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ABSTRACT: Operating a modern technical system, such as a train or aircrafi, calls for good organised engineering,
operation and maintenance to keep the system in an optimal operational condition. Predictive maintenance is being
studied and has as aim to identify errors early enough to still be able to propose a suitable solution before a real incident
occurs. After all, technical problems in service may lead to delays or even interruptions of service due to extensive repair
actions, such as the replacement of components. Often, predictive maintenance aims at recognising patterns in time series
of monitored data and classifving these patterns as known conditions (faulty or correct). As such it provides a vital source
of information for maintaining a healthy operational status. However, these approaches are still in their early phases
and rely still heavily on skill and experience from the expert. In this paper, the use of self-organising maps for predictive
maintenance is being discussed, applied to data of a jet engine. The aim of the study was to assess the usability of such

approaches to real-life situations, assessing the learning and validation phases.

KEYWORDS: Maintenance, condition monitoring, fault diagnosis, neural networks.

1 INTRODUCTION

Safe and efficient operation of modem technical
systems involves several online and off-line diagnostic
tasks as well as the incorporation of the diagnostic results
in timely maintenance. Off-line diagnostic tasks involve
the handling of recorded data, analysis and interpretation,
and organised maintenance. The information gathered
during operation, such as that from crew reports and data
recordings form vital sources of input for such off-line
diagnostic tasks.

Maintenance is vital during a systems life cycle to
ensure their functionality. Several types of maintenance
can be distinguished; corrective, preventive and
predictive maintenance. A good combination of the three
is vital to make a system’s operation reliable. Even though
corrective and preventive maintenance remain today
important research topics, a lot of attention is currently
being given towards predictive maintenance that aims for
defining the best possible moment to trigger maintenance
actions. Triggering too late may lead to failure
occurrence, causing financial losses, sometimes image
damage and may even lead to casualties and/or losses of
human lives. Triggering too early may lead to replacing
components that are not faulty through costly
interventions. Predictive maintenance aims at proposing a
solution by monitoring the health status of the systems
and components, identifying incipient faults and
forecasting the exact moment of failure.

In this paper, the use of Self-Organising Maps (SOM)
is discussed to detect degradation patterns on aircraft jet
engine data as part of a fault diagnosis approach within
the framework of predictive maintenance.

The paper is organised as follows. Section 2 describes
the diagnostic problem as studied within the framework
of this project. Section 3 describes the case study, an
aircraft jet engine. Sections 4 and 5 then explain the use
of Self-Organising Maps for this case study, first the more
regular case as for SOM for a given condition and then the
case for bringing together several operational modes into
one SOM. Section 6 draws conclusions and indicates
some paths for future research on this topic.

2  DIAGNOSTICS FOR PREDICTIVE
MAINTENANCE

Diagnostics approaches address the data acquisition,
processing and fault identification using explicit methods
and implicit methods. Prognostics approaches are
oriented to determine the Remaining Useful Life (RUL)
of system components using reliability and availability
criteria. Both approaches intervene and contribute to the
overall idea to better support the decision-making process
for operations engineers when recommending or not a
maintenance intervention.

Explicit methods group the techniques in which the
diagnostic of faults is made “explicitly” from data by
experts linking the symptoms to the failures and faults and
pointing to the root cause. Here one can think of
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techniques such as Rule-Based Reasoning (RBR), Case-
Based-Reasoning (CBR), decision trees, fuzzy logics, etc.
Implicit methods, on the other hand, involve the use of
algorithms to transform complex data sets into useful data
that can be interpreted afterwards by experts in form of
reports or alarms. One can think of Neural Networks (NN)
and other learning algorithms.

From a top-level point of view, one can see that
predictive maintenance is mainly aimed to trigger
maintenance actions at the suitable time, defining an
analysis strategy to address complex data, by means of
specialized methods and tools in order to identify
symptoms related to known failures that will lead to
determine the actual state (diagnosis approach) and the
remaining useful life (prognosis approach) of the
component or system (see Figure 1).

Off-line predictive maintenance

Analysis
strategy

Diagnosis approach

System
complex data

Prognosis Approach
RUL Computation

Figure 1: Predictive maintenance model

3 CASE-STUDY ON JET ENGINE

Keeping aircraft engines in an optimal operational
condition is a vital aid for operating modern airlines.
Engine Condition Monitoring (ECM) is used to have a
regular overview of the proper functioning, a good health,
of the aircraft engines, by analysing in-flight measured
aircraft and engine parameters. Modern ECM is built
around performance trend analysis approaches but at the
same time also relies heavily on human expertise. The
aircraft and engine parameters are visualised and the
evolution over time (trends) of the most important
parameters is analysed. Specific parameter trend
evolutions often precede the occurrence of incidents and
allow for early detection of deterioration of engine
modules, failures, and/or malfunctions. The application of
modern artificial intelligence so to enhance trend analysis
to anticipate incidents by determining the need for
maintenance and detecting the components or systems
where maintenance is required has been part of several
studies (e.g. Vingerhoeds, 1995). Trend analysis can offer
a good support for performance engineers in airlines
engineering departments in detecting problems early. In
this case-study, a neural network approach (in this case a
self-organising map) will be used to assess the engines
health state. (Vingerhoeds, 1995) gives more information
on the general conditions for such predictive maintenance
approaches, and in particular the operational conditions
for diagnosing jet engines.

Performance engineers use a variety of different
techniques to assess the engine's health state. In this study,
measured in-flight behaviour is used for assessing the
engine's health state. It provides early warning on ongoing
or imminent problems prior to serious malfunction.
Effects of for example bird strikes can be seen and
performance engineers can use witnessed changes in the
engine's prime parameters to determine the eventual need
for corrective maintenance. Other sources of information
(flight trouble reports, etc.) offer complementary
information that can be used to enhance the overall
diagnostic approach.

The complete view for a performance engineer is
complex, many parameters come into play and eventual
wrong decisions on corrective maintenance (if in the end
there was no need) would have a strong financial impact.
The overall goal of this work is to improve condition
monitoring to a point where performance engineers can
rely on these techniques for their decisions.

In this paper, use is made of the database made
available for the PHMO8 benchmark for the International
Conference on Prognostics and Health Management in
2008, as described in (Saxena, 2008). The data was
created using a commercial software tool, C-MAPSS, that
allows for simulating a realistic large commercial
turbofan engine.

The data set consists of multivariable cycle series,
divided into training, test and validation subsets with
multiple jet-engines of the same type and under
comparable nominal operational conditions. Each engine
has some unknown initial wear and manufacturing
variability that should not be confused with faults. The
engines degrade along the operational cycles and upon
reaching a specific limit are to be taken out of service. The
definition of these limits is not provided and the predictive
maintenance approach needs to be able to identify such
limits.

The data set contains three input variables
representing the engine control settings: the flying
altitude, the Mach number and the throttle resolver angle.
6 different combinations of these control settings are used,
defining the operational modes in the data sets. The rest
of the data correspond to 21 out of 58 different outputs
available on the C-MAPSS tool (see Table 1). These 21
variables correspond to sensor information from different
engine parts (see a simplified engine diagram in Figure 2).
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Combustor NI

Nozzle
HPT

LPC HPC N2

Figure 2: Simplified diagram of engine simulated in
C-MAPSS (Saxena 2008)

HPT: High pressure turbine.
LPT: Low pressure turbine.
HPC: High pressure compressor.
LPC: Low pressure compressor.
NI1: Outer shaft.

N2: Inner shaft.

Table 1. Sensors list present in the PHMO08 Challenge
(Saxena 2008).

Column
Number D ti d ta
¥ Rar e escription |n a

] 12 Total temperature at fan inlet

] 124 Total temperature at LPC outiet R
] 730 Total temperature at HPC outiet R a
I 150 Total temperature at LPT outiet ‘R 9
B r2 Pressure at fan inlet psia 10
B P15 Total pressure in bypass-duct psia 11
B P30 Total Pressure at HPC outlet psia 12
) N Physical fan speed pm 13
) N Physical core speed mm 14
[ 10 B Engine pressure ratio (P50/P2) " 15
BT Ps30 Static pressureratio at HPC outiet ~ psia 16
BT phi Ratio of fuel fiow to Ps30 ppsipsi 17
) NRf Corrected fan speed mm 18
BT Nrc Corrected core speed mpm 19
T3 BPR Bypass Ratio = 2
-ﬂ farB Burner fuel-air ratio = 21
hiBleed Bleed Enthalpy B 22
BT Nt dmd Demanded fan speed mm 23
PONRAM  pomanded correctedtanspeed ~ rpom 24
[ 20 0% HPT coolant bleed bm/s 25
T w32 LPT coolant bleed bm/s 26

Analysis on the data showed that only 7 out of the 21
data deliver significant input. Others are either constant or
binary, or redundant information with other information.
This discrimination process is important for identifying
which parameters really come into play for diagnostics.
At the same time, as the computation time for the SOM
approach is a function of the data dimension, a reduction
of the number of output data will allow for a reduction in
this computation time.

4  SELF-ORGANISING MAPS FOR
DIAGNOSTICS

Self-Organising Maps (SOM) are Neural Networks
with unsupervised learning inspired by the way the human
brain functions (Kohonen, 1990). The development of a
SOM consists of two main phases; the training phase and
the labelling phase. Those phases are strongly linked and
both must be carefully developed to obtain a reliable tool.
The training phase is oriented to teach the algorithm with
the dataset in such a way that the neural network clusters
similar data features on specific regions on the map. The
labelling phase. once the training phase has been finished,
links these regions to identified features of the dataset
(labelling). This allows the algorithm to identify similar
data patterns in complex data. When similar data patterns
are presented to the SOM, the right region on the map is
identified, hinting, for the current study, a degradation
status of the engine.

Usually a two-dimensional, rectangular architecture is
used for the SOM’s. Other architectures include 2D
hexagonal maps, but also 1D and 3D architectures. In this
paper a rectangular map is selected for the health
monitoring (see Figure 3).

o000 o0o0o0 ®
o000 0o0o0 ®
e0o0o0oo0o ®
o000 0o @®
o000 0O0 °
o000 00o0 ®
oo 000 00 @
o000 000 ®
o000 000 ®
YEXEXEXXX! ®

Figure 3: Rectangular SOM architecture.

Taking a closer look at the SOM training phase shows
that this phase consists two different main steps;
competitive and convergence. During the competitive
step, a set of input vectors x,, is presented to the 2D map
(p denotes the dimension of the input and output data, for
the jet-engines database it is 7). The map is constituted of
“n” neuron with coordinates i and j on the map and which
have a weight w;;. The weights are vectors with the same
dimension as input vectors. At the start of the training
process the weights values are set randomly in the
intervals [0,1]. A normalisation of the input vectors is
performed prior to the training phase so to avoid
algorithmic problems. Such normalization allows to bring
variable values of very different orders of magnitude to a
similar range. This requires expert knowledge on the
application domain, on the viable range of variable values
so to identify the actual limits.
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During this competitive process, the Euclidean
distance is computed between one input and each neuron.
When the lowest distance among all of them is found, the
neuron related to this distance is declared as the winner
neuron (see equation (1)), or in more formal words, the
Best Matching Unit (BMU). The BMU is surrounded by
its neighbourhood constituted by neurons within a certain
radius from the BMU.

Now, the Euclidean distance is computed between the
coordinates of the BMU and the coordinates of all the rest
of the map, if the result is lower than the threshold, the
neuron become part of the neighbourhood. The radius
determining the neighbourhood starts large at the
beginning of the training phase (around the half the size
of the map) and will decrease gradually using decay
function (2) along the learning process. When the
neighbourhood is constituted only by the BMU it-self
(equations (3)-(4)), the training phase ends.

BMU = argmin {llxo(®) — wi; ]|} W

e
decay(t) = exp— &)

with t being the current iteration and A a time constant.

1= number of iterations A3)

logr,

with 7, being the initial neighbourhood radius (half of
the map size), then

r =1, X decay(t) )

After finding the BMU, the weights of the winner
neuron and the neighbourhood are updated using the
following equation:

st o {w(t) + a(t)t‘:fzg)(xi;t);ngzl Ez} e Aaw®  (5)
where:
a(t) is the learning rate depending on the iteration.
B(t,r) the influence rate depending on the iteration
and the radius from the BMU.
n;; a neuron with its i and j coordinates on the map.
Appy (t) Neighbourhood of the BMU for the current
iteration.

The weights updating is strongly linked with the
influence rate B(t,r). It defines the magnitude of the
change when updating the weights of the BMU and its
neighbours, depending on the distance from the winner
neuron. The further away the neighbour is, the lesser the
influence. There are some influence functions which

affect negatively the furthest neighbours, this means,
there is an inhibitory effect on them (e.g. the “Mexican
hat” function). In this study the well-known Gaussian
Function, is the one used.

Figure 4: Gaussian function as influence rate.

Once the weights are updated, a second input is shown
to the map, the BMU is found and the weight are updated
again. This process is repeated with all the inputs and
several times (iterations) to ensure a good learning
process. In this study, the maximum number of iterations
was set to 500 times the number of nodes in the map,
described in literature as a reasonable estimate for good
convergence (Kohonen, 1995).

Another important factor in the training phase is the
learning rate, the speed with which the neural network
learns. At the beginning of the learning process, the
learning rate is rather large (in this study 0.9) and it will
decrease exponentially along the learning process When
the learning rate is high, neurons with similar features are
rapidly on a map region, this is known as the topological
step in the training phase. As the learning rate is
decreasing, the convergence step begins when the weights
of the neurons are slightly refined. Equation (6) has been
used to determine the learning rate along the training
process.

a(t) = a(t), X decay (t) 6)

To summarize the SOM algorithm, the following
steps are proposed:

1.  Define the map architecture

2. Initialize the neuron weights randomly.
3. Show the first input vector to the SOM.
4.  Find the BMU.

5. Define the neighbourhood.

6.

Update the weights of the winner
neuron and its neighbourhood

7. Repeat steps 3 to 6 with all the inputs
vectors.

8.  Show all the input vectors several times
to the neural network to facilitate the SOM
convergence.

If the algorithm converges properly, some defined
regions, or trends, will appear on the map. These regions
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concern areas where comparable inputs are recognised
This allows to see what data is considered, by the
algorithm, to be similar. It is the task of the human expert
to assess these results, so to ensure that the data concerns
indeed similar patterns. Knowing now these regions on
the map, allows for labelling these regions with clear
identification on what the cluster is about. It concerns
therefore a manual identification of the different regions /
clusters by SOM algorithm. A name, numeric value or any
other identification character will be assigned to the map
regions or neurons so that new data could be assessed and
identified automatically by the trained SOM.

5  APPLICTION OF SOM’S FOR
DIAGNOSTICS

SOM have been applied in several approaches for
diagnosis and prognosis in predictive maintenance
precisely due to its identification abilities in complex data.
For example, (Germen et al. 2014) presents a SOM
application to determine different types of faults in
induction motors using sound based data. (Come et al.
2010) use self-organising maps to monitor different
parameters of aircraft engines for health diagnosis
purposes. (Hu et al. 2013) determines the dynamic
degradation on bearings using self-organising algorithms
from incipient faulty conditions to the failure state.

This paper proposes a different approach of analysis
with SOM on the jet-engine health diagnosis, assessing
the engine degradation trend on different operational
modes scenarios at the same time. The degradation trend
is quantified by a degradation index obtained from the
trained SOM for each operational mode, allowing to
determine the engine health status in a more integrated
way, assessing multiple operational modes at the same
time to avoid false positives (suggesting a fault where it is
still good), or false negatives (suggesting no faults while
a fault has occurred). The rationale behind this approach
is to be able to compare diagnostics from different
operational modes so to build up “evidence” for a
suspected fault as time goes along and different control
setting are encountered.

The study case is built on the database described in
paragraph 3. For each engine cycle in the database, only
one operational mode is used to record discrete data. For
each operational mode, the data patterns are very different
in terms of range so that an unambiguous determination
of a degradation trend is not possible over all operational
modes at the same time. A first approach therefore has
been to develop an SOM for each operational condition,
leading to 6 different SOMs, one for each operational
mode. This allows to follow the degradation evolution
through the lifecycle on each single scenario for the given
operational condition.

The results on the 6 SOMs were similar. On each map
two main regions were clustered: a white region
representing the good operational conditions of the engine
and a black region representing the faulty conditions.
Besides these regions, a grey scale witnessing the
transition over engine lifetime between both regions
appeared on the rest of the map, therefore representing the
engine degradation in the intermediate states. Figure 5
represent one of these single operational mode SOMs.
The red circles within some neurons connected by arrows,
represent the lifecycle of one extra engine tested with the
trained SOM. It is possible to observe the degradation
evolution on the tested engine from the white to the black
region, going through the grey neurons along its lifecycle.

Figure 5: Engine degradation trend observed on a
SOM trained with one control setting data.

Even when consistent degradation trends were
obtained on individual operational modes, showing the
evolution from the good to the faulty operational
conditions, it is possible to obtain incomplete degradation
trends on these individual SOM. Considering the data
format, only one operational mode is encounter for each
engine cycle (changing randomly from one cycle to
another among six different options) and this could yield
a lack of data for a specific operational mode at some
stages of the engine lifecycle. This condition is more
critical at the end of the lifecycle, where a lack of
information on a specific operational mode might hide a
faulty engine condition.

Besides, in real life, an engine passes via multiple
operational conditions during one single flight. As such,
information from these different operational modes could
be gathered and used to improve the confidence in the
diagnostic result. If information is used only from one
operational condition, many external factors, like bad
weather conditions, avoidance manoeuvres or gusts might
induce a false result in the degradation indicator and this
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could lead to trigger maintenance actions in the wrong
moment.

To address this situation, a degradation assessment on
several different operational modes is proposed to
enhance the decision-making process. A new SOM was
developed, this time using the information from the 6
operational modes available on the dataset. The SOM size
for this case was determined following the method
suggested by (Delgado et al. 2017), resulting a 15x15 map
the best option. Verification has shown that no significant
improvements were obtained using SOMs with a higher
dimension maps. The result of the trained SOM with the
6 operational modes is shown in Figure 6. Each bounded
region on the trained SOM represents an operational mode
that can be easily labelled using the known features of
each mode in the dataset.
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Figure 6: 15x15 SOM trained with full jet-engine
dataset.

Once the regions were identified a test was carried out
to prove SOM accuracy at clustering the engines cycles to
the corresponding operational mode. All engines
available in the data set were shown to the SOM and it
succeeded allocating each cycle to the correct map region.
This shows that each operational mode is well bounded to
a single map region allowing analysing the degradation
trend on each operational mode at the same time for a
single engine. Figure 7 shows a single engine tested with
the 15x15 SOM. The black point within the coloured
neurons represent the exited neurons of each region and
arrows represent the degradation evolution on each
operational mode.
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Figure 7: Testing engine sample from training sub-

set on the 15x15 SOM.

Since the difference between each operational mode is
large, the small differences within each region are not
easily observable as it was on SOM trained with one
single operational mode. This poses a serious problem to
follow the engine degradation trends. Yet, even when
these variations between the neurons on a map region are
too small to be observed by the colours of the map,
variation on the neurons weights (numerical values) exist
and this information can be used to describe the engine
degradation process.

The norm of each neuron weight vector is computed,
this value is normalized between 0 and 1 for each
operational mode. Let be OP, a set of neurons that
constitute an operational mode 'm’, then:

Vnij € OPm

Wil mingwi )
.
max (Wi l,) - min(wi ) O

with d,, being the degradation index on each neuron
n;; and, wy,;, being each neuron weight within the same
operational mode.

The obtained values are used as labels for each neuron
and once the labelling task was finished, a clear evolution
from 0 to 1 is easily observed on each map region. This
value has been called “degradation index™ and its use is
key for diagnosis strategy. Figure 8 shows the degradation
index (d,,) as labels on the 15x15 SOM, being the 0 the
best operational conditions, the 1 the faulty conditions and
the values between them the degradation process on the
engine lifecycle.


a.rumigny
Zone de texte 


014[ 016] 0.3
04| 07] 029] 0,29
065] 053] 041] 032 032
0.35] 078] 05| 0,57] 052] 0.2
1,00 090[ 075 0,68 062] 053

01 2 3 4 5 6 7 8 9 10 11 12 13 14

9

8

7 0

6 0

5 kT 0 00 0,07 Oml 0,01
4 0

3

2

1

0

Figure 8: 15x15 SOM labelled with degradation
values on each region.

As the goal is to follow the current health state of the
engines, the approach is to determine whether the engines
condition is faulty or nominal. First, individual
degradation indexes d,, are obtained for all operational
modes in one single flight. Once the individual
degradation indexes d,, are obtained it is possible to
combine them in a consolidated degradation index Dp.
This consolidated value allows to observe a general
degradation evolution considering as many operational
modes as possible (equation 8).

D= Y i ®)

D¢: consolidated degradation index at any flight.

d,,: individual degradation indexes for each m
operational mode.

[: number of operational modes registered during the

flight.

To compute D, the ideal case is when all possible
operational modes are registered in the same flight (six
operational modes for the current study). However, the
engine might not register one or several operational
modes during a flight, if this happens, d,, might be
obtained from the previous flights, as long the data is still
considered as valid. A first experimental approach in the
current study established the previous 5 flights as valid to
take missing d,,, for the latest flight D, computation.

The consolidated degradation index D, encounters
different perspectives of the degradation evolution using
a single value for each engine flight. Plotting this value
versus the number of flights (discrete cycles for the
simulated data), an increasing evolution of the
degradation is observed until a certain threshold, close to
value 1. Figure 9 shows the degradation evolution along
the lifecycle of one engine, using D, approach.

0 25 50 75 100 125 150 175 200 225 250

Number of cycles
)¢ =—D_mean

|

Figure 9: Degradation evolution of one cycle

The fluctuations of curve D, pose a problem to study
the degradation trends and determine an experimental
degradation index threshold. To soften D, curve, the
arithmetic moving average is applied considering the
measurements of the last 10 flights. These 10 flights
represented the best experimental compromise between
softening the curve and keeping the variation of the
degradation index as wide as possible. This produce the
curve D, versus the number of flights (cycles), which
facilitate the degradation trends study. Figure 9 also
shows the D,,,.q, curve for the current engine under study.

Obtaining D,,.q, curve for multiple failed engines and
plotting all of them in the same graphic, it is possible to
determine an experimental threshold for the proposed
method of degradation index. For the current jet-engines
analysis a threshold of 0.93 for D,,.,, is proposed.
Engines below of such threshold are considered in
nominal conditions and those overcoming the threshold
are considered as failed. In real life applications, such
thresholds must be supported by knowledge of experts,
regulations and manufacturers specifications.

Once the threshold is known other engines were
evaluated with the proposed method to confirm the
current health status of the engine. Table 2 summarize the
data for the last measured flight of some of the assessed
engines. Columns 2 to 7 show the individual degradation
indexes for the last measurement of the engines Columns
8 and 9 present D, and D,,,,,, correspondingly and last
column shows the confirmed health status of the engine.

Table 2. Engine condition diagnosis from the
degradation index.

Engine di | dp | dy | dy | ds | de | pIp | condition
Enginel 0,99 1,00 1,00 1,00] 099 Failed
Engine2 1,00( 1,00 1,00| 1,00 1,00 098 Failed
Engine3 0,99| 1,00 0,93 0,97 093 Failed
Engined 0,78 0,78 1,00 073 0,82 0,77 Nominal
EngineS 0,41| 042| 035 044| 014 0,35 0,38 Nominal

Engine6 0,38 0,24| 0,18 038] 030 031 Nominal
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As explained in section 3, there are two subsets in the
data base; the training subset and the testing subset.
Engines from 1 to 3 in table 2 were taken randomly from
the training subset, in which all engines reached the faulty
threshold. For such engines, the degradation index value
confirms the reaching of a faulty condition since the value
is greater than the experimental threshold. Engines from
4 to 6 were selected randomly from the testing subset and
in this case, it concerns engines that remained in good
operational conditions (nominal condition). The
degradation index confirms this, as the value remains
under the degradation threshold.

6 CONCLUSION

The correct diagnosis of health state allows to improve
the decision-making process in maintenance departments,
bringing benefits to the companies. When a system faces
a normal lifecycle, it is summited to degradation thought
the time and sometimes is not easy to identify the
degradation evolution from complex data so that
specialized methods such as SOM should be applied to
facilitate the data analysis.

Using SOM is has been possible to identify the
degradation trend on simulated aircraft jet-engines,
considering first, a single operational mode of the engines
at the time. This yielded a SOM in which was possible to
observe the evolution of the degradation by means of a
colours transitions on the map neurons, from a white
region (optimal conditions) to a black region (faulty
conditions) on the trained map.

Since an Aircraft faces several operational modes
during a flight, a diagnosis based on one single
operational mode is not enough, since the data might be
altered for external reasons. A multiple operational mode
approach is proposed, training another SOM with all
operational modes available on the jet-engines dataset. To
facilitate the analysis, a degradation index has been
computed from each neuron weight vector and
normalized from 0 to 1 on each operational mode. These
degradation indexes allowed to determine if the tested
engines are in the faulty condition or not.

Future work will be dedicated to the computation of
Remaining Useful Life of the jet-engines considering the
degradation indexes obtained from the trained SOM, this
includes further analysis among the degradation index
threshold. Finally, based on the obtained results, different
SOM architectures will be studied so to assess their
suitability to the problem at hand, and looking at the
applicability in terms of computation time for training,
convergence, etc.
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