N

N

Visual illusions via neural dynamics: Wilson-Cowan-type
models and the efficient representation principle
Marcelo Bertalmio, Luca Calatroni, Valentina Franceschi, Benedetta

Franceschiello, Alexander Gomez-Villa, Dario Prandi

» To cite this version:

Marcelo Bertalmio, Luca Calatroni, Valentina Franceschi, Benedetta Franceschiello, Alexander
Gomez-Villa, et al.. Visual illusions via neural dynamics: Wilson-Cowan-type models and
the efficient representation principle. Journal of Neurophysiology, 2020, 123 (5), pp.1606-1618.
10.1152/jn.00488.2019 . hal-02199928

HAL Id: hal-02199928
https://hal.science/hal-02199928

Submitted on 25 Apr 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02199928
https://hal.archives-ouvertes.fr

Visual illusions via neural dynamics: Wilson-Cowan-type models
and the efficient representation principle

Marcelo Bertalmio
DTIC, Universitat Pompeu Fabra, Barcelona, Spain
marcelo.bertalmio@Qupf.edu

Luca Calatroni

CMAP, CNRS, Ecole Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France
luca.calatroni@polytechnique.edu

Valentina Franceschi
IMO, Université Paris-Sud, Orsay, France
valentina.franceschiQu-psud.fr

Benedetta Franceschiello
FAA, LINE, Radiology, CHUV, Lausanne, Switzerland
benedetta.franceschiello@fa2.ch

Alexander Gomez-Villa
DTIC, Universitat Pompeu Fabra, Barcelona, Spain
alexander.gomez@Qupf.edu

Dario Prandi
CNRS, L2S, CentraleSupelec, Gif-sur-Yvette, France
dario.prandi@I2s.centralesupelec.fr

Abstract

In this work we have aimed to reproduce supra-threshold perception phenomena, specifically
visual illusions, with Wilson-Cowan-type models of neuronal dynamics. We have found that
it is indeed possible to do so, but that the ability to replicate visual illusions is related to
how well the neural activity equations comply with the efficient representation principle. Our
first contribution is to show that the Wilson-Cowan equations can reproduce a number of
brightness and orientation-dependent illusions, and that the latter type of illusions require that
the neuronal dynamics equations consider explicitly the orientation, as expected. Then, we
formally prove that there can’t be an energy functional that the Wilson-Cowan equations are
minimizing, but that a slight modification makes them variational and yields a model that is
consistent with the efficient representation principle. Finally, we show that this new model
provides a better reproduction of visual illusions than the original Wilson-Cowan formulation.

Keywords: Wilson-Cowan equations; Brightness perception; Efficient representation princi-
ple; Variational modelling

1 Introduction

The goal of this work is to point out the intimate connections existing between three popular
approaches in vision science: the Wilson-Cowan equations, the study of visual illusions, and the
efficient representation theory.


mailto:marcelo.bertalmio@upf.edu
mailto:luca.calatroni@polytechnique.edu
mailto:valentina.franceschi@u-psud.fr
mailto:benedetta.franceschiello@fa2.ch
mailto:alexander.gomez@upf.edu
mailto:dario.prandi@l2s.centralesupelec.fr

As other articles in this special issue make abundantly clear, Wilson-Cowan equations have a
long and successful story of modelling cortical low-level dynamics |[Cowan et al., 2016]. Nonetheless,
not many works have pursued the study of psychophysics with Wilson-Cowan equations (e.g. [Adini
et al., 1997, [Herzog et al., 2003} [Bertalmio and Cowan, 2009, [Ernst et al., 2016, [Bertalmio et al.,
2017)), and we are not aware of publications dealing with suprathreshold brightness perception
through the Wilson-Cowan formulation.

The study of visual illusions has always been key in the vision science community, as the
mismatches between reality and perception provide insights that can be very useful to develop
new models of visual perception [Kingdom, 2011] or of neural activity |[Eagleman, 1959| [Murray
and Herrmann., 2013, and also to validate the existing ones. It is commonly accepted that visual
illusions arise due to neurobiological constraints [Purves et al., 2008] that modify the underpinned
mechanisms of the visual system.

The efficient representation principle, introduced by Attneave [Attneave, 1954] and Barlow
[Barlow et al., 1961, states that neural responses aim to overcome these neurobiological constraints
and to optimize the limited biological resources by being tailored to the statistics of the images that
the individual typically encounters, so that visual information can be encoded in the most efficient
way. This principle is a general strategy observed across mammalian, amphibian and insect species
[Smirnakis et al., 1997] and is embodied by neural processing according to abundant experimental
evidence |Fairhall et al., 2001, [Mante et al., 2005, |Benucci et al., 2013].

Our work aims at pulling together the three approaches just mentioned, providing a more unified
framework to understand vision mechanisms. First, we show that the Wilson-Cowan equations are
able to reproduce a number of visual illusions. Secondly, we formally prove that Wilson-Cowan
equations (with constant input) are not variational, in the sense that they are not minimizing
any energy functional. Next, we detail how a simple modification turning the Wilson-Cowan
equations variational yields a local histogram equalisation method that is consistent with the
efficient representation principle. We finally show how this new formulation provides a better
reproduction of visual illusions than the Wilson-Cowan model.

2 Materials and methods

2.1 Visual illusions

Visual illusions have always been considered as a window between reality and perception, enabling
neuroscientists to disentangle the complicated process of vision [Eagleman, 1959, Murray and
Herrmann., 2013]. Computational models able to reproduce perceptual phenomena represent very
effective methods to test new hypotheses and generate new insights, both for neuroscience and
applied disciplines such as image processing. These illusions can be classified according to the main
feature detection mechanisms involved during the visual process [Shapiro and Todorovic, 2016].
In this contribution we considered two main groups of visual illusions to assess the efficacy of
our model in reconstructing the perceptual process: brightness illusions and orientation-dependent
tllusions.

2.1.1 Brightness illusions

Brightness illusions are a class of phenomena where image regions with the same gray level are
perceived as having different brightness, depending on the shapes, arrangement and gray level of
the surrounding elements. Fig. [1| shows the nine brightness illusions we have chosen to perform
tests on in this paper. They are all very popular and at the same time they represent a diverse
set, as we can see from the following descriptions.

White’s illusion: the left gray rectangle appears darker than the right one, while both are
identical [White, 1979] (Fig. [I(a)).



Simultaneous brightness contrast: the left gray square appears lighter than the right one,

while both are identical [Brucke, 1865] (Fig. [[|(b)).

Checkerboard illusion: the mid-gray square in the fifth column appears darker than the one
in the seventh column, while both are identical [DeValois and DeValois, 1990] (Fig. [Ic))

Chevreul illusion: a pattern of homogeneous bands of increasing intensity from left to right
is presented. However, the bands in the image are perceived as inhomogeneous, i.e. darker and

brighter lines appear at the borders between adjacent bands [Ratliff, 1965] (Fig. (d))

Chevreul cancellation: when the order of the bands is reversed, now decreasing in intensity
from left to right, the effect is cancelled [Geier and Hudék, 2011] (Fig. [Ie)).

Dungeon illusion: two gray rectangles are perceived as darker or lighter depending on the gray
intensities of both the background and the grid, see |Bressan, 2001]. The left rectangle is perceived
as darker than the one on the right (Fig. [I[f))

Grating induction: the background grating (which can be tuned to different orientations) in-
duces the appearance of a counter-phase grating in the homogeneous gray horizontal bar [McCourt,

(Fig. [I(g))

Hong-Shevell illusion: the mid-gray half-ring on the left appears darker than the one on the
right, while both are identical [Hong and Shevell, 2004] (Fig. [L[h)).

Luminance illusion: four identical dots over a background where intensity increases from left
to right and the dots on the left are perceived being lighter than the ones on the right m
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Figure 1: From left to right, top to bottom: White’s illusion, Brightness contrast, the checkerboard
illusion, the Chevreul illusion, Chevreul cancellation, the Dungeon illusion, the Grating induction,
the Hong-Shevell illusion and the Luminance illusion.



2.1.2 Orientation-dependent illusions

We also consider orientation-dependent illusions, where the perceptual phenomena (e.g. in terms
of brightness or contrast) is affected by the orientation of the image elements.

Poggendorff illusion. The Poggendorff illusion, presented in the modified version considered in
this work in Fig. (a), is a very well known geometrical optical illusion in which the presence of a
central surface induces a misalignment of the background lines. This illusion depends both on the
orientation of the background lines and the width of the central surface [Weintraub and Krantz,|
, as the more the angle is close to 7/2 the less is the bias, but in this example the perceived
bias is also dependent on the brightness contrast between central surface and background lines.

Tilt illusion. The Tilt illusion is a phenomenon where the perceived orientation of a test line
or grating is altered by the presence of surrounding lines or grating with a different orientation.
In our case we consider the effect that the orientation of a surround grating pattern has on the
perceived contrast of a grating pattern in the center: the inner circles in Figs. (b) and (c) are
identical but the latter is perceived as having more contrast than the former.

(a) Poggendorff illusion.  (b) Tilt illusion, same 6. (c¢) Tilt illusion, different 6.

Figure 2: From left to right: a modified version of the Poggendorff illusion based on Grating In-
duction, a modified Tilt illusion with concentric circles having the same orientation and a modified
Tilt illusion with concentric circles having different orientations.

2.2 Wilson-Cowan-type models for contrast perception

In this section we introduce four different evolution equations derived from the Wilson-Cowan
formulation, that will be studied in this paper. We recall that, denoting by a(z,t) the state of a
population of neurons with spatial coordinates x € R? at time ¢t > 0, the Wilson-Cowan equations
proposed in [Wilson and Cowan, 1972] can be Writterﬂ as

%a(w, t) = —Ba(x,t) +v /R2 w(z|ly)o(a(y,t)) dy + h(z), (2.1)

where 8 > 0 and v € R are fixed parameters, o : R — R is a non-linear sigmoid saturation function,
the kernel w(zx|ly) models interactions at two different spatial locations x and y (we will assume
that the integral of w is normalised to 1) and h is the input signal.

2.2.1 Wilson-Cowan equations do not fulfill any variational principle

Over the last thirty years, the use of variational methods in imaging has become increasingly
popular as a regularisation strategy for solving general ill-posed imaging problems in the form

find u s.t. f=T(u). (2.2)

In ﬂWilson and Cowan, 1972ﬂ the sigmoid function is applied outside of the integral term and not only on
the activity a(y,t) as in (2.1). This corresponds to an “activity-based” model of neuron activation, while (2.1)
corresponds to a “voltage-based” one. See |Faugeras, 2009|, where the two models are shown to be equivalent.
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Here, f represents a given degraded image and T a (possibly non-linear) operator describing the
degradation (e.g. noise, blur, under-sampling, etc.)

Due to the lack of fundamental properties such as existence, uniqueness and stability of the
solution of the problem , the idea of regularisation consists of incorporating a prior: informa-
tion on the desired image wu, and on its closeness to the data f by means of suitable variational
terms. This gives rise, in particular, to variational methods where one looks for an approximation
uy of the real solution u by solving

U, = arg min & (u), (2.3)

where € is the energy functional combining regularisation and data fit, depending also on the given
image f. A popular way to solve the variational problem consists in finding u, as the steady-state
solution of the evolution equation given by the gradient descent of the energy functional

0
5= —VE&(u), uli=o = f, (2.4)
under appropriate conditions on the boundary of the image domain.

In the context of vision science, evolution equations have been originally used as a tool to
describe the physical transmission, diffusion and interaction phenomena of stimuli in the visual
cortex [Beurle and Matthews, 1956| [Wilson and Cowan, 1972 [Wilson and Cowan, 1973|. Varia-
tional methods are the main tool of ecological approaches, that pose the efficient coding problem
[Olshausen and Field, 2000] as an optimisation problem to be solved with evolution equations
that minimise an energy functional [Atick, 1992] involving natural image statistics and biological
constraints. The resulting solution is optimal because it has minimal redundancy.

However, we must remark that, while considering the gradient descent of an energy functional
gives always an evolution equation, the reverse is not true: not every evolution equation is minimis-
ing an energy functional. In fact, this is the case for the Wilson-Cowan equations, which do not
fulfil any variational principle, as we prove in Appendix[A]l As a consequence, they are sub-optimal
in reducing the redundancy.

2.2.2 A modification of the Wilson-Cowan equations complying with efficient repre-
sentation

Remarkably, the efficient representation principle has correctly predicted a number of neural pro-
cessing aspects and phenomena like the photoreceptor response performing histogram equalisation,
the dominant features of the receptive fields of retinal ganglion cells (lateral inhibition, the switch
from bandpass to lowpass filtering when the illumination decreases, and, remarkably, colour oppo-
nency, with L, M and S signals being highly correlated but L+ M, L — M and S — (L + M) having
quite low correlation), or the receptive fields of cortical cells having a Gabor function form [Atick,
1992} Daugman, 1985, Olshausen and Field, 2000]. Efficient representation is the only framework
able to predict the functional properties of neurons from a simple principle, and given how simple
the assumptions are it’s really surprising that this approach works so well [Meister and Berry,
1999].

In [Bertalmio and Cowan, 2009] Bertalmio and Cowan showed how a slight modification of the
Wilson-Cowan formulation leads to a variational model, as we now present. Assuming that the
activity signal a is in the range [0, 1], we can re-write equation in terms of a sigmoid & shifted
by % (which we take as the average signal value) and inverted in signs, thus getting:

gta(a?,t) = —Ba(z,t) — V/R2 w(z||y)o (a(y,t) - ;) dy + h(z). (2.5)

Note that this is just a re-writing of equation (2.1]), so it is still not associated to any variational
method. However, if we now assume & to be odd and replace the % term by a(z,t), we obtain

0

aa(w,t) = —fa(x,t) + V/R? w(z|ly)o(a(z,t) — aly,t)) dy + h(z), (2.6)
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and this equation is now a gradient descent equation, as it does fulfil a variational principle.

Furthermore, under the proper choice of parameters 3,v and input signal h, this evolution
equation performs local histogram equalisation (LHE) [Bertalmio et al., 2007]. This is key for
our purposes, since, as Atick points out [Atick, 1992|, one of the main types of redundancy or
inefficiency in an information system like the visual system happens when some neural response
levels are used more frequently than others, and for this type of redundancy the optimal code is
the one that performs histogram equalisation.

It is therefore expected that the modification of the Wilson-Cowan equations in , which
better complies with the efficient representation principle, should be more effective in reducing
redundancy than the original Wilson-Cowan model of equation ([2.1)).

2.2.3 Accounting for orientation

Models and ignore orientation and as such they are not well-suited to explain a number
of visual phenomena. For this reason, following [Bertalmio et al., 2019], we extend them to a third
dimension, representing local image orientation, as follows. We let La : @ x [0,7) — R be the
cortical activation in V1 associated with the signal a, so that La(z, ) encodes the response of the
neuron with spatial preference x and orientation preference 0 to a. Mathematically, such activation
is obtained via a suitable convolution with the receptive profiles of V1 neurons, as explained in
Appendix [B| see also |[Duits and Franken, 2010, Petitot, 2017, Prandi and Gauthier, 2017} |Citti
and Sarti, 2006| Sarti and Citti, 2015|. Then, denoting for any ¢ > 0 by A(x,6,t) the cortical
response at time ¢, the natural extension of equations and to the orientation dependent
case is given by the two models:

8 0
aA(x, 0,t) = —BA(x,0,t) + 1//0 /Qw(x,HHy, ¢)U(A(y, ¢,t)) dyd¢ + Lh(zx,6), (2.7)

gA(x,G,t) = —BA(x,0,t) + I//W/ w(:z,9||y,qb)&(A(:c,@,t)—A(y, gi),t)) dydp + Lh(z,0), (2.8)
t 0o Jo

where Lh(z,0) denotes the cortical activation in V1 corresponding to the visual input h at spatial
location = and orientation preference . We remark that these models describe the dynamic
behaviour of activations in the 3D space of positions and orientation. As explained in Appendix [B]
once a stationary solution is found, the two-dimensional perceived image can be found by simply

applying the formula
1 s
a(z) = / Az, 0) db. (2.9)
0

™

2.2.4 Models under consideration

We summarise here the four models we are going to test in the following sections. The orientation-
independent WC and LHE models are:

%a(fmf) = —(1+Na(z,t) + 2]1\/[/6260(% y)o (aly,t)) dy + Afo(x) + p(x) (WC-2D)
1

ga(m,t) = —(1+ Na(z,t)

o w(z,y)6 (a(z,t) —a(y,t)) dy + Afo(z) + p(z), (LHE-2D)

+ -

2M Jg
which relate to and by simply choosing parameters as 5 =1+ X\ and v = 1/2M where
M > 0 is a normalisation constant and input signal h(z) = Afo(z)+ u(x), where A > 0, fo(z) is the
local intensity at € @ of given image fp and pu(z) denotes a local average of the initial stimulus
fo around x (a choice motivated by the averaging behaviour of M cells and already considered in
similar models e.g. [Bertalmio et al., 2007, Bertalmio, 2014]).



The orientation-dependent WC and LHE models can be similarly written as:

gtA(th) — (1 + M)A, 0,8) +/ / (2,6l|y, &) (A(y, &, 1)) dy do

+ AL fo(z,0) + Lu(x, 9) (WC-3D)
aatA(ac,H,t) =— 14+ NA(z,0,1) + / / z, 0|y, p)o (A(x,0,t) — Ay, ¢,t)) dy de

+ AL fo(x,0) + Lu(z, 9), (LHE-3D)

which can analogously be related to (2.7) and (2.8) by choosing the very same parameters as
above and by now taking as cortical activation in V1 corresponding to h the quantity Lh(z,0) =
AL fo(x,0) + Lp(z, ).

2.2.5 Numerical implementation

All four relevant equations (WC-2D|), (LHE-2DJ), (WC-3D)), and (LHE-3D|) are numerically im-

plemented via a forward Euler time-discretisation, as presented in [Bertalmio et al., 2007]. For a
given image a, the cortical activation La is recovered via standard wavelet transform methods, as
presented in [Bertalmio et al., 2019] (see also [Duits and Franken, 2010]). The codes, written in
Julia [Bezanson et al., 2017], are available at the following link: http://www.github.com/dprn/
WCvsLHE.

All the considered images are 200 x 200 pixel and take values in the interval [.15,.85], in order
to avoid aliasing issues. We always consider K = 30 discretised orientations. As presented in
Appendix B} the associated receptive profiles are obtained via cake wavelets [Bekkers et al., 2014,
for which the frequency band bw is set to bw= 5. The interaction kernel is taken to be a 2D
or 3D Gaussian with standard deviation o, the local mean average p is obtained via Gaussian
filtering with standard deviation o,. In our experiments we used the following two piece-wise
linear functions as sigmoids:

d(p) := min{l, max{ap, —1}}, o(p) :=—0 (a: — 1) , (2.10)

with a = 5, see Figure 3] Note that 6, which will be used for LHE models, is odd and centered in
zero while o, which will be used for WC models, is shifted in 1/2 and shows a reversed behaviour.
This in fact corresponds to a change of sign in the integral terms of LHE models w.r.t. the WC
ones, as discussed in Section [2.2.2

(a) 6 and the line y =z (b) o and the line y = —z + %

Figure 3: Sigmoid functions in the form (2.10)), with « = 5, as considered in our experiments.

Finally, the evolution equations stop when the L? relative distance between successive iterations
is smaller than a tolerance 7 = 1072,


http://www.github.com/dprn/WCvsLHE
http://www.github.com/dprn/WCvsLHE

3 Results

In this section, we present the results obtained by applying the four models described above to
the visual illusions described in Section Our objective is to understand the capability of these
models to replicate the visual illusions under consideration. That is, we are interested in whether
the output produced by the models agrees with the human perception of the phenomena.

Assessing the replication of visual illusions by means of quantitative metrics is a very delicate
matter. Due to the lack of a universal metric adapted to this task we will evaluate replication or
lack thereof by presenting relevant line profiles, i.e., plots of brightness levels along a single row
(line), of images produced by the four models in consideration. These lines are chosen as to cross
a section of the image called target: A gray region in the image (or set of regions in the case of the
Chevreul illusion), where the brightness illusion appears.

In all the results shown in this section, the original visual stimulus profile is represented as a
blue dashed line. The line profiles of the output models are represented as solid red ,
green , magenta , and cyan lines.

The parameters appearing in the models have been chosen independently for each illusion
and each model, in order to obtain the best possible replication of the visual illusion. These are
presented in Table

3.1 Orientation-independent brightness illusions

WC-2D LHE-2D WC-3D LHE-3D
Illusion oy | o | AN | M|o,|o, | AN Mo, | o0, | N M|o,|o, || M
White 10 1 20 | .7 )14 10 | 50 | .7 | 1 20 130 | 7114 2 |50 |.7]1
Brightness 2 [ 10 |.7|14| 2 |10 |.7| 1 2 |10 |.7|14| 2 |10 |.7| 1
Checkerboard 10| 70 | . 7|14 10 | 70 |.7| 1 10|70 | .7 14 10 70 | .7| 1
Chevreul 2 5 7] 1 2 10 | .7T| 1 2 40 | 5| 1 5 7T .71
Chevreul canc. 2 2 191 5 3191 2 120 .5]14 5 3191
Dungeon 6 |10 | .7 |14 5 | 40 |.7| 1 2 |50 |.7|14] 5 |50 |.7T| 1
Gratings 2 6 |.7] 1 2 6 |.7] 1 2 6 | .7T| 1 2 6 |.7| 1
Hong-Shevell 5 120 .7 1 5 ST 1 10 | 30 | .7 | 1 10 | 30 | .7 | 1
Luminance 2 6 | .7] 1 2 6 | .7] 1 2 6 | .7T| 1 2 6 |.7| 1
Poggendorff X | X | X | X X | X | X | X X | X | X | X 3 |10 | 5] 1
Tilt X | X | X | X X | X | X | X X | X | X | X 15120 | .7 1

Table 1: Parameters used in the tests.

Table [1| summarises the replication results obtained for the illusions described in Section
if the model replicates the illusion we indicate in the table the used parameters, otherwise a
cross (X) denotes no replication, i.e. the failure of the model to reproduce computational results
corresponding to the visual perception of the considered illusion.

White’s illusion. The chosen line profile for the plots in Fig. [4] corresponds to the central
horizontal line of the image, which crosses both gray patches. As both plots show, all four models
correctly predict the left target to be darker than the right one.

Simultaneous brightness contrast. The plots in Fig. |b| show the line profiles of the central
horizontal line of the image, which crosses the two gray squares. We see that our four models
replicate this illusion (left square lighter than the right square). In both the 2D and the 3D case,
we observe that LHE methods result in an enhanced contrast effect than WC methods.
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Figure 5: Predicted brightness in simultaneous brightness contrast

Checkerboard illusion.

The chosen line profiles for this illusion are the two horizontal lines

crossing, respectively, the left gray target and the right one. In Fig. [6] we chose to plot the first
half of the line profile corresponding to the left target and the second half of the one corresponding
to the right target. The profiles of all the four models show replication of this illusion, by which
the left target is perceived darker than the right one.
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Figure 6: Predicted brightness in Checkerboard illusion



Chevreul illusion. Fig. [7] presents the line profiles for the central horizontal line. All four
models correctly replicate the perceived changes within each band.
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Figure 7: Predicted brightness in Chevreul illusion

Chevreul cancellation. The line profiles for the central horizontal line are presented in Fig.

In this case all models are able to correctly replicate the effect, although in the case of (WC-2D))
and (LHE-3D|) the perceptual response is not perfect, due to the presence of some oscillations.

We also remark that the correct replication of this illusion is extremely sensitive to the chosen
parameters.

Predicted brightness 2D models Predicted brightness 3D models
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Figure 8: Predicted brightness in Chevreul cancellation

Dungeon illusion. Profiles of the central section (3 middle squares) of each target are shown
in Fig. @ The first part of the plot (left to right) represents the profile of the rectangle on black
background. The second plot shows the target on white background. As these profiles show,
our four proposed models replicate human perception (first target is predicted as darker than

the second). Nevertheless, the assimilation effect (target intensity goes towards surrounding) is
stronger in the 3D models.

Grating induction. In Fig.[I0|the continuous and dashed blue lines respectively show the profile
of the grating and of the central horizontal line row of the visual stimulus. Then, the line profiles
of the central horizontal line of the outputs have been plotted. We observe that for both 2D and
3D models a counter-phase grating appears in the middle row, which successfully coincides with
human perception. Notice that LHE methods have a higher amplitude in both cases.
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Figure 10: Predicted brightness in grating induction

Hong-Shevell illusion. Fig. |11 shows the line profiles of the central horizontal line around the
target (gray ring) neighbourhood rings in the first half of the image. As in the case of the Dungeon
illusion, we present in the first half of the plot (left to right) the output of the first stimulus (light
background) and in the second half the output of the second (dark background). We see how our
four proposed models replicate the assimilation effect. Hence, the gray ring in the first image is
predicted as brighter than the gray ring in the second visual stimulus.

Predicted brightness 2D models Predicted brightness 3D models
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Figure 11: Predicted brightness in Hong-Shevell illusion

Luminance illusion. Horizontal profiles crossing top left and right targets (gray circles) are
depicted in Fig. For each target our four models reconstruct the left target as brighter than
the right one. Hence, all models correctly predict this contrast effect. In this case, LHE presents
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a higher contrast response in both responses (2D and 3D).
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Figure 12: Predicted brightness in luminance gradient illusion

We observe that in all the considered brightness-dependent illusions the LHE-3D method
presents neighbourhood-dependent oscillations which can or not happen in the WC-3D method.

3.2 Orientation-dependent illusions

Poggendorff illusion. Fig. shows a profile of the middle row in the visual stimulus, while
the output images and a zoom of the target gray middle area are presented in Fig. In this
case (WC-2D)), (WC-3D)), and are not able to completely replicate the illusion, since
induced white lines on the gray area are not connected. On the other hand, successfully
replicates the perceptual completion over the gray middle stripe.

Predicted brightness 2D models Predicted brightness 3D models
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Figure 13: Predicted brightness in Poggendorff illusion

Tilt illusion. In Fig. we present line profiles, for both visual stimuli, for a diagonal line
starting at the bottom left corner of the image and ending at the top right one. In order to be able
to correctly compare the two images, the line profile of the second image (from top to bottom) has
been extracted after flipping the outer circle along the vertical axis, so that the responses to both
stimulus have the same background. Although there is a noticeable effect, such as a reduction in
contrast for the , the difference between the responses to the two stimuli is very mild for

all models with the exception of (LHE-3D)).

The fact that indeed this model is replicating the effect can be better appreciated looking at
Fig. which shows a composite of the inner circle for the responses to the two visual stimuli
of the two orientation-dependent models. It is then evident that the (LHE-3D|) model yields a
stronger result than the one. In fact, the former shows increased visibility (measured
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here as the contrast) for the half of the circle corresponding to the second stimulus than the one
corresponding to the first stimulus. On the other hand, in the case of the model (or of
2D models, not depicted here), the circle shows no difference among its two halves. This justifies
our claim that the (LHE-3D)) model can increase the visibility of the inner circle (replicate the
illusion) based on the orientation of the outer circle.
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Figure 15: Predicted brightness in Tilt illusion

4 Discussion

The results presented in the previous section show that the four models are able to reproduce several
brightness illusions. Concerning orientation-dependent illusions we observe that, as expected, 2D
models cannot reproduce them, while the only 3D model that correctly reproduces the perceptual
outcome is the . However we stress that determining replication or lack thereof in the
Tilt illusion is subtle, as the observed effects are very mild.

As already mentioned, the parameters of the presented results are chosen independently from
one illusion to the other in order to qualitatively optimise the perceptual replication. Empirical
observations show that these are indeed related with, e.g., the size of the target and the frequency
of the background. Nevertheless, if one settles for milder replications, it would be possible to choose
more uniform parameters. For instance, this happens for the model in the Chevreul and
Chevreul cancellation illusions, which can be reproduced simultaneously with parameters o, = 3
and o, = 30, although with less striking results.

Regarding the 3D models, we notice that they always give oscillatory solutions. This is espe-
cially true for the model. Such oscillations can be observed as dependent on the target
surrounding.
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5 Conclusions and future work

The analysis performed in this paper shows that, while Wilson-Cowan equations can be used
to replicate brightness illusions, their variational modification, in the form of local histogram
equalisation, outperforms them. Moreover, although in the case of brightness illusions we found
no real advantage in considering model variants that take into account orientations, these are
necessary to reproduce the two considered orientation-dependent illusions, which only the 3D
variational model is able to reproduce.

These observations justify further investigation on the orientation-dependent LHE model. In
particular, a more accurate modelling reflecting the actual structure of V1 should be addressed.
This concerns first the lift operation, where the cake wavelet should be replaced by the more
physiologically plausible Gabor filters, as well as the interaction weight w which could be taken to
be the anisotropic heat kernel of [Citti and Sarti, 2006, Sarti and Citti, 2015, |[Duits and Franken,)
. Finally, extensive numerical experiments should be performed to assess the compatibility of
the model with psychophysical tests measuring the perceptual bias induced by these phenomena.
This would provide insights about the robustness of the model in reproducing visual behaviour.
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A Non-variational nature of Wilson-Cowan equation

In this section we show that, for non-trivial choices of weight and sigmoid functions, Wilson-Cowan
equations do not admit a variational formulation.
For the sake of simplicity, we will consider only a finite dimensional variant of Wilson-Cowan
equations, with constant input. Namely, for a : R — R", we consider
d
@a(t) = —pa(t) + Wo(a(t)) + h. (A.1)

Here, h € R" is the input, g > 0 is a parameter, ¢ € C1(R) is any function (we denoted o(v) =
(o(v;)); for v € R™), and W € R™*™ is a symmetric interaction kernel.

Equation admits a variational formulation if it can be written as the steepest descent
associated with a functional J : R" — R, i.e.,

d
—a(t) = =VJ(a(t)). (A.2)

We have the following.
Theorem. The Wilson-Cowan equation (A.1) admits the variational formulation (A.2)) only if

either W is a diagonal matriz, or o is an affine function, i.e., o(x) = ax + (3 for some o, € R.

Proof. Writing (A.1)) and (A.2)) componentwise, we find the following relation for J:

0;J (v) = —pw; + ZWMJ(W) + h;, v=(v1,...,0p) ER", i=1,...,n.
k

By differentiating again the above, we have

@‘J‘J(U) = _Méij + Z W&kal(vg)éjg = —M(Sij + Wija’(vj), ,5=1,...,n. (A.3)
k

Namely, Hess J(v) = (—pdij + Wijo'(vj))ij. Assume that W is not a diagonal matrix. Then, since
both the Hessian matrix and W are symmetric, by choosing i # j such that W;; # 0 we get

o'(v;) = o' (v)) Vv e R™. (A4)
This clearly implies that o/(x) is constant, thus showing that ¢ must be an affine function. O

We observe that the above reasoning does not apply to the LHE algorithm. Indeed, the discrete

form of the latter is p

%a(t) = —pa(t) + ; Wigo (ai(t) — ae(t)) + h. (LHE)
Then, the corresponding variational equation (for y =0 and h = 0) is
0;iJ(v) = Z Wieo (vi — vp), v eR™ (A.5)
0+
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This yields
Ojij(v) = —VVZ']'U/(’Ui — Uj), for v € Rn, 7 75 _] (AG)

This does not contradict the symmetry of the Hessian, as o was chosen to be odd an thus o’ is
even. Indeed, we know by [Bertalmio and Cowan, 2009 that we can let

J(v) =Y WieS(v, — vp), (A7)
ot

where ¥ is such that ¥/ = o.

B Encoding orientation-dependence via cortical-inspired models

Orientation dependence of the visual stimulus is encoded via cortical inspired techniques, following
e.g., |Citti and Sarti, 2006, Duits and Franken, 2010, [Petitot, 2017, Prandi and Gauthier, 2017, Bohi
et al., 2017]. The main idea at the base of these works goes back to the 1959 paper [Hubel and
Wiesel, 1959] by Hubel and Wiesel (Nobel prize in 1981) who discovered the so-called hypercolumn
functional architecture of the visual cortex V1. Following [Hubel and Wiesel, 1959], each neuron ¢
in V1 detects couples (z, ) where x € R? is a retinal position and 6 is a direction at x. Orientation
preferences 6 are then organised in hypercolumns over the retinal position z, see [Petitot, 2017,
Section 2].

Let Q@ C R? be the visual plane. To a visual stimulus f : Q@ — [0, 1] is associated a cortical
activation Lf : @ x [0,7) — R such that Lf(£) encodes the response of the neuron & = (z,0).
Letting ¢¢ € L*(R?) be the receptive profile (RP) of the neuron &, such response is assumed to be
given by

LI(€) = (e, ) ague = /Q Ve(@)f () da. (B.1)

Motivated by neuro-phyisiological evidence, we assume that RPs of different neurons are “de-
ducible” one from the other via a linear transformation. As detailed in [Duits and Franken,
2010, Prandi and Gauthier, 2017], see also [Bertalmio et al., 2019, Section 3.1], this amounts to the
fact that the linear operator L : L*(Q) — L?(Q x [0,7)) is a continuous wavelet transform (also
called invertible orientation score transform). That is, there exists a mother wavelet ¥ € L?(R?)
such that Lf(z,0) = [f * (I* o R_g)|(x). Here, f g denotes the standard convolution on L?(R?)
and R_g is the counter-clock-wise rotation of angle 6. Notice that, although images are functions
of L?(R?) with values in [0, 1], it is in general not true that Lf(x,6) € [0,1].

Concerning the choice of the mother wavelet, we remark that neuro-physiological evidence
suggests that a good fit for the RPs is given by Gabor filters, whose Fourier transform is the
product of a Gaussian with an oriented plane wave |[Daugman, 1985]. However, these filters are
quite challenging to invert, and are parametrised on a bigger space than M, which takes into
account also the frequency of the plane wave and not only its orientation. For this reason, in
this work we instead considered cake wavelets, introduced in [Duits et al., 2007, Bekkers et al.,
2014]. These are obtained via a mother wavelet Teake whose support in the Fourier domain is
concentrated on a fixed slice, depending on the number of orientations one aims to consider in
the numerical implementation. For the sake of integrability, the Fourier transform of this mother
wavelet is then smoothly cut off via a low-pass filtering, see [Bekkers et al., 2014, Section 2.3] for
details. Observe, however, that, since we are considering orientations on [0, 7) and not directions
on [0, 27), we choose a non-oriented version of the mother wavelet, given by 1)<*¢(w) 4-1)ck¢ (¢imw),
in the notations of |[Bekkers et al., 2014].

An important feature of cake wavelets is that, in order to recover the original stimulus from
its cortical activation, it suffices to simply “project” the cortical activations along hypercolumns.
This yields

1 T
f(z) = / Lf(x,0)d6. (B.2)

™ Jo
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This justify the assumption, implicit in equation (2.9), that the projection of a cortical activation
F (not necessarily given by a visual stimulus) to the visual plane is given by

PP(z) = © /O " F(2,0) do. (B.3)

™
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