	stock	increase	are	also	
reflected	in	the	medium-	resolution	forest	degradation	index	derived	
from	ALOS	PALSAR	data	(RFDI).	The	levels	of	degradation	decreased	
in	forests	that	saw	an	increase	in	AGB	values.	While	community	for-
ests	 have	 been	 shown	 to	 facilitate	 prevent	 cashew	plantation	 ex-
pansion,	 forest	 cover	 persistence	 and	 recovery	 from	 degradation,	
illegal	selective	logging	of	individual	tree	species	were	not	entirely	

curtailed	within	their	boundaries.	Analysis	of	LiDAR	data	 indicates	
that	 all	 community	 forests	 experienced	 an	 increase	 in	 understory	
damage	as	a	result	of	increased	skidding	and	haulage	(a	sign	of	selec-
tive	tree	removal).	Community	forests	with	the	sharpest	increase	in	
understory	damage	underwent	AGB	losses.	An	examination	of	indi-
vidual	trees	 identified	by	LiDAR	data	for	2012	and	2015	indicated	
a	slight	decline	in	the	number	of	trees	for	the	different	classes.	On	
the	basis	of	these	findings,	it	may	be	recommended	that	community-	
protected	 forests	 can	 produce	 robust	 conservation	 outcomes	 in	
terms	of	forest	cover	persistence	but	more	interventions	are	needed	
to	curb	the	illegal	selective	logging	of	valuable	timber	trees.
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