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Abstract—The paper addresses the problem of energy com-
paction of dense 4D light fields by designing geometry-aware
local graph-based transforms. Local graphs are constructed
on super-rays that can be seen as a grouping of spatially
and geometry-dependent angularly correlated pixels. Both non
separable and separable transforms are considered. Despite the
local support of limited size defined by the super-rays, the
Laplacian matrix of the non separable graph remains of high
dimension and its diagonalization to compute the transform
eigen vectors remains computationally expensive. To solve this
problem, we then perform the local spatio-angular transform in a
separable manner. We show that when the shape of corresponding
super-pixels in the different views is not isometric, the basis
functions of the spatial transforms are not coherent, resulting
in decreased correlation between spatial transform coefficients.
We hence propose a novel transform optimization method that
aims at preserving angular correlation even when the shapes of
the super-pixels are not isometric. Experimental results show the
benefit of the approach in terms of energy compaction. A coding
scheme is also described to assess the rate-distortion perfomances
of the proposed transforms and is compared to state of the art
encoders namely HEVC-lozenge [1], JPEG pleno 1.1 [2], HEVC-
pseudo [3] and HLRA [4] .

Index Terms—Light Fields, Energy Compaction, Transform
coding, Super-rays, Graph Fourier Transform

I. INTRODUCTION

Recently, there has been a growing interest in light field
imaging. By sampling the radiance of light rays emitted by the
scene along several directions, light fields enable a variety of
post-capture processing techniques such as refocusing, chang-
ing perspectives and viewpoints, depth estimation, simulating
captures with different depth of fields and 3D reconstruction
[5], [6], [7]. This however comes at the expense of collecting
large volumes of redundant high-dimensional data, which
appears to be one key downside of light fields.

Research effort has been recently dedicated to the design
of light field compression algorithms, by either adapting stan-
dardized solutions (in particular HEVC) to light field data (e.g.
[3] [8] [9]), by proposing homography-based low rank models
for reducing the angular dimension [4], or by investigating
local Gaussian mixture models in the 4D ray space [10]. The
authors in [11], use a depth-based segmentation of the light
field into 4D spatio-angular blocks with prediction followed
by JPEG-2000.

This work has been supported in part by the EU H2020 Research and
Innovation Programme under grant agreement No 694122 (ERC advanced
grant CLIM).

In this paper, we address the problem of graph transforms
optimization for light fields energy compaction and compact
representation. Indeed, light fields record illumination of light
rays emitted by a scene in different orientations. The captured
data for a static light field is represented by a 4D function
LF (m,n, x, y), and contains redundant information in both
the spatial and angular dimensions. Those correlations could
in principle be represented by a huge non separable graph
connecting pixels within and across views of the entire light
field. The basis functions of a graph Fourier transform [12]
could then be used to decorrelate the color signal residing
on the graph vertices. However, such a graph would have a
very high number of vertices, each vertex corresponding to
a light ray. This makes the diagonalization of the laplacian
matrix unfeasible, hence, the computation of the graph Fourier
transform not practical.

To lower the dimensionality of the problem, we propose
to partition the big graph structure into smaller ones that are
coherent and correlated inside and across the views. This can
be viewed as cutting unreliable edges from the global graph.
To perform this partitioning, we group similar pixels within
and across views based on the concept of super-rays defining
the supports of the set of local graph transforms. The concept
of super-ray has been introduced in [13] as an extension to
light fields of the concept of super-pixels.

The authors in [14] used super-rays as the supports of
separable shape-adaptive Discrete Cosine Transform (DCT).
Super-pixels are used in [15] as the supports of local graph
transforms, and tested in a predictive scheme based on view
synthesis. The angular transform is however applied on super-
pixels that are co-located on all views, hence not exploiting
scene geometry, due to the difficulty to design separable graph
transforms that at the same time follow the scene geometrical
information and preserve angular correlations. We come back
on this point in the sequel.

In this paper, we address the problem of designing local
super-ray based non separable and separable graph transforms
following the scene geometry. Towards this goal, we first
propose a specific super-ray construction method to limit
shape variations of the super-pixels forming a given super-
ray. Despite the local support of limited size defined by the
super-rays, the Laplacian matrix remains of high dimension
and its diagonalization to compute the transform eigen vectors
is computationally expensive. An intuitive way to solve this
problem is to perform the transform in a separable manner: a
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first spatial transform applied per super-pixel inside each view,
then an angular transform between corresponding super-pixels
across the views to capture angular dependencies. We have
however observed that if the shape of the super-ray undergoes
a slight change between views, the basis functions computed
from the graph laplacian have very different forms from one
super-pixel to the corresponding ones in the other views,
resulting in a decreased correlation between spatial transform
coefficients.

The difficulty is therefore how to optimize the spatial
transforms applied on each super-pixel of the super-ray in
such a way that the angular correlation is well preserved.
Preserving angular correlation is important in order to best
compact the light field energy. The angular correlation is
preserved, only if the eigen vectors of the spatial transforms
computed independently on different shapes (the super-pixels
forming the super-ray) are reasonably consistent, i.e. only
when the shapes of the transform supports are approximately
isometric. We propose in this paper a novel method to optimize
the spatial transforms in such a way that the basis functions
approximately diagonalize their respective Laplacians while
being coherent across the views, given the scene geometry.

Experimental results show that the proposed super-ray
construction method yields, for the light fields considered
in the tests, up to 60 percent coherent supports out of all
super-rays, which facilitates the application of a separable
graph transform. The results also show that the optimized
separable graph transform yields higher energy compaction,
and significant rate-distortion performance gains, compared
to the non optimized separable transform, when some super-
rays are shape-varying across the views. The proposed simple
coding scheme based on these local separable transforms is
shown to outperform light field coding schemes based on
HEVC-lozenge and JPEG Pleno [2] at high bitrate following
the common test conditions.

In this paper, the contributions are as follows:
• We propose a novel light field representation approach

based on geometry-aware local graph transforms with a
support defined by super-rays.

• We define the notion of separable graph transforms that
we apply locally in each super-ray. This allows us to
capture both spatial and angular dependencies inside the
light field.

• We develop a graph optimization method with a geomet-
ric association of nodes. We design consistent transforms
for more than 2 graph supports to deal with the problem
of inconsistent basis functions when the corresponding
super-pixels inside different views are not isometric. The
optimization is performed per group of frequency bands
to reduce complexity and by fixing a reference to limit
error propagation. Using the consistent transforms allows
us to preserve angular correlations, and thus a good
energy compaction of the separable graph transforms.

II. RELATED WORK

We first briefly review prior work on graph transforms
design for signal (and in particular image) energy compaction,

problem related to the core of the paper. For sake of complete-
ness, the proposed transforms being validated in a complete
coding scheme, we also give a brief overview of recent work
on light field compression.

A. Graph Transforms

Recently, graph signal processing has been applied to dif-
ferent image and video coding applications, especially for
piecewise smooth images. In [16], [17], the authors propose
a graph-based coding method where the graph weights are
defined considering pairwise similarities between pixel inten-
sities. Another efficient graph construction method has been
proposed in [18] for piecewise smooth images. For each signal
in a block, they select the Graph Fourier Transform minimizing
the rate distortion cost. A signed graph Fourier transform has
also been proposed in [19] for depth map coding, accounting
for negative weights between pixels.

For natural images, most of the work has focused on
designing sparse graphs or using graph templates that cap-
ture principal gradient-based structures in images [20][21].
This is mostly useful in textured images. While most of the
aforementioned transform coding strategies did not account for
the graph coding cost, in a later work [22], a rate-distortion
optimized graph learning approach has been proposed to code
natural images while taking into account both the sparsity of
the transformed coefficients and the graph coding cost. Several
graph based approaches have also been proposed to code
intra and inter predicted residual blocks in video compression,
using generalized graph Fourier transform [23], simplified
graph templates transforms [24], or separate line graph based
transforms [25].

In this paper, we build graphs that follow the scene geometry
and we then propose separable graph based transforms that
best exploit light fields spatial and angular correlation.

B. Light Fields Compression

Existing light fields compression solutions can be broadly
classified into two categories: approaches directly compressing
the lenslet images or approaches coding the views extracted
from the raw data. Methods proposed for compressing the
lenslet images mostly extend HEVC intra coding modes by
adding new prediction modes to exploit similarity between
lenslet images (e.g. [26], [27], [8], [9]). The authors in [11]
propose a lenslet-based compression scheme that uses depth,
disparity and sparse prediction followed by JPEG-2000 residue
coding.

The second category of methods consists in encoding the
set of views which can be extracted from the lenslet images
after de-vignetting, demosaicing and alignment of the micro-
lens array on the sensor, following e.g. the raw data decoding
pipeline in [28]. Several methods code the views as pseudo
video sequences using HEVC [3], [1], or the latest JEM coder
[29], or extend HEVC to multi-view coding [30]. Low rank
models as well as local Gaussian mixture models in the 4D
rays space are proposed in [4] and [31] respectively. View
synthesis based predictive coding has also been investigated
in [32] where the authors use a linear approximation computed
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Fig. 1: The result of our proposed light field segmentation for a dense light field Fountain Vincent (from EPFL light fields dataset) with an
estimated disparity. From left to right, the original view I1,1, the disparity map of the original view, the super-pixel segmentation of I1,1
and an example of vertical and horizontal epipolar segments taken from both original 4D RGB light field and the 4D segmentation labels
(The red lines inside the images show from where the epipolar line is extracted).

with Matching Pursuit for disparity based view prediction.
The authors in [33] and [34] use instead a the convolutional
neural network (CNN) architecture proposed in [35] for view
synthesis and prediction. The prediction residue is then coded
using HEVC [33], or using local residue transforms (SA-DCT)
and coding [34]. The proposed transforms could also be used
for residue coding. However, to best assess their de-correlation
advantage, in the experiments reported below, they are directly
applied on the color values of the entire 4D light field data.

III. SUPER-RAYS AND GRAPH CONSTRUCTION

The compression efficiency of any coder based on block
partitioning and transform coding does undeniably depend on
the way the partitioning is done, and on how the resulting
segmentation adheres to object boundaries. While traditional
transforms such as 2D DCT applied on a square or rectangular
support may fail due to high frequencies captured on the object
boundaries, here we rely on a segmentation of the entire 4D
light field into super-rays.

A. Light field Segmentation in Super-Rays

Segmentation is an important step of many editing algo-
rithms. While this problem has been widely addressed for 2D
images and videos, a few methods exist for light fields [36],
[37], [38]. The regions or segments extracted by these meth-
ods, often corresponding to objects in the scene, are too large
for defining local graph transform supports, as targeted here
for reducing the complexity of the basis function computation.
To overcome this problem, it is natural to consider instead
light field over-segmentation. In [39], a depth estimation is
used to propagate an initial over-segmentation into super-
pixels of a reference view to all the views of the light field.
The authors use the SLIC algorithm described in [40] for the
reference view over-segmentation. This initial segmentation is
then iteratively refined by optimizing an energy function based
on segmentation smoothness inside and between the views
along with a color, position and disparity uniformity prior.
In this paper, we consider instead the concept of super-ray
introduced in [41] as an extension of super-pixels [40] to group
light rays coming from the same 3D object, i.e. to group pixels
having similar color values and being close spatially in the 3D
space. The method performs a k-means clustering of all light
rays based on color and distance in the 3D space. To deal with
dis-occlusions, a slightly modified formulation is proposed in

[14] where the dense depth information is also used in the
clustering. When the depth information is not fully reliable,
this method results in inconsistent super-rays across views.
In addition, the signalling cost of such a global light field
segmentation is high. In order to make the super-rays more
consistent across the views, we suggest a modified version
where we compute super-pixels in the top-left view as shown
in Figure 1. Then, using the disparity map, we project the
segmentation labels to all the other views. Namely, having a
segmentation map in the top left view and the corresponding
disparity map, we compute the median disparity per super-
pixel, and use it to project the segmentation mask to the other
views. More precisely, the algorithm proceeds row by row. In
the first row of views, we perform horizontal projections from
the top-left I1,1 to the N − 1 views next to it. For each other
row of views, a vertical projection is first carried out from the
top view I1,1 to recover the segmentation on view Im,1, then
N − 1 horizontal projections from Im,1 to the N − 1 other
views are performed, as shown in Figure 2.

An example of segmentation is shown in Figure 2, where we
show a cropped area consisting of both background and fore-
ground objects. The red and green super-pixels are computed
in the initial segmentation of the top left view with SLIC. The
blue are super-pixels obtained after disparity-based projection.
At the end of each projection, some shapes are projected in
all the views without interfering with others. Those typically
represent flat regions inside objects (for example, the super-
pixel in red in I1,1). While others, mainly consisting of
occluded and occluding segments end up superposed in some
views. In this case, the occluded pixels are assigned the label
of the neighboring super-ray corresponding to the foreground
objects (i.e. having the higher disparity). As for appearing
pixels, they will be clustered with the background super-rays
(i.e. having the lower disparity). An example of super-ray that
ends up with different shapes in the views is marked in green in
the segmentation of I1,1. The difference is not very remarkable
since we deal with dense light fields where the disparity is not
very high, it is a matter of one or two pixels at most.

This method performs well on light fields with small base-
lines. There are however some limitations that appear in the
case of wider baselines. We may end up in this case with more
occlusions due to higher disparities. With large disparities,
objects (or pixels) that are completely occluded in the top-
left view but visible in other views cannot be constructed in
super-rays.
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Fig. 2: Image showing the super-ray construction. The algo-
rithm proceeds row by row. In the first row, only horizontal
projections are performed. In every other row, first a vertical
projection then N −1 horizontal projections are performed.
The red super-pixel in I1,1 is consistent across views,
whereas the super-pixel in blue is shape-varying.

B. Graph Construction

In order to jointly capture spatial and angular correlations
between pixels in the light field, we first consider a local
non separable graph per super-ray. More precisely, if we
consider the luminance values in the whole light field and
a segmentation map S, the kth super-ray SRk can be rep-
resented by a signal fk ∈ RNk defined on an undirected
connected graph G = {V, E} which consists of a finite
set V of vertices corresponding to the pixels at positions
m,n, x, ys.t.S(m,n, x, y) = k. A set E of edges are built
as follows.

We first connect each pixel (m,n, x, y) in the set V and its
4-nearest neighbors in the spatial domain (i.e. the top, bottom,
left and right neighbors with coordinates (m,n, x − 1, y),
(m,n, x + 1, y), (m,n, x, y − 1), (m,n, x, y + 1)). A pixel
can have a maximum of four spatial connections if the four
neighbors belong to the set V , and can have less if it is on the
border of the super-pixel.

We then find the median disparity value d of the pixels
inside the super-ray k in the top-left view. Using this disparity
value, we project each pixel in super-ray k with coordinates
(m,n, x, y) in the 4 nearest neighboring views (i.e. the top,

bottom, left and right neighboring view). We end up with four
projected pixels with coordinates (m − 1, n, x − d, y), (m +
1, n, x + d, y), (m,n − 1, x, y − d), (m,n + 1, x, y + d). If
a projected pixel belongs to the set of vertices V , then we
connect it to the original pixel (m,n, x, y). In this way, a
maximum of four angular connections can be found for each
pixel if the pixel is not occluded in the neighboring views. The
weights of all connections are set to 1. An illustrative example
of a graph built inside a super-ray is shown in Figure 3 for
four views.

Angul r grap  c nne tio s

Spatial graph connections

Fig. 3: Example of edges drawn inside a super-ray. We can
see the connections within super-pixels in each view (i.e.
spatial connections in red), as well as connections between
pixels belonging to different views (i.e. angular connections
in blue, only a subset of the connections is shown for
illustration purpose). The color assigned to the vertices are
the color values of the light field.

IV. GRAPH TRANSFORMS

In this section, we focus on the design of suitable transforms
for the signals (color or residues) residing on the local graphs
defined above.

A. Non Separable Graph Transform

Let us consider the kth super-ray SRk and its corresponding
local graph G. We start by defining its adjacency matrix A
with entries Amn = 1, if there is an edge e = (m,n)
between two vertices m and n, and Amn = 0 otherwise.
The adjacency matrix is used to compute the Laplacian matrix
L = D−A, where D is a diagonal degree matrix whose ith

diagonal element Dii is equal to the sum of the weights of
all edges incident to node i. The resulting Laplacian matrix
L is symmetric positive semi-definitive and therefore can be
diagonalized as:

L = U>ΛU (1)

where U is the matrix whose rows are the eigenvectors of
the graph Laplacian and Λ is the diagonal matrix whose
diagonal elements are the corresponding eigenvalues. The
laplacian eigenbases U are analogous to the Fourier bases
in the Euclidean domain and allow representing the signals
residing on the graph as a linear combination of eigenfunctions
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akin to Fourier Analysis. This is known as the Graph Fourier
transform. For the signal fk defined on the vertices of the local
graph, the transformed coefficients vector f̂k is defined in [12]
as:

f̂k = Ufk (2)

The inverse graph Fourier transform is then given by

fk = U>f̂k (3)

Although this would be the ideal decorrelating transform for
the signal, the Laplacian of such graph, despite the locality,
remains of high dimension (almost 6000 nodes per super-
ray) leading to a high transform computational cost. To limit
the computational cost, we then consider separable local
transforms.

B. Coherent Separable Graph Transform

The separable graph transform is defined by a first spatial
transform followed by a second angular transform as detailed
below.

1) First spatial graph transform: If we consider the lumi-
nance values in only one sub-aperture image v of the light
field and a segmentation map S, the kth super-ray SRk,v

can be represented by a signal fk,v ∈ RNk,v defined on an
local spatial graph with only connections in the spatial domain
(i.e. between the neighboring pixels in a super-pixel, but not
across the views in a super-ray). Nk,v denotes the number of
pixels in sub-aperture v that belong to the super-ray k. The
matrix Uk,v , being the eigen-vectors of the spatial laplacian
Lk,v , is used to compute the first spatial graph transform :
For the signal fk,v defined on the vertices of the graph, the
transformed coefficients vector f̂k,v is defined in [12] as:

f̂k,v = U>k,vfk,v (4)

The inverse spatial graph Fourier transform is then given by

fk,v = Uk,v f̂k,v (5)

2) Second angular graph transform: In order to capture
inter-view dependencies and compact the energy into fewer
coefficients, we perform a second graph based transform, in
the angular dimension. Note that, for a given super-ray, we
do not necessarily have the same number of pixels, hence
coefficients resulting from the spatial transforms, in all the
views. For a given band b (coefficients corresponding to the bth

eigenvectors of the spatial transforms), we construct a graph
of Nb vertices corresponding to the views where the band
b exists. Edges are drawn between each node and its direct
four neighbors. Isolated nodes are connected to their nearest
neighbor.

The Adjacency is used to compute the inter-view angular
unweighted Laplacian as Lb

k = Db
k −Ab

k with Db
k the degree

matrix. Lb
k can be diagonalized as:

Lb
k = Ub

kΓUb
k

>
(6)

For a specific band number b and super-pixel k, the band signal
is defined as f̂ bk = {f̂k,v(b), v ⊆ [1, · · · ,M ×N ]} ∈ RNb .

The angular Graph Transform consists of projecting the signal
onto the eigenvectors of Lb

k as:

ˆ̂
f bk = Ub

k

>
f̂ bk (7)

The inverse angular Graph Transform is then given by

f̂ bk = Ub
k
ˆ̂
f bk (8)

3) Coherence of spatial graph transforms in corresponding
super-pixels: The spatial graphs in the different super-pixels
forming one super-ray may not have the same shape. Further-
more, we have observed that for a specific super-ray, when
the spatial graph topology in the corresponding super-pixels
undergoes a slight change, the basis functions of each spatial
graph transform are different and thus incompatible with
each others (refer to Figure 4 before optimization), resulting
in decreased correlation of the spatial transform coefficients
across views. This is shown in the sequel to severely decrease
the efficiency of the angular transform.

Basically, during the diagonalization procedure, the eigen-
functions are only defined up to sign flips for Laplacians hav-
ing a simple spectrum (if the eigenvalues have a multiplicity
of 1, for example connected graphs). Therefore, even having
the same shape in two different views, we may end up with
two opposite eigen-vectors for a specific eigenvalue during the
diagonalization.

Moreover, eigenvectors computed independently on two dif-
ferent shapes (i.e. corresponding to two different Laplacians)
can be expected to be reasonably consistent only when the
shapes are approximately isometric. Whenever this assumption
is violated, it is impossible to expect that the kth eigenvector
of a Laplacian Lsi in view i will correspond to the kth

eigenvector of another Laplacian Lsj in view j. If the basis
functions do not behave consistently on the corresponding
points of the two shapes, the two signals defined on those
two Laplacians will be projected onto incompatible basis
functions (see Figure 4), and therefore we cannot guarantee
any correlation to be preserved after performing the first spatial
graph transform.

4) Coherent spatial graph transform: In order to overcome
those limitations, we consider an approach which aims at find-
ing coupled basis functions. We propose a graph optimization
which differs from [42] in several manners:
• First, the association and correspondence points between

the supports (i.e. super-pixels in different views) are
defined based on the scene geometry and not manually
as in [42]).

• Also, we design consistent transforms for more than 2
supports (N = 2 in [42]) by fixing one reference and
optimizing the other basis functions in other views with
respect to the reference in order to reduce the complexity
of the overall problem.

• Third, thanks to fixing one reference, we limit the error
propagation between different basis functions of different
supports that may appear if we perform an iterative
optimization.

More precisely, suppose that, in the super-ray k in a
reference view o and a target view i, we have two Laplacians
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Geometric associations

Fig. 4: Second eigenvector of different super-pixels belonging to the same super-ray before and after optimization. Only two sets of geometric
associations are shown for illustration purposes.

Lk,o and Lk,i with size (no × no) and (ni × ni) respectively.
They can be diagonalized as:

Lk,o = Uk,oΛoU
>
k,o

Lk,i = Uk,iΛiU
>
k,i

(9)

If the two Laplacians are equal, we make sure that their
eigenvectors are compatible with sign flips accordingly. We
check the first value of the each eigenvector and flip its sign
if the value is negative.
In the case where the super-pixel shapes in the sub-aperture
images are not isometric, we propose to diagonalize one
specific spatial graph Laplacian Lk,o and find Uk,o. Then, we
search for basis vectors Ûk,i that approximately diagonalize
any other spatial graph Laplacian Lk,i and at the same time
preserve correlations after the transform. We start by posing
the problem as follows:

Û∗k,i =min
Ûk,i

off(Û>k,iLk,iÛk,i) + α
∥∥∥(F>Uk,o −G>Ûk,i)

∥∥∥2
F
,

s.t. Û>k,iÛk,i = I.
(10)

where we seek to minimize the weighted sum of two terms
subject to the orthonormality constraint of the computed basis
functions Ûk,i. The first term is a diagonalization term that
aims at minimizing the energy residing on off-diagonal entries
(off(M) =

∑
i 6=j mij). The second term aims at enforcing

coherence between the two spatial graph transforms and is
defined as follows.

Based on the geometry information we have in hand, we
can actually define, a priori, a set of correspondences between
Lk,o and Lk,i. More precisely, we suppose that we have a set
of p corresponding functions represented by matrices F and
G of sizes (n0× p) and (ni× p) respectively. An example of
F and G is shown in figure 5.

The basis functions of both Laplacians are supposed to
be consistent if the Fourier coefficients of the functions F
and G on Lk,o and Lk,i are approximately equal i.e. if
F>Uk,o ' G>Ûk,i. To avoid over-determining the problem,

1

2

3

4

5

6

7

view 1

vie

Fig. 5: Example of correspondence functions F and G
computed for a small shape-varying super-pixel. The graph
nodes are labeled in both graphs following a vertical scan
line. In the second view, we have one disappearing node and
another appearing one with respect to the first view.

we use the farthest point sampling technique restricting the
correspondence points to a maximum of 15 points.

If we parametrize the new basis functions of Lk,i as being
a linear combination of the old basis functions, we can
write Ûk,i = Uk,iB where B is a matrix of combination
coefficients, that plays a role of reflecting and rotating the
original basis vectors in Uk,i so that they will align the best
way with Us0 while almost diagonalizing the laplacian Lk,i.
Using the diagonalizing property of Uk,i, we can re-write
Equation (10) as

B∗ =min
B

off(B>ΛiB) + α
∥∥(F>Uk,o −G>Uk,iB)

∥∥2
F
,

s.t. B>B = I,
(11)

It is important to note that the first term of the above
problem does not guarantee a preserved increasing order of
the eigenfunctions. It is therefore more convenient to use



7

Super-pixel 
  Segmentation

Disparity 

estimation

   Graph 

Transform

 Graph Inverse   

Transform

AEC

VLC

Build Graph

Fig. 6: Overview of proposed coding scheme.

an alternative penalty equal to
∥∥B>ΛiB−Λi

∥∥2
F

that relates
not only to the diagonalization property, but also to the
distribution of the energies across the basis functions after
the optimization.

B∗ =min
B

∥∥B>ΛiB−Λi

∥∥2
F
+ α

∥∥(F>Uk,o −G>Uk,iB)
∥∥2
F
,

s.t. B>B = I,
(12)

The problem in Equation (12) is a non linear optimization
problem with an orthogonality constraint, which can be solved
by iterative minimization algorithms. In our case, we used
Matlab optimization toolbox (interior point method of the
fmincon function) to solve it. The gradients of the cost function
terms are given in appendix A.

Since we are dealing with large datasets and a large number
of super-rays, it is convenient to use parallel computing to
independently compute eigen-basis for the different super-rays.
Also, in contrast with the way the optimization is performed
in [42], in order to reduce the complexity of the problem, we
propose to split it into smaller problems that are independent:
we pick a small number z of eigenvectors to be optimized at a
time. Then, for each disjoint group l of z eigenvectors in Uk,i,
we formulate a sub-problem by expressing z new eigenvectors
as a linear combination of z old eigenvectors. Noticing that
Uk,i = [Ũ1

k,i, Ũ
2
k,i, ..., Ũ

l
k,i] and

Λi =


Λ̃1

i 0 0 0

0 Λ̃2
i 0 0

0 0 .. 0

0 0 0 Λ̃l
i

 (13)

For each group of z eigenvectors, we find B̃l of size (z ×
z) that will minimize the objective function on the subset of
eigenvectors.

B̃∗l =

min
B̃l

∥∥∥B̃>l Λ̃l
iB̃l − Λ̃l

i

∥∥∥2
F
+ α

∥∥∥(F>Ũl
k,0 −G>Ũl

k,iB̃l)
∥∥∥2
F
,

s.t. B̃>l B̃l = I,
(14)

At the end of the optimization stage, most of the eigenvec-
tors are thereby compatible across views and the transform will

necessarily preserve any correlation already observed between
views. An example of the second eigenvector of a super-ray
before and after optimization is shown in Figure 4. While
eigenvectors corresponding to higher frequencies are harder to
adjust, the low frequency eigenvectors can be easily optimized.
In our application, this is not a big problem since we have
a high energy compaction in lower frequency bands, and
those are the bands that matter the most for reconstruction.
After performing the segmentation and two transforms, most
of the energy of the color signal is indeed expected to be
concentrated in a very small number of coefficients. In the
following section, we aim at exploiting this energy compaction
property to efficiently code the redundant information present
in the light field using the tools introduced above.

V. LIGHT FIELD CODING SCHEME

The overall steps of the compression algorithm are shown
in Figure 6. The top left view of the Light Field is separated
into uniform regions using the SLIC algorithm to segment
the image into super-pixels [40], and its disparity map is
estimated. Using both the segmentation map and the geometry
information, we construct consistent super-rays in all views
as explained in section III. The non separable and separable
transforms described above are then locally applied on each
super-ray. The transformed coefficients are then quantized and
encoded to be stored or transmitted. The segmentation map of
the reference view and a disparity value per super-ray also
need to be transmitted as side information to the decoder.

1) Segmentation map and disparity values coding: The
segmentation map of the reference view is encoded using the
arithmetic edge coder proposed in [43]. The contours are first
represented by differential chaincode [44] and divided into
segments. Then, to efficiently encode a sequence of symbols
in a segment, AEC uses a linear regression model to estimate
probabilities, which are subsequently used by the arithmetic
coder. Disparity values are encoded using an arithmetic coder.

2) Grouping and transform coefficients coding: The energy
compaction is not the same in all super-rays. This can be ex-
plained by the fact, that the segmentation may not well adhere
to object boundaries, resulting in high angular frequencies after
optimization of the first spatial transform.
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Fig. 7: Consistent Super-rays performance:In the first three columns, we have the original top left corner view, its corresponding disparity
map and super pixel segmentation using the SLIC algorithm [40] respectively. In the fourth column, we show horizontal and vertical epipolar
segments taken both from the 4D light field color and our final labeling in specific regions of the image(the red blocks). We use the prism
color map in Matlab for the segmentation, just for illustration purposes.

To optimize the coding performance, we divide the set
of super-rays into four classes, where each class is defined
according to an energy compaction criterion.

First, we learn a scanning order. More precisely, at the end
of the two graph transform stages, coefficients are grouped
into a three-dimensional array R where R(iSR, ibd, v) is the
vth transformed coefficient of the band ibd for the super-
ray iSR. Using the observations on all the super-rays in
some training datasets (Flower1,Friends), we can find the best
ordering for scanning and quantization. We sort the variances
of coefficients with enough observations in decreasing order
and we follow this decreasing order during the scanning
process.

Then, each super-ray with N coefficients belongs to class i
if the mean energy per high frequency coefficient is less than 1,
where the high frequency coefficients are the last round(N ×
i/4) coefficients following the scanning order of the super-rays
coefficients defined previously. We start by finding the super-
rays in the first class than remove them from the search space
before finding the other classes, and idem for the following
steps.

We code a flag with an arithmetic coder to gives the
information of the class of super-rays to the decoder side. In
class i, the last round(N × i/4) coefficients of each super-
ray are discarded. The rest of the coefficients are grouped into
32 uniform groups. The quantization step sizes in groups are
defined with a rate-distortion optimization taking into account
a big number of observed coefficients. At the end of this stage,
for each class, each group is coded using the Context Adaptive
Binary Arithmetic Coder (CABAC) from the HEVC H.265

reference coder.

VI. EXPERIMENTAL ANALYSIS

For performance evaluation, we consider real light fields
captured by plenoptic cameras from the datasets used in [35]
and [45]. We consider the 8 × 8 central sub-aperture images
cropped to 364× 524 in [35], and 9× 9 cropped to 432× 624
from [45] in order to avoid the strong vignetting and distortion
problems on the views at the periphery of the light field. The
disparity map of the top left view of each light field has been
estimated using the method in [46]. The estimated disparity
map is used to construct super-rays as described in Section
III.

A. Assessment of the proposed super-ray construction method

In this section, we assess how the proposed super-ray
construction method deals with occluded and dis-occluded
parts, and to which extent the super-rays are consistent despite
uncertainty on the disparity information. Figure 7 shows
examples of super-rays obtained with different real light fields
captured by a Lytro Ilum camera (Flower 2, Rock used in
[35], and FountainVincent, StonePillarInside used in [45]).
In the first three columns, we have the original top left
corner view, its corresponding disparity map and super pixel
segmentation using the SLIC algorithm [40] respectively. In
the fourth column, we show horizontal and vertical epipolar
segments taken both from the 4D light field color information
and our final segmentation in specific regions of the image
(the red blocks). We can see that we are following well the
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object borders, especially when the disparity map is reliable.
Also, we have always attained a high percentage of coherent
super-rays across views (higher than 40% as measured with
Cons(%) in the fifth column). More precisely, Cons(%) gives
the percentage of coherent super-rays: A super-ray is coherent
when it is made of super pixels having the same shape in all
the views, with or without a displacement.

At the end of this segmentation stage, we end up with a
segmentation map with consistent super rays in flat objects
and shape-varying super-rays mainly on the borders.

B. Analysis of proposed graph based optimized transforms
In this section, we analyze the performance of our opti-

mization process described in section IV-B and its effect on
the transform coding efficiency. In all the experiments, for
each super-ray we find the super-pixel Lso that is on the top-
left most of the light field, and fix it as reference for the
coupling process. We therefore optimize the maximum number
of eigenvectors defined as floor(n0

10 )× 10 with n0 being the
number of pixels in the reference super-pixel. An example of
input and output of the coupling process for a shape-varying
super-ray is illustrated in Figure 8. We see that the consistency
of eigenvectors in the different graphs is much better after
our optimization. If we project the light field signal residing
in the super-ray on the optimized coupled eigenvectors, the
inter-view correlation is better preserved compared to the non
optimized eigenvectors.

1) Energy Compaction of the spatial transform: Figure 9
shows the energy compaction observed in the spatial transform
domain, then in the spatio-angular transform domain, i.e. after
performing the first spatial transform and after performing both
spatial and angular transforms on the color signal of the light
fields. The energy compaction is computed for both optimized
and non optimized cases. It denotes the percentage of energy
if we keep some of the coefficients and discard others. For
the spatial transform, we gather the transform coefficients of
all super-pixels, and then we scan them following the intuitive
order increasing order of the Laplacian eigenvalues to com-
pute the compaction. For the spatio-angular compaction, we
follow the learned sub-optimal scanning order using different
observations from the different datasets as explained in section
V-2.

If we compare the energy compaction of the spatial trans-
forms only (red and blue curves) for different datasets, we
observe that we may loose in terms of energy compaction for
some datasets after optimization. In order to explain such loss,
we analyze how the graphs are varying under the new basis
functions after optimization. An example is shown in Figure 10
where edges between highlighted nodes are added implicitly
in the graph after coupling. The new underlying Laplacian is
computed as L̂k,i = Ûk,iΛk,iÛ

T
k,i.

The underlying assumption behind the optimization proce-
dure is that the signal can be modeled by a modified Gaussian
distribution (Gaussian Markov Random Field) with a modified
precision matrix which is equivalent to the new Laplacian
matrix with some added small weights. Since this procedure is
modifying the original graph structure, it may, in some cases,
bring some high frequencies.

Correspondences

Before coupling After coupling

Original graphs and correspondences

Eigenvectors 

Fig. 8: Illustration of the output of the optimization process
for a super-ray in 4 views. The first row corresponds to a
super-ray accross four views of the light field. The signal on
the vertices correspond to the color values lying on super-
pixels corresponding to the same super-ray and the blue lines
denote the correspondences. The second to fourth rows are
illustrations of basis functions before and after optimization.
The signals on the vertices are the eigenvectors values.

2) Correlation and Energy Compaction after angular trans-
form: The gain in compaction after the spatio-angular trans-
form is clear in Figure 9 when we perform the optimization.
This is due to the fact that we are able to preserve angular
correlations after the spatial transform, which will be subse-
quently exploited by the angular transform.

In order to assess the performance of our coupling process
in preserving the correlation, we draw in Figure 11, the
correlation matrices and the covariance matrices for some
bands after the first transform with shape-varying super-rays.
If we restrict our attention to the first column, We see that after
the first transform that is not optimized, we have uncorrelated
transform coefficients due to the perturbation of eigenvectors
computed on super-pixels having slightly different shapes.
This problem is almost resolved with our coupling procedure
in the second column, where we can observe more correlation
between the coefficients of the same band in neighboring
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Fig. 9: Energy compaction with or without optimization of the first spatial transform for four datasets (Seahorse, Rock,Flower2 and Cars)
from the dataset used in [35] and two others (Friends and StonePillarsInside) taken from the datasets in [45].

Original graphs before coupling New graphs after coupling

Fig. 10: Image showing the old graphs before coupling and
the new graphs after optimization. New edges with absolute
weight values larger than 0.04 are shown as blue lines
connecting highlighted nodes.

views. Furthermore, the logarithm of the variances (values
lying on the diagonal in the covariance matrices) being higher
in the first low frequency bands and decreasing when moving
further from the DC, shows the energy compaction of the first
transform. As for the values of the off-diagonal elements of
the covariance matrices, they show how correlated are the
transformed coefficients after the first transform inside the
views. If we observe the off-diagonal values and compare them
with or without optimization, we find out that the optimization
performs better for low frequencies than for high frequencies
and is therefore more able to retrieve coherent basis functions.

After the second angular transform per band, for both cases
with or without optimization, we compute the logarithm of
coefficients’ variances after the second transform and illustrate
it in the third row where the x-axis and y-axis correspond to the
band number and the view number respectively. A compaction
of the energy in fewer coefficients is observed in the optimized
case compared to the non-optimized case, especially when we

focus on the top-left region. Some inter-view high frequencies
are sometimes still there and might be due to the presence of
some super-rays are made of super-pixels that adhere well to
borders in some views while not adhering in some others due
to disparity rounding effects.

3) Impact of disparity errors: When the disparity infor-
mation is not reliable, dis-occluded pixels may be clustered
with a wrong super-ray, resulting in high frequencies, hence
poor energy compaction, after the spatial transforms in those
specific regions. However, experiments with synthetic data sets
(for which the ground truth depth is known) have shown that,
with the considered disparity estimation method [46], the depth
map errors lead to a mislabelling for less than 2% of the pixels,
which has a negligible effect on the energy compaction and
on the RD performance.

4) Impact of super-rays size: The size of super-rays may
have an impact on the rate distortion performance especially
when the disparity information is reliable and there is a lot of
homogeneous objects. If we have large objects, we might want
to merge some small super-rays which makes a non separable
graph transform practically unfeasible. Here comes the advan-
tage of an optimized separable graph transform where one can
define the number of eigenvectors to be optimized depending
on the homogeneity of the shape-varying super-rays inside the
views. In this case, the segmentation and disparity costs will
more likely drop also since we also have less contours and
values to code.

In our experiments, however, we use a uniform segmentation
into super-pixels. We fix the number of super-rays to 2800
for the light fields in [35], and 4000 for the light fields in
[45]. We have observed that when we have a small number
of super-rays, the disparity errors may have an impact on the
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Fig. 11: Advantage of our optimization in terms of energy compaction. The three rows correspond to (1) correlation matrices of the spatial
transformed coefficients of the first ten bands, (2) the log of the absolute value of the covariance matrices of the 64 first bands of the spatial
transformed coefficients, and (3) the logarithm of the variance of the coefficients after the angular transform, respectively. The two columns
show the two cases: without or with our optimization.

compensation and therefore result in a decreased PSNR-Rate
performance. On the other hand, having a very large number
of super-rays increases the rate needed for segmentation and
limits the dimension of each super-ray, resulting in a smaller
benefit in terms of de-correlation of the proposed spatio-
angular transform.

C. Rate-distortion performance comparative evaluation

We assess the compression performance obtained with our
graph based transform coding schemes against four schemes:
encoding the views as a video sequence following a lozenge
order (HEVC lozenge) [1], or using different prediction orders
in the same vein as multi-view coding (HEVC pseudo), [3],
JPEG Pleno VM 1.1 software [2] and HLRA [4]

In the simulations, the basic configuration files of JPEG
Pleno VM have been used with small changes in order to be
applied on 9× 9 views. For HEVC-lozenge, the base QPs are
set to 20, 26, 32, 38 and a GOP of 4 is used. The HEVC
version used in the tests is HM-16.10.

In Figure 12, our coding scheme based on both non sep-
arable and separable graph transforms is investigated against
HEVC-lozenge [1], JPEG pleno 1.1 [2], HEVC-pseudo ([3])
and HLRA ([4]) for three light fields with 9×9 views, from the
ICIP 2017 Grand Challenge [45]. Further experiments are also

depicted in Figure 13 for 8×8 light fields 1. For the separable
case, we compare the optimized and the non optimized graph
transform. In Table I, we restrict our attention to the optimized
separable graph based transform case that we denote by opt-
separable GBT scheme that can be applied no matter how big
the super-rays are. It shows the rate allocation of our method,
at low and high bitrates, for the different light fields.

We can observe that, for most of the light fields used in our
tests, the non separable graph transform yields a better rate-
distortion performance compared to the separable case for a
fixed number of super-rays. While the non optimized graph
transform fails to compact the energy of the light field, the
optimized graph transform is performing better and sometimes
almost catches the non separable case. One major advantage
of the separable optimized case is that it can be applied
on super-rays of large dimensions without facing the basis
functions computational complexity issue of the non separable
case. More precisely, the use of the separable transform
(including its optimization) leads to a time saving of around
60% compared with the non separable transform. Furthermore,
the number of eigenvectors to be optimized can be defined by
the encoder and does not have to be necessarily large.

1Visual results can be found on http://clim.inria.fr/research/GBT/GBT.html

http://clim.inria.fr/research/GBT/GBT.html
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Fig. 12: Rate distortion performance of our graph based coding schemes (Non separable, not optimized and optimized separable graph
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0 0.1 0.2 0.3 0.4 0.5 0.6

Bitrate (bpp)

20

25

30

35

40

45

P
S

N
R

 (
d
B

)

Flower 2

HEVC lozenge

Non Separable

Separable not optimized

Separable optimized

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Bitrate (bpp)

20

25

30

35

40

45

P
S

N
R

 (
d

B
)

Cars

HEVC lozenge

Non Separable

Separable not optimized

Separable optimized

0 0.1 0.2 0.3 0.4 0.5

Bitrate (bpp)

20

25

30

35

40

45

P
S

N
R

 (
d

B
)

Rock

HEVC lozenge

Non Separable

Separable not optimized

Separable optimized

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (bpp)

20

25

30

35

40

45

50

P
S

N
R

 (
d

B
)

Seahorse

Non Separable

Separable optimized

Separable not optimized

HEVC lozenge

Fig. 13: Rate distortion performance of our graph based coding schemes (Non separable, not optimized and optimized separable graph
transforms) compared to HEVC lozenge [1] for the 8× 8 light fields of [35].

Light Field Rate allocation(in %) for the opt-separable GBT scheme
Overall bitrate Segmentation Disparity Coefficients

Cars (364× 524)
0.2563 bpp (PSNR = 42.24dB) 2.69% 0.55% 96.76%
0.0212 bpp (PSNR = 25.23dB) 32.55% 6.60% 60.85%

Flower2 (364× 524)
0.2710 bpp (PSNR = 40.77dB) 2.69% 0.55% 96.76%
0.0362 bpp (PSNR = 29.18dB) 20.17% 4.14% 75.69%

Rock (364× 524)
0.1951 bpp (PSNR = 41.68dB) 4.00% 0.82% 95.18%
0.0306 bpp (PSNR = 31.10dB) 25.49% 5.23% 69.28%

Seahorse (364× 524)
0.2302 bpp (PSNR = 42.99dB) 2.65% 0.74% 96.61%
0.0612 bpp (PSNR = 33.88dB) 9.97% 2.78% 87.25%

Friends (432× 624)
0.1464 bpp (PSNR = 41.73dB) 3.89% 0.10% 96.01%
0.0294 bpp (PSNR = 33.38dB) 19.39% 5.10% 75.51%

StonePillarInside (432× 624)
0.2204 bpp (PSNR = 39.07dB) 2.59% 0.54% 96.87%
0.0212 bpp (PSNR = 32.85dB) 26.89% 5.66% 67.45%

FountainVincent (432× 624)
0.2448 bpp (PSNR = 40.37dB) 2.12% 0.57% 97.31%
0.0330 bpp (PSNR = 30.38dB) 15.76% 4.24% 80.00%

TABLE I: Rate allocation performed by the proposed coding scheme with the optimized separable graph transform. The rate is divided into
three parts used for coding the segmentation, disparity and transform coefficients.



13

Moreover, we can observe that the proposed method out-
performs JPEG Pleno VM 1.1 [2] and HEVC lozenge [1]
at high bitrate. Figure 12 also shows that it yields lower
RD performances when compared with two other reference
methods (HEVC-pseudo [3] and HLRA [4]). This is mainly
due to the fact that the proposed scheme does not incorporate
any spatial mechanism to exploit correlation between the local
transform supports while the two reference methods benefit
from the efficient HEVC intra prediction mechanisms.

Also, the bitrate allocated to the segmentation and disparity
is very large, especially at low bitrate (almost reaching 30
percent for most datasets) and could be further reduced.

Note that the decoder needs to compute the optimized basis
functions for the non consistent super-rays, inducing some
computational complexity. However, the optimization can be
performed independently on each super-ray, in a parallel
manner.

VII. CONCLUSION

In this paper, we have addressed the problem of local
geometry-aware graph transform design for light field energy
compaction and compact representation. The transform sup-
port is based on super-rays constructed in a way that their
shape remains coherent across the different views. We have
first considered both non separable graph transforms.

Despite the limited size of the transform support, the
Laplacian matrix of such graph remains of high dimension
and its diagonalization to compute the transform eigenvectors
is computationally expensive.

To solve this problem, we then considered a separable
spatio-angular transform. We have shown that, when the shape
of corresponding super-pixels in the different views undergoes
small changes, the basis functions of the spatial transforms
are not coherent, resulting in a decreased correlation between
spatial transform coefficients. We hence proposed a novel
transform optimization method that aims at preserving angular
correlation even when the shapes of corresponding super-
pixels (i.e. forming one super-ray) are not isometric. This
procedure has been shown to increase energy compaction
of the separable spatio-angular graph transforms and bring
substantial rate-distortion performance gains compared to a
non optimized case. The proposed optimized spatio-angular
graph transforms can be applied on both color or residual
signals and can be easily parallelized to reduce the complexity
on the decoder side.
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APPENDIX A
GRADIENTS OF THE OBJECTIVE FUNCTION TERMS

The gradients of the two terms in the optimization of
equation 12 are provided below:

∇B‖B>ΛiB−Λi‖2F
= ∇Btr

(
(B>ΛiB−Λi)

>(B>ΛiB−Λi)
)

= ∇Btr
(
(B>ΛiB−Λ>i )(B

>ΛiB−Λi)
)

= ∇Btr(B
>ΛiBB>ΛiB−B>ΛiBΛi

−Λ>i B>ΛiB + Λ>i Λi)

= 4(ΛiBB>ΛiB−ΛiBΛi)

(15)

As for the coupling term, with a similar derivation as the
first gradient and using the trace derivation properties in [47],
we get:

∇B(
∥∥(F>Us0 −G>UsiB)

∥∥2
F
)

= 2U>siG(G>UsiB− FUs0)
(16)
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