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The multiple symmetry sustaining phase transitions of spin ice
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Y Université de Lyon, ENS de Lyon, Université Claude Bernard,
CNRS, Laboratoire de Physique, F-69342 Lyon, France
2 Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
(Dated: March 8, 2019)

We present the full phase diagram of the dumbbell model of spin ice as a function of temperature,
chemical potential and staggered chemical potential which breaks the translational lattice symmetry
in favour of charge crystal ordering. We observe a double winged structure with five possible phases,
monopole fluid (spin ice), fragmented single monopole crystal phases and double monopole crystal,
the zinc blend structure. Our model provides a skeleton for liquid-liquid phase transitions and for
the winged structures observed for itinerant magnets under pressure and external field. We relate
our results to recent experiments on HozIroO7 and propose a wide ranging set of new experiments
that exploit the phase diagram, including high pressure protocols, dynamical scaling of Kibble-Zurek
form and universal violations of the fluctuation-dissipation theorem.

I. INTRODUCTION

Over the last decade, spin ice models and materials'?
have emerged as model systems for the study of gener-
alized electrostatics on a lattice>™®. The emergence of
the electrostatics can best be seen by replacing the point
dipole moments of spin ice by infinitesimally thin mag-
netic needles, lying along the axes linking the centres of
adjoining tetrahedra!®(see Fig. 1). Within this dumb-
bell approximation?, the pyrochlore lattice of magnetic
moments transforms!!'!? into a diamond lattice of ver-
tices for magnetic charge. The needles carry magnetic
flux and dumbbells of effective magnetic charge which
touch at the vertices. By construction the ensemble of
low energy “Pauling states”!? with two spins into and two
out of each tetrahedron are degenerate in this approxi-
mation, with charge neutrality imposed at each vertex.
These ground states form a vacuum from which mag-
netic monopole quasi-particles are excited by reversing
the orientation of a needle, breaking the ice rules on a
pair of neighbouring sites*. Double monopoles can also
be created by reversing a second needle, for a vertex with
all needles in or all out. The emerging Coulomb fluid of
magnetic origin is often referred to as a magnetolyte' in
analogy with its electrical counterpart.

In this paper we study the full phase diagram of
the dumbbell model, including a staggered chemical po-
tential, A, which breaks a Z; translational symmetry
of the diamond lattice, favouring monopole and dou-
ble monopole crystallisation into bi-partite ionic cristals.
The staggered chemical potential lifts the degeneracy be-
tween single and double monopoles at the crystallisation
transition in a manner compatible with the staggered in-
ternal magnetic field offered by iridium ions in the spin
ice material HooIro O 15.

As shown in Fig. 2, the dumbbell model offers a rich
phase diagram in the three dimensional space of param-
eters A, energy scale v fixing the monopole and double
monopole chemical potentials: y = —v, uo = —4v, and
temperature T. The central plane with A = 0 corre-

sponds to the standard spin ice phase diagram within
this approximation'®!'7, with a transition from spin ice
to “all-in-all-out” (ATAQO) order that changes from first to
second order in a multi-critical region. In the monopole
language AIAO order corresponds to an ionic crystal of
double monopoles with the zinc blend structure. Emerg-
ing from this region, there is a double winged structure
of phase boundaries that terminate in continuous lines
of critical end points. The five phases separated by the
boundaries are the Coulomb fluid (spin ice) phase, a frag-
mented monopole crystal®'® in which the magnetic mo-
ments appear to break up into independent divergence
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FIG. 1. From spins to dumbbells: The point dipoles
are extended to needles touching at the diamond lattice cen-
tres. The needles carry magnetic flux and charge ¢ = +m/a
at each end. In a 2in-2out configuration (left) the vertex
is charge neutral. A 3in-lout (3out-lin) configuration car-
ries a monopole charge Q@ = 2m/a (—Q = —2m/a) (left).
A 4in (4out) configuration carries a double monopole charge

2Q = 4m/a (—2Q = —4m/a).
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FIG. 2. Dumbbell model phase diagram: (0) monopole
fluid (o), (1) monopole crystal (¢1), (2) double monopole
crystal (¢2). Surfaces show 1°* order and solid lines 2™¢ order
transitions and dotted lines show the multi-critical region.
The long dashed lines show the extension of the 2"™¢ order
lines to infinity. Chemical potentials for single and double
monopoles are © = —v, uz = —4v (see eqn. (3)). For the
phase diagram of the S = 2 Blume Capel model A replaces
A and 7 replaces v.

full and divergence free parts and the double monopole
crystal ATAO phase.

As A breaks the translational symmetry all transitions,
away from the central plane, are symmetry sustaining.
In this sense the transition from monopole fluid to sin-
gle monopole crystal is thermodynamically equivalent to
the liquid-gas transition and that from single to double
monopole crystal is equivalent to liquid-liquid transitions
observed experimentally in supercooled liquids'®2!. En-
tirely analogous sets of phase transitions also occur in
itinerant magnetic compounds under pressure and in the
presence of an external field??23. A consequence of our
work is that we are able to offer a generic framework
and minimal model to generate such seemingly exotic
behaviour, occurring in diverse domains of physics and
chemistry.

Inspired by the S = 2 Blume-Capel model®*, in the
next section we will provide concrete and quantitative
evidence for the existence of the double winged phase
diagram shown in Fig. 2, introducing general Blume-
Capel models, providing a detailed explanation of the
multi-critical region and investigating one of the con-
tinuous set of critical end points that takes the model
from the spin ice monopole fluid to fragmented monopole
crystal. In section ITI we present dynamical finite size
scaling results in the region of the critical point and
show that it exihibits dynamical Kibble-Zurek scaling
in the three dimensional Ising universality class. We
also present results showing the universal violation of
the fluctuation-dissipation relation consistent with this
universality class. In section IV we relate our results to
the observed monopole driven phase transition for spin

2

ice materials in a magnetic field H in the [111] direction
showing that monopole crystallisation thermodynamics
leads to a quantitative prediction of the H ,T phase dia-
gram. In section V we give some discussion, putting our
results in the wider context of liquid-liquid phase transi-
tions and the temperature-field-pressure phase diagram
of itinerant magnets. We conclude this section, return-
ing to frustrated magnets, in particular HooIr,O7 and the
possibility of observing such a rich phase diagram and its
consequences in future experiments.

The Kelvin energy scale is used throughout, fixing
Boltzmann’s constant to unity. We also set the perme-
ability of free space pg = 1 so that the field H is mea-
sured in Tesla. We follow standard notation for spin ice
simulations and refer to a dimensionless length L, mea-
sured in cubic units. Each cubic cell contains 16 spins
(dumbbells) so that the number of tetrahedra (monopole
sites), No = 8L3. In this paper quantitative measures
refer to the spin ice material Dy;TizO7 (DTO) for which
diamond lattice constant a = 4.33 A, the nearest neigh-

bour spin distance 7, = @ =3.74 A and cube length
Qe = 47% ~ 10 A(see Fig. (1)).

II. MONOPOLE CRYSTAL PHASE DIAGRAM

The dumbbell model is an excellent approximation to
the dipolar spin ice model (DSI) which is characterised by
short range exchange interactions and dipole interactions
which provide long range forces for the monopole quasi-
particles'™2%. The dumbbell model captures all features
of the DSI except for a low temperature ordering transi-
tion which indicates the lifting of the degeneracy of the
Pauling states. Above this energy scale, the DSI shows
a phase transition on varying the ratio of the exchange
terms to dipolar interaction, taking the model from the
spin ice phase to the AIAO phase?®. The transition ap-
pears to change from first to second order via a multi-
critical point'”.

A. Blume-Capel models

Such physics is generically provided®” by the Blume-
Capel (BC1) model®®?, developed by Blume, Emery and
Griffiths®® to study mixtures of 3He and *He. In this
model Ising-like degrees of freedom, which could be spins
or occupation numbers for a neutral two component lat-
tice fluid, take on values, S; = 0, £1. Contact with spin
ice corresponds to the antiferromagnetic case with spins
on a bipartite lattice such as square, cubic or diamond
with energy function

Hpe = JZSiSj +525i2 -A Z (_1)iSi , (1)
3 i i=1,No

where J < 0 is a coupling constant, ¥ is the energy scale
for exciting a site 7, A is a staggered field that breaks the
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FIG. 3. Blume Capel S=1: (0) Paramagnet, (1) antifer-
romagnet. Surfaces show 1° and lines 2"% order transitions
and the point shows a tri-critical point.

Zy symmetry of the bipartite lattice. Although the func-
tion H pc may generically be referred to as the Hamilto-
nian, for future reference we take the Hamiltonian to be
the many body term only. The parameters 7 and A can
be interpreted as Lagrange multipliers which allow the
evolution from the canonical to less constrained ensem-
bles, so that the single site terms contribute to the free
energy but not the internal energy®!. A suitable order
parameter can be defined

¢—<Ni0 3 <pi>, (2)

i=1,Ng

where (...) is a thermal average. The term ¢; = €;5;
distinguishes the two sublattices with €; = 1 on an A site
and —1 on a B site.

For A = 0, on increasing 7, the transition changes from
274 order, in the Ising universality class, to 15 order via
a tri-critical point. The staggered term A is conjugate to
¢ and therefore guarantees a winged structure, as shown
in Fig. (3). The first order transitions terminate along
a line of critical end points for finite A and tempera-
ture. The winged phase boundaries and finite tempera-
ture critical end points stretch out to A — o0, as even
when the site occupation is perfectly partitioned with
S; =1 on A sites only and S; = —1 on B sites only, the
interaction between the sublattices remains, allowing for
a singular jump in site occupation at finite temperature.
As A breaks the lattice symmetry, the transitions at the
critical end points are symmetry sustaining. They are
characterised by an emergent Ising like order parameter
at each point and in this sense are liquid-gas like.

The Blume-Capel model can be extended?* to higher
values of S. Of particular interest is S = 2 (BC2) which
greatly resembles the dumbbell model of spin ice. The or-
der parameter is now defined on the interval —2 < ¢ < 2
and according to mean field?** and pair approximation
calculations®? the BC2 model allows for two ordered

phases corresponding to |¢| ~ 1 (referred to as ¢) and
|p| ~ 2 (p2) as well as the disordered phase with ¢ ~ 0
(¢0). As a consequence, adding a finite staggered field,
A to the BC2 energy function will open out a double
winged structure as shown qualitatively in Fig. (2) for
the dumbbell model and discussed in detail below.

B. The dumbbell model

Returning to the dumbbell model, the charge on vertex
¢ of the diamond lattice takes values @Q; = 0,+Q, +2Q
with @ = 2m/a, m the magnetic moment associated
with a spin and a the lattice constant (see Fig. (1)),
from which one can define a site occupation variable
n; = % = 0,£1,£2 in analogy with the BC2 model
variables S;. A magnetic north (south) monopole carries
charge +@Q (—Q). Within the dumbbell approximation,
the dipolar spin ice Hamiltonian for excitations above the
lowest energy 2in-2out states can be written:

H = @ 3 (%) Rif; + VZnQ —A D> (=1)'n,

i#] i=1,No
3)

where u(a) = “fg; is the nearest neighbour Coulomb en-
ergy scale for a pair of monopoles. The mapping thus re-
formulates the spin ice problem as a lattice Coulomb fluid
in the grand ensemble6:8:33736 with chemical potential
for monopole and double monopole creation p = —v and
o = —4v respectively. The chemical potential p can be
calculated for each material from the parameters of the
corresponding (DSI) and that for double monopoles is
constrained to po = 44 by the spin Hamiltonian. Here we
add a staggered chemical potential term A which lifts the
degeneracy for quasi-particles with charge £@Q (and with
charge £2Q)) on the sublattices A and B, uf = pu+ A,
p2 = pF A and the convention is such that A > 0
reduces the energy scale for creation of monopoles (dou-
ble monopoles) with positive charge on A sites and with
negative charge on B sites.

The Hamiltonian in eqn. (3) is a BC2 type energy func-
tion with long range Coulomb interactions, with order
parameter ¢ given by eqn. (2) and with 7; replacing S;.
However, the BC2 and dumbbell models are different as
they have different configurational phase spaces and so
have different entropies. In the dumbbell model one must
take into account the fragmented spin background?®, the
so-called Dirac strings®*3”, which emerge in the electro-
statics as a divergence free electric field giving Coulomb
phase correlations®32 at low temperature in the ¢g phase.
These strings possess their own configurational entropy
independently of the charges. As a consequence, for zero
or finite monopole density and even in the monopole crys-
tal phases, the entropy remains different from that of
a lattice Coulomb fluid and hence of the BC2 model.
The zero temperature limits for these entropies are well
known. The entropy number density of the Coulomb fluid
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FIG. 4. A — T plane: (Left) shaded plane through the full
phase diagram at fixed v - dotted black lines show the inter-
cepts of the phase boundaries with the plane. (Right) The
fixed v plane rotated to give A vs. T. Green lines show the
phase boundaries, the dotted black line shows an isothermal
trajectory in the plane.

phase is the Pauling entropy, so ~ In(3/2) = 0.405 per
tetrahedron. The entropy of the fragmented monopole
crystal is that of an ensemble of hard core dimers on a
diamond lattice®3?, s; &~ In(1.3) = 0.262 while that of
the double monopole crystal is zero. One can develop an
expression for the entropy of both monopoles and strings
at the Pauling level of approximation®!3 which works
well in the monopole fluid phase®®37, but breaks down
in the crystal phases. More detailed analysis requires a
return to the field theoretic description of the charges
and its ensuring lattice Helmholtz decomposition®40.

C. The double winged phase diagram

The entropy terms make some quantitative difference
but similar phase diagrams can be expected for the two
models as can be seen from thermodynamic arguments.
The monopole free energy can be written

Q = No(uc +vn +4vng — Ap — sT), (4)

where u. and s are the Coulomb energy and entropy
number densities. As we are dealing with ionic crys-
tals, the energy of the three phases are known exactly
at zero temperature®: u° = 0, u%* = —u(a)a/2, uf? =
—2u(a)a, where oo = 1.638 is the Madelung constant for a
diamond lattice. Hence there are zero temperature phase
boundaries between the three phases with A >0

oo P1, AZ—@ v K
¢12¢2, A:*% +3v K. (5)

Notice that, as both the Coulomb energies and the chem-
ical potentials scale with the square of the charge (uo =
—4v) the five phases intercept the A = 0 axis at the same
point, v* = ua/2. For smaller v the Coulomb energy of
the double monopole crystal wins out corresponding to
spin ice models passing directly into the ATAO phase.
However, as A couples linearly to the charge the wings
spread out from this point in the 7' = 0 plane.
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FIG. 5. Multiple monopole crystallization: (Upper) The
order parameter ¢ vs. A simulated from the dumbbell model
at fixed v = 4.35 K. Simulations for Ny = 4096 (L = 8)
and periodic boundaries. All values are in Kelvin. (Lower)
Probability density P(¢) for A = 2.05 K, T' = 0.3K and
v =4.35K.

The finite temperature phase boundaries can be esti-
mated from the Clapeyron equation for equilibrium be-
tween phases ¢ and j:

.
ar i — @5

where ¢; and s; are the order parameter and entropy
densities of phase ¢. At small temperature we can as-
sume that both order parameter and entropy are con-
stant: sg = 0.405, s;7 = 0.262 and s5 = 0, ¢ = 2,1 and
0, giving intercepts and slopes for the phase boundaries
in a T — A plane for fixed v > v*. At higher tempera-
tures this “fixed entropy approximation” will break down
and the lines should terminate in critical end points as
illustrated in Fig. (4).

We have tested this proposition numerically. In
Fig. (5) we show ¢ vs A for simulations with L = 8 for dif-
ferent temperatures for fixed v = 4.35 K and u(a) = 2.88
K, values estimated for DTO%!' . For the lowest temper-
ature, sharp steps are indeed observed in ¢ from ¢ ~ 0

(6)



to ¢ =~ 1 and from ¢ = 1 to ¢ = 2 at a value slightly
greater than 2 K and 6 K respectively. The data is con-
sistent with two 1% order phase transitions from ¢g to ¢;
and from ¢ to ¢o. As the temperature is increased the
steps in ¢ become rounded, consistent with the model
passing through a critical end point with the transitions
evolving to crossovers at high temperature. The singular
nature of the transition between ¢y and ¢, at T'= 0.3 is
confirmed in the lower panel where we show the probabil-
ity density P(¢) estimated during the simulation. The
distribution is sharply peaked near ¢ = 1 but shows a
lower peak in probability near ¢ = 0, consistent with
fluctuations between metastable states separated by a fi-
nite jump in order parameter space. The inequality in
the peak heights shows that for these parameters, the
system has passed into the ordered phase. The lower
peak in distribution occurs at a small but finite value of
¢, consistently with A breaking the Zs symmetry of the
lattice even in the ¢ phase. The five phases confirm-
ing the double winged structure are indeed the Coulomb
fluid (spin ice) phase (¢g), the two fragmented monopole
crystal phases®!® (¢1) and the double monopole crystal
ATAO phases (¢2).

The position of the 15¢ order transitions in parameter
space can be estimated using eqns. (5) and (6). Taking
the DTO values for v, and u(a) and A > 0 the zero
temperature intercept of the two phase boundaries are

QS()Z ¢17 A=199 K
¢15¢27 A=597K. (7)

Assuming complete jumps in the order parameter at the
transition, one finds for 7'= 0.3 K

¢0: ¢17 A=203K
¢1:¢2: A =6.05 K7 (8)

in close agreement with the results of Fig. (5).

D. A critical end point

We have made a quantitative estimate of the position
of one critical end point, that for the transition from ¢,
to ¢o for v = 4.35 K. This can be extracted from the
crossings of the Binder cumulant??, B, for the emergent
Ising like order parameter at the critical end point, ¢ =

¢ — ¢, where ¢. = (6(T%)):

Bu(T, A) = <(‘P)4> ) (9)

The parameters A., T, and ¢. were estimated using an
iterative procedure. A first estimate of T, and A, was
made by following the evolution of P(¢) from a dou-
ble to single peak distribution. From here a more ac-
curate estimate of A was found from the maximum of
the susceptibility for ¢. This estimate was found to be
invariant under small temperature changes and the re-
sult can be established with high precision?®. We find
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FIG. 6. Locating the critical point. (Top) The Binder
cumulant By for the emergent order parameter p = ¢ — ¢, for
fixed v = 4.35 K and A = A, = 2.03745 K and ¢. = 0.42 at
the ¢1 : ¢o phase boundary (see text). (Bottom) Probability
density P(¢) at the critical end point, v = 4.35 K, A, =
2.03745, T, = 0.36752.

A, = 2.03745+0.00005 K. The evolution of B with tem-
perature for this A, is shown in Fig. (6) for system sizes
L =8,10,12 and for ¢, = 0.42. A crossing point is found
for T'= 0.36752+0.00001 K with B4(T, A) = 2.03+0.01.
The crossing value should be compared with other Ising
like systems: By(7.) = 1.60 for the 3D Ising model**
and B4(T., H.) = 1.86 for spin ice with field H along
the [111] cubic axis**. We found that the value depends
on ¢., reducing to ~ 1.60 for ¢. = 0.5, with crossing
at T = 0.3672 K, but in this case the crossing was not
so accurately defined. From this analysis we estimate
T. = 0.3675+0.0003 K. In Fig. (6) we show the probabil-
ity density function, P(¢) calculated at T., A. which re-
sembles qualitatively the universal function P(M) for the
magnetisation M of the three dimensional Ising model
at the critical point*>*® and is centred on ¢ = 0.5. The
universality class of the critical point is discussed further
below through a dynamical finite size scaling analysis and
the measurement of the fluctuation-dissipation ratio.
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FIG. 7. Low temperature (T < v): (Left) v = v*,
(Right) v < v*. (0) monopole fluid (¢o), (1) monopole
crystal (¢1), (2) double monopole crystal (¢2) .

E. The multicritical region

How the wings meet in the multicritical region is a
rather subtle question. The intersection of the five phases
on the A = 0 plane at a single penta-critical point is
unlikely, as the plane is characterised by two variables T'
and v only. This allows the system to tune to a tri-critical
point in which both the quadratic and quartic terms in
an expansion of the free energy in ¢ are zero?”. However,
a penta-critical point would require the annulation of the
sixth order term which, without a third parameter would
be accidental. In the model studied here, emergent from
the DSI, the monopole and double monopole costs are
fixed: po = 4v. Floating us away from this value could
allow the tuning necessary to establish penta-criticality
but the evidence presented below suggests that in our
case the wings meet in two stages which indeed maintains
the tri-criticality of the BC1 model.

The five phases do however meet at T'=0,A =0,v =
v*. A phase boundary between ¢s and ¢ then rises from
the five phase intercept along

A(v* —v) = soT, (10)

where we have again assumed a constant entropy approx-
imation, valid for T' < v*. Within this approximation
the Pauling entropy of the spin ice vacuum gives a finite
slope away from 7" = 0 which takes the system away from
¢1 and this phase is suppressed everywhere in the A =0
plane except the special point at T' = 0. This can be seen
in detail by analysis of the three different free energies.
As a consequence, A — T planes for v = v* and v < v*
take the form shown in Fig. (7) at low temperature. In
the latter case there is a finite temperature order disor-
der transition between ¢o and ¢, along the A = 0 axis,
ensuring that the ¢o, ¢1 and ¢g phases meet at a triple
point for finite A. The slopes of the phase boundaries, 7;;
can be estimated from eqn. (6): 1721 = (s1 — s2) = 0.262,
Mo = (so—s1) = 0.143 and 190 = %(30 —89) = 0.203 and
the triple point, which is allowed because of the linear
dependence between the three boundary curves, occurs
at
2(v* —v)

T, =——2. 11
K 251 — Sp ( )

S
@)
I
)

-V
Vi

FIG. 8. Symmetry breaking in the S = 2 Blume Capel
model: The A = 0 plane of the § = 2 Blume Capel model®2.

As |v — v*| increases, the A = 0 transition tempera-
ture increases until at the tricritical point the transition
changes from 1°¢ to 2"¢ order, at which point the line
structure in Fig. (7b) will have evaporated through crit-
ical end points.

Heating up to the critical end points should there-
fore lead to the wings meeting in two stages with
three separate tri-critical points, with all lines meeting
tangentially*”. Two of these being the critical termina-
tion of the triple points for finite positive and negative
A and the third, a classic tri-critical point separating
ordered and disordered phases for A = 0.

This scenario can be compared with that of the BC2
model. In this case, the same five phase intercept occurs
at T = 0 but the ¢2 : ¢y phase boundary now rises
vertically as the entropy of both phases approach zero
as T goes to zero. However, at the level of mean field
and pair approximation calculations?#32? a small sliver
of ¢ appears at higher temperatures, stabilised by the
entropy of spin fluctuations. The ¢ : ¢ boundary ends
at a critical point in the A = 0 plane as shown in Fig. 8.
This suggests that the tri-critical point of the BC1 model
is again maintained with this time, separate intercepts
onto the central plane for the two wings for positive and
for negative A.

The undershoot and overshoot of the wing intercep-
tions in the dumbbell and BC2 models illustrates the
accidental nature of penta-criticality for this set of pa-
rameters and strongly suggests that a generalised model
with independent i and ps could be tuned to include a
penta-critical point.

III. DYNAMIC SCALING AT A CRITICAL END
POINT

A. Critical slowing down

Along the lines of critical end points there are diver-
gent time scales associated with the diverging correlation
lengths and critical slowing down. In Fig. (9) we show



the evolution of the auto-correlation function

_ (8:(t)9:(0)) — (#:(1)) (6:(0))
(61(0)2) — (¢:(0))*

with Metropolis Monte Carlo time as the critical end
point for v = 4.35 K, A, = 2.03745 is approached along
the temperature axis. Note that in eqn. (12) we study
the critical dynamics using the local spin-spin autocorre-
lation function, which is distinct from the autocorrelation
function of the global order parameter ¢. The spin auto-
correlation function is statistically easier to access, but it
also captures the critical slowing down. The data shows
decay of correlations at equilibrium for a system of size
L=12.

As the transition is approached from above the cor-
relation time increases and Cy4(t) develops a powerlaw
decay with exponent o ~ —1/2, out to a maximum of
the order of 103 Monte Carlo steps per dumbbell. The
best power law is observed for a temperature T ~ 0.369
K, higher than the T, = 0.3675 estimated from analysis
of the Binder cumulant.

Within the critical region time scales and length scales
are bridged via the dynamical critical exponent?® z. The
correlation time 7 diverges with the correlation length &

as
z

I (5) . (13)

T0 a
Hence, as the spatial correlation function for the local
order parameter in dimension d scales with distance in
the critical region as (417 with d—1 the anomalous
dimension of the universality class, one expects dynam-
ical scaling of the form Cy(t) ~ t~(@=1=m/%  Taking
n ~ 0.0363 < 1 and z ~ 2, which should be the case
for local dynamics in the three dimensional Ising univer-
sality class, one finds an exponent « &~ 1/2 as observed.
The shift in effective transition temperature away from
the Binder crossing point is expected and is due to finite
size effects.

The cut off of the power law is compatible with the
finite size cut off of & & < L' = 4\%]’. Taking 2z =~ 2,
L = 12 and microscopic time 79 equal to one Monte Carlo
time step indeed gives a cut off to the critical scaling of
the order of 10% Metropolis time steps. Below the criti-
cal temperature the time correlation function develops a
plateau which decays at longer time scales. This is con-
sistent with a change of regime in the dense crystalline
phase where decay of correlations is due to the creation
and propagation of monopole holes*?.

Cy(t)

B. Kibble-Zurek scaling

A more quantitative picture of the emergent univer-
sality class of the critical end point can be achieved by
following the dynamical Kibble-Zurek®%*! scaling proto-
col proposed in [43]. In this scenario the field like scaling

100
| w,
°8 T
101 ety
i
= O(t—l/z '(("f
= m
QO
102} ® T=0.36K & et W
e 7= 0.36752K ﬁ%
> T= 0.368K =" A
A T= 0.3685K
o T= 0.369 K »
103k m 7= 0.37K
100 101 102 103 104 105

t (MC steps)

FIG. 9. Critical correlations at equilibrium: Autocor-
relation function for the monopole crystal Cy(t) vs. ¢ for
temperatures close to the critical temperature. Solid black
line shows power law decay with exponent —1/2.
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FIG. 10. Hysteresis loops: ¢ . wvs. A for different sweep
rates. System size L = 8. The ¢(¢) is a configurational aver-
age of 500 samples, each starting at equilibrium at ¢t = 0.

variable is swept in time through a cycle with character-
istic time scale 7¢:

A(t) = %:A“ — Aosin (%) . (19

with temperature fixed at T,.. Far from the critical point
the equilibrium time scale is small compared with 79 so
that the evolution is adiabatic but as the critical point
is approached the equilibrium time scale diverges. As a
consequence, at a given point in each cycle the system
falls out of equilibrium creating hysteresis loops in the
thermodynamic observables, whose magnitude depends
on sweep time.

In Fig. 10 we show the evolution of ¢ with A at T,
for a system of size L = 8 and A\g = 0.1 for different 7q.
Hysteresis loops centred on ¢ = ¢, indeed appear and
their amplitude falls to zero as 7¢g increases.

Following eqn. (13), the correlation time diverges along
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the field axes as 7 ~ 79A~*"* with v, the field driven
correlation length exponent, so that 7 and sweep time are
related through eqn. (14). The crossover from adiabatic
to out of equilibrium response occurs around the point
Ccll—ﬂ = 1, which fixes a characteristic Kibble-Zurek time
zvy/(zva+1)

scale, tgz = To (:_f
In the critical region the fall from equilibrium of the
emergent order parameter ¢ is captured by the dynamical

scaling hypothesis*®

o(t) = (é) - ¢ (é) : (15)

where D), is the scaling dimension of the field and G(z) is
a scaling function allowing for data collapse for different
data sets. For short range systems, up to and including
the upper critical dimension D) = d”}j—;17 while in the
Gaussian regime Dy = 1.

In Fig. (11) we show the Kibble-Zurek scaling collapse
for Ap = (X)) T —p(A) J, the difference in order parame-
ter values on an up and down swing of the cycle. We find
a convincing collapse using known values for the three di-
mensional Ising universality class®? and local stochastic
dynamics®®, vy = 0.4, z = 2. We do not have access to
large enough system sizes or high enough resolution on
our data to distinguish between three dimensional XY
and Ising universality classes but the collapse shown is
superior to that found using Gaussian exponents. Hence,
as in [43] for the critical point observed for spin ice in
a [111] field, we can exclude the possibility of the long
range Coulomb interactions influencing the the universal
fluctuations.

It is worth remarking that, however accurate the data,
the field scaling Kibble-Zurek protocol cannot unambigu-
ously establish Ising universality, as the procedure ac-
cesses only one of the two static scaling dimensions, Djy;
vy being independent of the second dimension D.. This

yields Dy = 5= = 2,

where exponents have their usual
meaning?’, establishing weak universality only®*. This
in principle allows for variation of g and v within the
weak universality constraint®®. A thermal Kibble-Zurek
protocol would fix the two static exponents through the
presence of both Dy and v although one would then have

a three parameter fit (Dy,v, z) for a single expression.

C. Aging and fluctuation-dissipation ratio

A further remarkable consequence of the diverging
time scale at the critical point is that if the system is
suddenly quenched from a high temperature to T, it
will not reach equilibrium within the time window of-
fered by experiments or simulation. As a result, systems
quenched to criticality display universal aging properties,
reported in an extensive literature®®-% showing explicitly
that the tools developed in the context of materials with
slow glassy dynamics are highly relevant for aging critical
dynamics.

Two important properties emerge from the out-of-
equilibrium dynamics. First, the time correlation func-
tion in eqn. (12) is no longer time translationally invari-
ant, so that one needs to explicitly follow the dependence
on the time spent at criticality since the quench. As a
result the system slowly ages towards equilibrium in a
manner reminiscent of disordered glassy systemsS”. Sec-
ond, the fluctuation-dissipation theorem (FDT) which,
in equilibrium connects linear response functions to time
correlations functions, is no longer valid. In glassy mate-
rials, violations of the FDT have been found to take sim-
ple forms with appealing physical interpretations®™79.
Studies of FDT violations in systems quenched to criti-
cality show that the deviations from the equilibrium re-
lation contains direct information about the universality
class of the model®%:61,

Inspired by these studies, we consider a numerical pro-
tocol in which the temperature is instantaneously varied
from T = 1000 K to T' = T, = 0.3685 K, and denote
t, the “waiting time” spent at T, since the quench. We
then define

(@i(tw)di(t)) — (Pitw)) (¢4(t))
(6i(1)2) — (i(t)”

where the waiting time dependance is now made explicit.
Indeed, as with other critical systems, we find that the
time decay of the spin auto-correlation function is not
just a function of t — ¢, but now depends explicitly of
both times. We also define the linear response function
associated with the time correlation function in eqn. (16)
as

Cy(t ty) = . (16)

o) = 20 )

where A; is the field conjugate to the local order param-
eter ¢;. We introduce the normalised response function
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FIG. 12. FDT violations Parametric plot of the re-
sponse function against the correlation function, for vari-
ous fixed times ¢ and using %,, as a running parameter af-
ter a quench at the critical point T¢, A.. The system size
is No = 13824 (L = 12), and data arc averaged over 500
independent quenches. The inset show limiting values for
long times. The solid lines show the expected universal value
Xo = 0.38 for the 3D Ising universality class.

Yo = Xo/ ((9i(t)%) — (¢i(t))?), such that the equilibrium
FDT reads X = (1 — Cy)/T.

In the aging regime following a quench, the FDT is
not expected to be satisfied, and it can generically be
rewritten as

Sl = XM (1 g,00,)),
which defines the fluctuation-dissipation ratio X (¢, t,,)%8.
Physically, eqn. (18) is appealing as it has the same math-
ematical form as in equilibrium, with the difference that
the thermal bath temperature is replaced by an effective
temperature T/ X (t,t,,)%°.

In Fig. (12) we display FDT violations by representing
Tx4(t,tw) as a function of 1 — C’¢(t, ty ), for a fixed time
t and using t,, as a running parameter in the plot84. We
repeat these measurements for a series of ¢ values. In
order to achieve statistical accuracy, we adapt the most
efficient Monte Carlo tools presented in refs.” =" to the
dumbell model.

The relevance of this representation is obvious as
the slope of these curves is a direct measure of the
fluctuation-dissipation ratio, by virtue of eqn. (12). Close
to the origin, corresponding to short time differences
t — ty,, the equilibrium FDT is obeyed and the paramet-
ric response-correlation plot is linear with slope given by
the temperature 7. In contrast, clear deviations from
the FDT are observed in the opposite limit of large time
differences t — t,,, with a fluctuation-dissipation ratio
X(t,ty) < 1. The physical interpretation is that small-
scale (and thus fast) fluctuations rapidly reach thermal
equilibrium and display equilibrium FDT, whereas large

and slow critical fluctuations retain their non-equilibrium
nature and display FDT violations, as seen in other crit-
ical systems®®:°8.

The limiting value of the fluctuation-dissipation ratio
defined as

Hoo = lim Mim X(¢tu) (19)
takes a finite value, specific to a particular universality
class. In the inset of Fig. 12, we compare the limiting
value of the fluctuation-dissipation ratio measured in our
simulations to the known value, X, = 0.38 measured
for the three dimensional Ising model®”%¢. We find an
excellent agreement with our data, which again supports
the idea that the critical end point is in this universality
class.

IV. COMPARISON WITH SPIN ICE IN A [111]
FIELD

At present, the only experimentally observable phase
transition driven by monopole ordering is that ob-
served with magnetic field placed along the [111] crystal
axis™ 76 { = \%(17 1,1). A field of modest strength se-
lects a subset of Pauling states with the moments of the
spins lying parallel to the field axis aligned in the field
direction. The system maintains a finite entropy related
to configurations of the three spins of each tetrahedron
with components lying in the kagome planes perpendic-
ular to the field direction” (see Fig. (13)). On increas-
ing the field at low temperature, a first order transition
is observed to a fully ordered state of 3in-lout/3out-lin
tetrahedra. As the temperature increases the transition
line terminates in a critical end point. In Fig. (14) we
reproduce data from Figure 4 of [74], which reports ex-
periments on DTO. The figure shows the estimated phase
diagram. The order of magnitude of the applied field is
0.9 Tesla and the critical temperature is around 0.35 K.

The transition has previously been successfully inter-
preted as a liquid-gas like critical end point of a monopole
crystalisation transtion? and in this sense is a close cousin
of the transition separating ¢ and ¢; discussed above.
The main difference is that the external field couples
to both of the fragmented components of the magnetic
moments®, providing a staggered chemical potential for
the monopoles and introducing a preference for Dirac
strings oriented with the field. The field therefore breaks
both the magnetic symmetry and the monopole transla-
tional symmetry.

At the transition monopole pairs are created in abon-
dance by flipping spins in the kagome planes as illus-
trated in Fig. (13). The direct action of the field on
the charges is to provide a chemical potential gradient,
6/& = j:Qﬁ so that, in addition to the energy scale for
monopole creation in zero field, there is also a contribu-
tion depending on the direction of movement in the field.
The chemical potential gradient alone does not therefore
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FIG. 13. Monopole creation in a [111] field:

(Upper panel) connected tetrahedra perpendicular to the
[111] axis form kagomé planes of spins which are bases for
alternating up and down tetetrahedra. The arrow shows the
direction of an applied field.

(Lower panel) Flipping the spins indicated (left) creates
monopole paires with broken translational symmetry. North
pole (4) -red disc, South pole (-) blue disc.

provide a staggered energy profile. If one of the north
monopoles of Fig. (13) were to continue moving along
the 2 axis it would pick up energy at each step in the
same manner. However, the constraints of spin ice forbid
this: movement between the kagome planes is blocked
as, on the magnetic plateau the spins joining the planes
point in the wrong direction to allow monopole move-
ment between planes via a single spin flip. Preparing the
ground for this move requires flips of loops of spins at
high energy cost’® so that the monopoles are essentially
confined to two-dimensional strips perpendicular to the
field axis.

The chemical potential gradient does provide a stag-
gered energy landscape within this confined space. The
difference in potential energy for a (north) monopole on

an A or a B site of a kagome plane is 2A = Q&T.ﬁ where
a= \%(—1, —1,1) is a lattice vector spanning the two

sites. This yields A = (%), which is just the Zeeman
energy of the spin flip in the presence of the field.

Given the similarities, we can repeat the thermody-
namic arguments of section II C for modified phases
¢y, the plateau phase with entropy per tetrahedron
s/ = 0.1616™ and ordered monopole crystal phase ¢}
with entropy zero. From this, using m = 9.87up2%° we
predict a field for the transition at zero temperature
H(T = 0) = 0.90 Tesla and an initial slope for the phase
boundary 42 = 0.073 Tesla K~!. We note that the ob-
served critical temperature for DTO™ is very close to our
calculated value T, = 0.367 K for the ¢¢ : ¢1 critical end
point. Taking this value and using the constant entropy
approximation we find H, = 0.927 T.
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FIG. 14. Monopole phase transition in a [111] field: We
reproduce data from Figure 4 of [74], which shows the thermal
variation of the transition field of Dy2Ti2O7 for H parallel to
[111]. Solid circles (squares) denote the data points obtained
for increasing (decreasing) field sweeps. Open triangles are
the averaged critical field H., which show a nearly linear tem-
perature variation with 42« = 0.08 Tesla K™ (dashed line) at
low temperature. The added blue circles are our estimates of
the field strength at 7" = 0 and at 7. with blue line the phase
boundary given by the constant entropy approximation.

Our predicted phase diagram, shown in Fig. (14) is
in quite remarkable quantitative agreement with refer-
ence [74]. However, a word of caution is probably in
order. As the entropy of the phases ¢, ¢f, and ¢1, ¢} are
different there is no reason to expect such quantitative
agreecment between the two critical temperatures. In-
deed simulations of the transition using the dipolar spin
ice model'!, while still in excellent qualitative agreement
with the experimental data show a significantly higher
critical temperature, T, = 0.587 K*43. However, quanti-
tative modelling of experiments with the DSI at such low
temperatures requires corrections in the form of further
neighbour exchange terms2®, which could also have sig-
nificant effects on the critical end point*. In general these
extra terms reduce the ordering temperature for symme-
try breaking among the Pauling states, compared with
the original DSI model?®. As the dumbbell model has no
such ordering transition these corrections may play in its
favour, but one could be forced to concede an element
of good fortune in this remarkable agreement. It would
clearly be of interest to pursue this subject in future re-
search.

V. DISCUSSION

We have shown that the dumbbell model of spin ice
has a rich phase diagram with the double winged struc-
ture shown in Fig. (2). A key to its existence is the
presence of a first order line for the spin ice - ATIAO tran-
sition in the A = 0 plane'!”. The first order nature of



the transition ensures that the singularity survives ap-
plication of a symmetry breaking field giving symmetry
sustaining transitions and the emergence of the wings.
The first order transition becomes second order via a tri-
critical point as discussed in detail in section ITE. Tri-
critical behaviour with first and second order sectors is
common in frustrated magnetic systems®'#* and is re-
lated to the entropy of fluctuations provided by the frus-
trated geometry. In the case of spin ice one must go
beyond the nearest neighbour spin ice model to generate
a first order transition as within this approximation the
monopoles are non-interacting. Ordering in this case is
due uniquely to entropic considerations'” and can only be
second order?. Including the dipolar interactions in the
spin model provides the emergent monopoles with an en-
ergy versus entropy trade off which drives the transition
first order. However, truncating the Coulomb interac-
tion beyond nearest neighbour monopoles would not give
a quantitative change to the phase diagram.

We have studied both the dumbbell model and the re-
lated Blume-Capel model, the BC2. The five phases of
the wings meet either in two stages for dumbbell, or not
at all for BC2, entering the A = 0 plane at two different
values of v and T'. This undershoot or overshoot is con-
sistent with there being only two independent variables
on the plane. This could however be changed by freeing
the double monopole chemical potential from the fixed
value, o = —4v of the present model. By tuning uso it
should be possible to find a parameter set v, T', uy for
which the five phases meet at a single penta-critical point.
This corresponds, at the mean field level to all terms up
to and including order ¢° being zero in an expansion of
the free energy.

A. Liquid-gas, liquid-liquid and symmetry
sustaining transitions

Liquid gas phase transitions have two defining charac-
teristics.

Firstly they correspond to crossing lines of phase equi-
libria in a temperature like - field like phase diagram,
between two phases with the same symmetry. If the line
of transitions terminates at a critical end point, it is then
possible to move analytically from one phase to another
by contouring this special point. As a consequence, the
only thing that defines the two separate phases is the
transition itself. There is broken symmetry at the tran-
sition, but it is emergent, separating phase space into
high and low density sectors with the same microscopic
Symmetry.

The second is that the sustained symmetry is the high-
est allowed by the Hamiltonian. The generic case is that
of a fluid that changes from low to high density through
the control of temperature and pressure, or chemical po-
tential while maintaining continuous translational sym-
metry. In the quantum case, temperature could be re-
placed by a coupling constant and thermal fluctuations
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by quantum fluctuations, allowing for the transition from
a long range entangled quantum liquid, such as a quan-
tum spin liquid®® to a classical paramagnet, or spin gas
phase®S.

The first criterion is ubiquitous thermodynamics and
can be generated for any first order transition by the ap-
plication of a field conjugate to the order parameter char-
acterising the transition. The second is a non-universal
property of strongly correlated systems, with the exis-
tence of the liquid-gas singularity dependent on the mi-
croscopic properties of the model®”.

The transitions discussed in this paper satisfy the first
criterion but not the second. In general Coulomb fluids
on a bi-partite lattice do not offer a liquid gas transi-
tion with the full discrete symmetry of the T'— v, A =0
planc®®. Rather, such a transition is usurped by subli-
mation from low density fluid to crystal with broken Zo
translational symmetry, as we have seen here in detail for
the diamond lattice. The transitions are therefore liquid-
gas like in a weak sense: they are symmetry sustaining
but do not maintain the highest translational symmetry
offered by the diamond lattice. However, as the two cri-
teria are equivalent from a thermodynamic point of view,
Blume-Capel type models and therefore spin ice can be
considered as generic systems for studying symmetry sus-
taining phenomena, often occurring in liquids.

In particular, there has been much work on sys-
tems showing liquid-liquid phase transitions. In molten
phosphorous'?, silicon?® or water?' for example pressure
takes the fluid from a low to high density liquid state
via a first order transition that terminates in a critical
end point. The high density transition often appears
in a supercooled state as it is again usurped by crys-
tallisation in thermodynamic equilibrium. A character-
istic of these systems is the capacity to accommodate
two kinds of local packing, open (tetrahedral) and close
packed. This can be modelled using two hard core repul-
sion length scales®” but it is also proposed as an emergent
phenomenon due to frustration and inhomogeneities in
simple fluids®’. The BC2 model and hence spin ice clearly
provides a generic skeleton for this science. If passage
from the ¢y to ¢ is equivalent a liquid-gas phase tran-
sition then that from ¢; to ¢5 on one side of the double
winged phase diagram of Fig. (2) is thermodynamically
equivalent to a liquid-liquid transition. Detailed compar-
ison with the models presented here could therefore pro-
vide new insight into the necessary conditions for liquid-
liquid transitions including the possibility of liquid-liquid
tri-criticality.

Slightly nearer to home, similar physics is observed
in magnetic itinerant electron systems under pressure.
Both LaCrGes?? and UGey2? show double winged phase
diagrams as a function of temperature, pressure and ap-
plied field with two ferromagnetic phases extending out
to finite field values. The ferromagnetic phase transi-
tions are symmetry sustaining in exact analogy with the
transitions presented in this paper, so that the BC2 type
models again provide a skeleton for this structure. Inter-



estingly these materials provide experimental examples
of the two possible multi-critical regions discussed in sec-
tion ITE, confirming the accidental nature of the wing
connections in the phase diagram. In LaCrGes the wings
meet in two stages for each field direction, as proposed
for spin ice, giving three distinct tri-critical points for
positive and negative characteristic fields and for H = 0.
In UGes on the other hand, the wings meet the central
plane separately, as is apparently the case for the BC2
model.

In LaCrGes the winged phase transitions are extrap-
olated to terminate at zero temperature and finite field
at a series of quantum critical points. This prediction
should be contrasted with antiferromagnetic BC2 type
models for which the lines of finite temperature critical
end points extend out to A = Foo. Here, as A be-
comes large the partitioning of north and south poles on
A and B sublattices becomes perfect, but the collective
interaction between charges of opposite sign still drives
a liquid-gas like discontinuity in the sublattice monopole
density at finite temperature. It would certainly be in-
teresting to do more studies for the ferromagnetic case
including transverse spin fluctuations, the quantum case
being accessible via quantum Monte Carlo simulation.

B. Future experiments in frustrated magnetism

Motivation for this work has come in large part from
experiments on the spin ice material HooIroO7 (HIO)?.
In this material both the Ho®*t ions and the Ir*t ions
carry a magnetic moment and they sit on interpenetrat-
ing pyrochlore structures. The moments of the Ir** ions
order on the scale of 100 K into an ATAO structure which
provides internal magnetic fields which act in turn on
the Ho*™ magnetic moments. In the monopole picture
the internal fields translate into the staggered chemical
potential studied here and proposed in [8] as a mech-
anism for separating the ¢; and ¢» monopole crystal
phases and accessing the ¢; phase. As temperature is
lowered through the 1K range the Ho sublattice contin-
uously develops ATAO order with the ordered moment
saturating at 50 % of the total moment. The leftover mo-
ment gives correlated diffuse scattering consistent with a
Coulomb phase and the measured characteristics of the
powder sample are indeed consistent with the fragmented
¢1 phase.

As the Ho sublattice shows no phase transition none
of the winged structure is, as yet observable directly in
experiment. However, it is worth noting that a differ-
ent material in this series, TholroO7 (TIO) settles into
a ground state with full ATAO order, that is into the ¢o
phase as defined above®!. Its sister material ThyTisO7
(TTO) is in some sense spin ice like, falling close to the
spin ice ATAO (A = 0) phase boundary!!. Hence, al-
though TTO remains an enigma®?, the fact that TIO
fully orders is completely consistent with our logic. If
one could chemically tune the values of ¥ and A from
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TIO to HIO one would pass through the ¢5 : ¢; phase
boundary on the way. Once at the values corresponding
to HIO, heating up one could hit a further phase bound-
ary but no further transition is required from symmetry
arguments as the transitions are symmetry sustaining.
Although the planes of first order transitions do not lie
perpendicular to the v — A planes they do fall with a
very steep slope, the inverse of eqn. (6). Hence for an
accidental value of A it is quite likely that a thermal tra-
jectory would maintain the system well away from the
phase boundaries. We propose that this is the case for
HIO.

The above conclusion immediately begs the question
of if it is possible to shift the value of A experimentally.
One possibility would be to put materials such as HIO
or its dysprosium counterpart under pressure. High pres-
sure would presumably change both the strength of the
internal fields and the monopole chemical potentials p
and po which are combinations of exchange and dipole
interactions*. One might expect that increasing the pres-
sure would have the effect of increasing the scale of the
antiferromagnetic exchange, therefore reducing the scale
of p, while at the same time increasing the scale of A,
moving the system towards the ¢, : ¢2 boundary, but
the evolution could equally well be counterintuitive and
go in the opposite direction. One could also consider the
effects of chemical pressure through the chemical sub-
stitution of Ir** ions with non-magnetic species such as
Ti%*, or Ge** which has a smaller ionic radius than its
counterparts”®. In order to hit one of the phase bound-
aries, starting from HIO one would need to shift A and/or
v on the Kelvin scale, that is on the scale of the exchange
constants themselves. These are challenging experiments
that open the door to rich theoretical and numerical
problems and the present results provide a motivating
framework in which to work.

Given the steepness of the slope of the phase bound-
aries in Fig. (2), if one did cross a first order plane by
altering A, further tuning to find the critical end point to
the plane should be straightforward, at least in compar-
ison, giving access to Kibble-Zurek scaling experiments
as outlined in section III and proposed for the critical
point in a [111] field*3. The prospect of doing Kibble-
Zurek scaling experiments is particularly appealing as
critical slowing down gives very weakly diverging time
scales and so is difficult to access experimentally. For
example, if the microscopic time scale is a nanosecond,
getting the divergence into the millisecond range requires
a correlation length of 1000 times the microscopic length
and a reduced temperature or field of order 1076, Such
high precision can be avoided by finding systems with
either long microscopic length or time scales. Long mi-
croscopic length scales occur naturally in cold atom sys-
tems, which has recently led to successful Kibble-Zurek
type experiments?*%%. Spin ice, on the other hand is ide-
ally suited because of its naturally long microscopic time
scales, for example around a millisecond for DTO® so that
the plethora of critical points presented here could open



the door to many such dynamical experiments. Once ac-
cessed, both field like and temperature like protocols are
envisageable.

Our work also suggests that it could be interesting to
extend to spin ice materials the type of noise measure-
ments that were previously performed in spin glasses”6:97
to simultaneously detect linear susceptibilities and time
correlation functions, in order to experimentally access

the fluctuation-dissipation ratio introduced in section
I C.

VI. CONCLUSION

Spin ice materials and models have proven to be the
source of rich emergent science?®81198  widening the
scope and interest of frustrated magnetism and offer-
ing multiple avenues for novel research. In particular
the monopole picture, which simplifies a complex and
strongly interacting frustrated system to a level in which
it can be addressed in incomparable detail, has provided
an unexpected controlled environment in which to study
Coulomb fluids both from a field theoretic and charge
perspective. We have exploited the full phase diagram
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of the emergent, on lattice magnetolyte in which both
monopoles and double charged monopoles play impor-
tant roles. In doing so, we have exposed a model system
for multiple phase transitions with wide ranging applica-
tions. These include fluids showing liquid-liquid phase
transitions'® 2! and itinerant magnetic systems under
pressure?223 as well as extensive new applications within
the field of frustrated magnetism.
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