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Résumé. Les modes acoustiques sont couramment utilisés pour déterminer les propriétés physiques de l’intérieur
des planètes et des étoiles. La méthode d’imagerie par vélocimétrie acoustique a été récemment introduite en
mécanique des fluides, en complément des méthodes d’imagerie existantes. Elle consiste à reconstruire l’écoulement
à partir de la levée de dégénérescence des modes acoustiques, observée expérimentalement (par exemple) en
présence d’un profil de rotation. Ainsi, des algorithmes d’inversion sont nécessaires pour reconstruire indirectement
l’écoulement en rotation dans des expériences en géométrie quasi-sphérique. Cependant, les objets célestes et
les expériences ne sont pas rigoureusement sphériques, mais plutôt ellipsoïdaux (au premier ordre). Les effets
topographiques et la rotation doivent alors être pris en compte correctement dans le modèle physique. Les méthodes
analytiques et numériques existantes (en géométrie déformée) ne peuvent plus alors être couplées facilement et
efficacement aux algorithmes d’inversion. Pour remédier à ce problème, nous avons développé une nouvelle méthode
de Galerkin semi-analytique en ellipsoïdes tri-axes. Elle repose sur une décomposition polynomiale explicite, en
coordonnées cartésiennes, des écoulements potentiels en ellipsoïdes. Nous illustrons la méthode en considérant les
modes acoustiques d’un fluide compressible, uniforme et homentropique, avec une condition de Dirichlet homogène
à la paroi (condition isobare). Nous validons nos résultats avec des simulations numériques réalisées avec le logiciel
comsol. Nous étendrons cette méthode novatrice afin de prendre en compte des effets physiques supplémentaires,
afin de décrire plus précisément les conditions expérimentales.

Abstract. Acoustic eigenmodes are often used to passively infer physical properties of the interiors of rotating
planets and stars. Acoustic wave imaging has been also introduced in fluid dynamics. The experimental technique
consists in observing and analysing the splitting in frequency of the acoustic modes, by solving an inverse pro-
blem. For instance, the presence of an (unknown) rotational profile disturbs the acoustic spectrum. Moreover, a
topographic splitting is often superimposed on the rotational splitting. Indeed, rotating celestial objects are rather
ellipsoidal than spherical at the leading order, as well as laboratory experiments which are weakly non-spherical
(due to mechanical deformations). Rotation and topography should be taken into account simultaneously, but
the acoustic problem does not admit exact solutions in the presence of rotation. Fully numerical solutions are
often computed. However, they cannot be easily combined with inversion schemes to yield robust results. Hence,
the usual approach is to consider small perturbations to non-rotating solutions. As an alternative, we present a
new description of the compressible modes, relying on the method of weighted residuals. Here, we present a new
spectral method to describe potential flows in triaxial ellipsoids. It relies on an explicit Galerkin expansion, made
of global polynomials expressed in Cartesian coordinates. We illustrate this method by considering the canonical
situation of diffusionless acoustic modes in an homogeneous, compressible and homentropic fluid ellipsoid at rest.
The pressure satisfies a Dirichlet condition (sound soft boundary). We validate our results against fully numerical
simulations performed with the commercial software comsol, showing a perfect quantitative agreement. This new
method will be extended to include additional effects and alternative boundary conditions.

1 Introduction

Studying the interior conditions of planets and stars is a fundamental research topic. Several passive
imaging techniques have been developed for this purpose. The most commonly used is acoustic wave
imaging. For instance, this method has been used in the Sun to reconstruct its internal differential
rotation profile [1]. Indeed, the eigenfrequencies of acoustic modes are affected by rotational fluid motions,
yielding an observable rotational splitting of the modes [2]. The same approach has been introduced in
experimental fluid dynamics [3]. It aims at probing the global dynamics of rotating flows in quasi-spherical
resonators. Indeed, conventional fluid velocimetry techniques (e.g. Doppler or Particle Image Velocimetry)
give partial information on the flow structure. Moreover, the fluid must be seeded with neutrally buoyant
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tracer particles to act as scatterers, which is expensive and not always efficient (tracers may float or sink
over time).

The method of acoustic mode velocimetry is an inverse problem, formally written as d = G(m) + �,
where d is the data vector (the frequencies of acoustic modes in a container), m contains the parameters
of the model, G is the physical operator of the problem (the wave equation) and � some uncertainties (in
the model and/or the data). The forward problem is the determination of the eigenfrequencies of acoustic
modes d, given a set of parameters m. Because the latter is a priori unknown, it is often estimated
by using iterative methods. The inverse problem is rather complicated, involving variational principles
e.g. in the presence of rotation [4]. Hence, forward models as efficient as possible are desirable to develop
versatile and efficient inverse schemes. Acoustic modes do admit analytic solutions in non-rotating spheres.
However, rotation and topography should be taken into account. Indeed, rotating celestial bodies and
experiments are rather ellipsoidal at the leading order. Several methods have been employed to go beyond
the spherical geometry, e.g. relying on perturbation methods [5], transcendental functions in ellipsoidal
coordinates [6–8] or numerical simulations [9, 10]. Yet, none of them can easily be coupled with inverse
schemes to yield fast and accurate results.

In the following, we focus on the forward problem of acoustic modes. We present a new spectral
method to compute acoustic modes in arbitrary triaxial ellipsoids. The paper is divided as follows. In
Section 2, we introduce our new method for a simple acoustics test case. Then in Section 3, we present the
results obtained with the new method. We also benchmark them against three-dimensional simulations
performed with the commercial software comsol. Finally, Section 4 ends the paper with a short conclusion
and draws some perspectives.

2 Modelling

2.1 Linearized problem

The acoustic wave equation is obtained by expanding the field variables (velocity, density, pressure)
as the sum of background quantities and acoustic perturbations. Several forms of the acoustic equation
can be deduced from the full Navier–Stokes equations, depending on the background state. We refer the
reader to Campos [11] for an exhaustive review. To present the new polynomial expansion, we tackle here
the simplest physical situation.

We consider a compressible fluid, enclosed within a full triaxial ellipsoid of semi-axes (a, b, c) and
volume V = 4πabc/3. The ellipsoid has a boundary ∂V, expressed in Cartesian coordinates (x, y, z) by
x2/a2 + y2/b2 + z2/c2 = 1. The fluid is homentropic and characterized by a background density ρ0 and
pressure P0. They are assumed to be spatially uniform, though the new method can account for arbitrary
[ρ0, P0]. Then, we expand the velocity field from a state of rest as u(r, t) = ∇Φ(r, t), where Φ(r, t) is
the velocity potential (irrotational flow). In the absence of any diffusive effect (e.g. viscosity or thermal
conduction) and body force, the velocity potential satisfies the wave equation

∂2Φ

∂t2
= c20 ∇2Φ, (1)

where c0 =
�
γP0/ρ0 is the sound speed in the background state (with γ the adiabatic index). We

seek modal solutions of equation (1) of the form Φ(r, t) = �Φ(r) exp(−iωt), where ω ∈ R is the angular
frequency and �Φ(r) the eigenfunction solution of Helmholtz equation

L(�Φ) = 0, L = ω2 + c20 ∇2. (2)

Finally, Equation (2) is supplemented by an appropriate boundary condition on �Φ (see Subsection 2.2).
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2.2 The new Galerkin expansion

We solve the above eigenvalue problem by using the method of weighted residuals [12]. To do so, we
introduce a new spectral Galerkin expansion in triaxial ellipsoids. We expand the velocity potential onto
global polynomial elements {φl(r)}l as

�Φ(r) =
∞�

l=1

αlφl(r), (3)

where {αl}l are modal coefficients. The polynomial elements {φl(r)}l are made of linear combinations of
Cartesian monomials {xiyjzk}i+j+k<∞, such that any element φl(r) satisfies exactly the boundary condi-
tion for �Φ(r). Expansion (3) is similar to expansions used in the finite-element method (FEM). However,
compared to the traditional FEM, we emphasize that our basis elements {φl}l are global polynomials,
infinitely continuously differentiable in ellipsoids. Therefore, the mathematical completeness of decom-
position (3) is ensured by using the Weierstrass approximation theorem [13]. Hence, this is a rigorous
spectral decomposition in ellipsoids.

In practice, we arbitrary truncate the series at the polynomial degree n ≥ 2 (see later). Then, we sub-
stitute the truncated series into Helmholtz equation (2), yielding a finite-dimensional, quadratic eigenvalue
problem for the state vector α = (α1,α2, . . . )

�, i.e.

Lα = 0, Lij =

�

V
�Φi · L(�Φj) dV. (4)

In Equation (4), the Galerkin projections are computed analytically by using the three-dimensional
integral for any Cartesian monomial xiyjzk within an ellipsoid

�

V
xiyjzk dV =




0 if i, j or k is odd,
2ai+1bj+1ck+1

3 + i+ j + k
β

�
i+ j

2
+ 1,

k + 1

2

�
β

�
i+ 1

2
,
j + 1

2

�
if i, j and k are even,

(5)

where β(i, j) is the transcendental beta function defined as a function of the Gamma function Γ(i) by

β(i, j) =
Γ(i)Γ(j)

Γ(i+ j)
, Γ

�
i+

1

2

�
=

(2i)!

22ii!

√
π. (6)

The explicit form of the polynomial basis depends on the chosen boundary condition. To illustrate
the new method, we consider the vanishing Dirichlet boundary condition for the potential (sound soft
boundary), i.e. �Φ = 0 on ∂V. For this boundary condition, an appropriate polynomial basis of maximum
degree n for the velocity field is

�Φ =

N�

l=1

αlφl, φl(x, y, z) =

�
1− x2

a2
− y2

b2
− z2

c2

�
xiyjzk (0 ≤ i+ j + k ≤ n− 2). (7)

The number of basis elements is N = n(n + 1)(n − 1)/6. Note that the basis functions {�Φ}l can be
normalized with respect to the real scalar product based on formula (5).

3 Proof-of-concept

We have implemented this method in Python as a proof-of-concept. For the validation, we have solved
Equation (4) in dimensionless form, by considering a as the unit of length and a/c0 as the unit of time.
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Bessel n = 5 n = 15
(k, l) fk,l f Rel. err. (%) f Rel. err. (%)

(1, 0) 0.500 0.5 10−2 0.5 10−8

(1, 1) 0.715 0.716 10−1 0.715 10−8

(2, 1) 1.229 1.217 100 1.229 10−8

(3, 1) 1.735 ∅ ∅ 1.7354 10−4

comsol n = 5 n = 15
f f Rel. err. (%) f Rel. err. (%)

0.7340 0.7346 10−1 0.7340 10−6

0.9254 0.9278 10−1 0.9254 10−7

0.9879 0.990 10−1 0.9879 10−7

1.1272 ∅ ∅ 1.1272 10−7

(a) Sphere (b) Triaxial ellipsoid

Table 1. Comparison of acoustic frequencies f = ω/(2π) and relative error (a) in a sphere between theory and
the polynomial approach and (b) in a strongly deformed ellipsoid (a = 1, b = 0.8, c = 0.5) between the polynomial
approach and comsol.

3.1 Benchmarks in spheres and ellipsoids

To benchmark our polynomial method, we first consider a sphere (a = b = c = 1). Helmholtz equation
(2) admits exact solutions in spherical coordinates (r, θ,φ). These solutions are Φk,l ∝ jl(rωk,l)Y

m
l (θ,φ)

where Y m
l (θ,φ) is the spherical harmonics of degree l and order m and jl(rωk,l) the associated spherical

Bessel function jl(rωk,l). For the vanishing Dirichlet condition, the acoustic frequency fk,l = ωk,l/(2π) is
the kth root of the associated spherical Bessel function. Because of the spherical symmetry, the modes
with different m are degenerated (i.e. have the same frequency). The fundamental frequency is exactly
f1,0 = 1/2, since jk,0 is the cardinal sine function (its zeros are multiple of π). The second frequency
is approximatively f1,1 = 0.715 and so on. Note that Bessel functions do not admit explicit expansions
involving a finite number of Cartesian polynomials. This clearly shows that our polynomial method is
semi-analytical, in contrast with rotational modes [14,15]. We must truncate the series (3) at a sufficient
degree n to have a good convergence for the modes we are interested in. However, even spherical solutions
in this canonical case are not entirely explicit, since ωk,l must be generally computed iteratively (for high
order modes) or approximated by using asymptotic expansions [16].

We show in Table 1 (a) the comparison between theoretical (i.e. using Bessel functions) and numerical
values for a few modes, by varying the truncation degree n. For n = 5, the first modes are already well
described by the polynomial expansion.

The mode (3, 1) does not appear in the acoustic spectrum at this degree. Thus, this is necessary to
increase the polynomial degree to describe it. Then, this mode is accurately well described at n = 15,
with extremely small relative departure from the theoretical frequency.

To go beyond the spherical case, exact analytical solutions do exist in ellipsoids by using separation
of variables [6–8]. However, they rely on transcendantal ellipsoidal functions, which cannot be easily
manipulated. Instead, Mehl [5,17] obtained approximate solutions by considering perturbations from the
spherical geometry, but large ellipsoidal deformations cannot be accurately described. Thus, we validate
our results against numerical computations performed with the commercial software comsol. The latter
code solves Equation (2) with the FEM method (Lagrange elements of order 5). In spheres, comsol yields
the theoretical eigenfrequencies with a relative tolerance always smaller than 10−5 % (depending on the
numerical mesh). Similarly, comsol will provide fairly accurate benchmarks in deformed ellipsoids. The
quantitative comparison on the frequencies is given in Table 1 (b) for an given triaxial configuration. At
n = 5, only the first modes are qualitatively described (but with a relative tolerance smaller than 1%).
Then, these modes are extremely well described at n = 15.

3.2 Topographic splitting

After having quantitatively validated the polynomial method, we investigate the topographic splitting.
We show in in Figure 1 the splitting of the first few modes in spheroids. Note that we obtain a perfect
quantitative agreement between the polynomial solutions and comsol. Then, most of the modes undergo
a topographic splitting, e.g. involving higher order azimuthal numbers (m = ±1, m = ±2,... in spheroids)
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Figure 1. Topographic splitting of the acoustic spectrum in spheroids (a = b = 1) as a function of the polar
flattening e = 1− c/a. Comparison with comsol (left) and with asymptotic scalings (right). Red (thick) curves:
polynomial modes (n = 15). Black squares: comsol (m = 0). Black stars: comsol (m = ±1). Black crosses:
comsol (m = ±2). Black points: comsol (m = ±3). Dashed curves: linear in e. Solid curves: quadratic in e.

and crossing of several branches. Moreover, we observe that the frequency does not scale linearly with
the deformation [5], and even for moderate finite deformations for a few modes. Hence, second-order
topographic effects [17] should be considered to reasonably cover a wide range of deformation.

Finally, we illustrate two acoustic modes in a strongly oblate spheroid (a = b �= c) in Figure 2. The
spheroid has a flattened vertical axis c = 0.6. This value corresponds to the observed flattening of the
star Archenar [18]. This is one of the least spherical stars in the Milky Way. Indeed, it spins so rapidly
that its shape is a strongly flattened oblate spheroid. The two modes have the same azimuthal number
m = 1 but different radial complexities, which are well recovered by the polynomial approximation.

4 Conclusion and perspectives

We have presented a new semi-analytical approach to compute acoustic modes in arbitrary triaxial
ellipsoids. This method relies on an analytical Galerkin method, using global Cartesian polynomials of
maximum degree n satisfying the appropriate boundary condition. As a proof-of-concept of the method,
we have computed the acoustic modes with the vanishing Dirichlet condition (sound soft boundary) in
ellipsoids. We have quantitatively benchmarked this method against theoretical and FEM computations,
exhibiting a very good quantitative agreement.

Compared to the existing alternative methods, this new technique is worthy of interest. Notably, it
has a great numerical potential for modal acoustic velocimetry technique. Indeed, it can be implemented
in open-source programming languages (e.g. here Python), that can run on laptops and supercomputers
(if memory bound computations at very large n are required). Then, the forward problem can be easily
coupled with built-in inverse methods (e.g. in Python [19]). The forward problem of acoustic waves is also
easier to solve, because no approximation is made on topographic effects (which avoids the use of pertur-
bation methods). Additionally, the post-processing is made easier by using Cartesian coordinates (rather
than ellipsoidal ones). Therefore, we advocate to use this method for future applications of modal acoustic
velocimetry. This technique seems to be very promising, in particular for liquid-metal experiments [20]
for which direct optical methods are unsuitable and ultrasonic techniques challenging.

Finally, it turns out that the polynomial method is also useful beyond the idealized acoustic case
considered here. Indeed, we have extended the Galerkin polynomial method presented here, notably by
considering a vanishing Neumann condition on the pressure (sound hard boundary, i.e. non-penetration
condition). This is a more relevant condition for a fluid bounded in a rigid container. Moreover, the
Galerkin method can also accommodate additional effects, such as rotation or density variations. Ac-
counting for these effects in the direct problem may also greatly simplify the inverse problem, for future
experimental and planetary applications.
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(a) Acoustic frequency f = 0.82728

Oxz-plane (comsol) Oxz-plane (Polynomials) Oxy-plane (Polynomials)

(b) Acoustic frequency f = 2.2758

Oxz-plane (comsol) Oxz-plane (Polynomials) Oxy-plane (Polynomials)

Figure 2. Potential field �Φ(r) for two large-scale acoustic modes in an oblate spheroid, computed with comsol
and the polynomial method (n = 20). Ellipsoidal geometry a = b = 1 and c = 0.65.
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