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Abstract. For any finite graph, the Tutte polynomial is the generating function of span-
ning trees counted by their numbers of active external, respectively internal, edges. We
consider two restrictions of this definition, either summing over a subset of spanning
trees or counting only the activities in a subset of edges. Adding to the (infinite)
square lattice one projective vertex in a (rational) direction ~θ, we define the restricted
Tutte polynomial T~θ,W×H(q, t) summing over some periodic spanning forests of period
W × H and considering only activities on edges of the fundamental domain. Those
polynomials are symmetric in q and t by self-duality of square lattice. Our main result
is a family of bijections indexed by a finite number of ~θ proving that (T~θ,W×H(q, 1))~θ
does not depend on ~θ. Auto-duality preserving the number of trees per period and
their common slope, we obtain refinements (T~θ,W×H(w, z; q, t))~θ still symmetric in q
and t.

Keywords: Sandpile model, Square lattice, Tutte polynomial, Symmetric q, t-numbers

This work is motivated by results on the sandpile model presented in Section 3 at the
end of this document. We focus first on the combinatorial result on an analogue of Tutte
polynomial for the infinite square lattice.

1 Tutte polynomial

For any finite connected graph G = (V, E), the Tutte polynomial [Tut54] is a classical
graph invariant defined as follow:

TG(q, t) := ∑
T

qext(T)tint(T)

where T runs over the set TG of spanning trees of G and ext(T), respectively int(T), is the
soon defined external, respectively internal, (Tutte) activity. Tutte activities depends on a
arbitrary permutation of the edges of G also denoted as a total order <E. There are |E|!
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such orders/permutations. An external edge e /∈ T of the spanning tree T is (externally)
active if minimal according to <E in the fundamental cycle that is the cycle in T∪{e}. An
internal edge e ∈ T is (internally) active if minimal according to <E in the fundamental
cutset that is the set of edges between the two connected components of T − {e}. The
external, respectively internal, activity is the number of external, respectively internal,
active edges. The activities of a given tree may change with the order <E but the Tutte
polynomial does not.

The proof of this invariant relies on the effect of interchanging two consecutive edges
in <E. While Tutte shows this results taking account both activities, we propose a light-
ened proof for its marginal TG(q, 1). We consider the (elementary) transposition τi that
exchanges the two consecutive edges ei, ei+1 in the order <E:= (ei)i=1,...;|E| leading to
<τi.E:= e1, . . . ei−1, ei+1, ei, ei+2, . . .. A pair of edges (ej, ek) is a critical pair in tree T for
the order <E if ej is an external edge, ek belongs to the fundamental cycle of ej, denoted
by Cej(T), and ej and ek are the two minimal edges in this cycle. We define a map
Φτi,<E on spanning trees by Φτi,<E(T) = (T − {ei}) ∪ {ei+1} if (ei, ei+1) is a critical pair
for order <E, Φτi,<E(T) = (T − {ei+1}) ∪ {ei} if (ei+1, ei) is a critical pair for order <E
and Φτi,<E(T) = T otherwise. When non trivial, this update is a case of the exchange
property of graphic matroids.

Lemma 1. For any order <E, any elementary transposition τi = (i, i + 1), the involution Φτi,<E

maps a tree T of external activity k for order <E to a tree Φτi,<E(T) with the same external
activity k for order <τi.E.

Proof. Following Tutte proof’s beginning, the activities are preserved by the exchange
when ei and ei+1 are both internal or both external. Otherwise, there are still preserved
if the internal edge is not on the fundamental cycle of the external edge. In the later case,
if there are not both minimal in the fundamental cycle, there is an internal edge that is
smaller than both in the cycle since there are consecutive in <E. Then, the exchange
preserves the external activity. It remains the case where the edges are the two minimal
edges of the cycle. Suppose (ei, ei+1) is a critical pair without loss of generality. Then
Φτi,<E maps the tree T to the tree T′ := T∆{ei, ei+1}, the symmetric difference of edges.
This map exchanges ei and ei+1 in the tree and in the order. Then Cei(T) and Cei+1(T

′)
are identical, so the activities of the external edges ei or ei+1 in T or T∆{ei, ei+1} are the
same. An internal edge e /∈ {ei, ei+1} of T remains internal in T′ so does not change
external activity. It remains to consider the external edge e not in {ei, ei+1}. We consider
the two connected components of the vertices on the cycle Cei(T) after the deletion of
ei and ei+1 then discuss if the fundamental cycle Ce(T) of the external edge e contains
one vertex of each component or not. If it does not, this cycle is the same in T and T′

so activity is preserved. If it does, this cycle Ce(T) in T becomes Ce(T′) := Ce(T)∆Cei(T)
in T′, hence all the new edges in Ce(T′) belongs to Cei(T). Hence the two exchanged set
of edges in the fundamental cycles of e in T and T′ are Ce(T)/Cei(T) and Cei(T)/Ce(T)
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Figure 1: Example of weakly acyclic PARENTHOOD function on K4 (left) and Z2

(right)

whose minimal edges are ei or ei+1. Since ei and ei+1 remain consecutive in the order, it
means that the activity of e is the same in T and T′.

1.1 Spanning tree as PARENTHOOD function

Let G = (V, E) be a finite simple connected graph. We denote the neighborhood of
v ∈ V noted V(v) the set of vertices adjacent to v in G. We call PARENTHOOD an
endofunction R that maps for any vertex v ∈ V a vertex in v ∪ {v}. This definition
corresponds to oriented cycle rooted spanning forests (OCRSF) [Ken17], and uses the
formalism from infinite matroids in graphs [BD11].

Note that a rooted spanning tree is a PARENTHOOD where each vertex maps to
its father in the tree and where the root maps to itself. A k-cycle in R is a sequence f
vertices (v1, v2, . . . , vk) such that vi+1 = R(vi) for 1 ≤ k− 1 and v1 = R(vk). Then, rooted
spanning trees match with the PARENTHOOD function with exactly one cycle which
size is 1, coding the root (see Figure 1). The bijection from PARENTHOOD functions to
spanning trees consist on removing the loop on the root and removing the orientation.
The rooted spanning forest are the functions which cycles have size 1.

Definition 1. A PARENTHOOD function is said weakly acyclic if all its cycles have length 1.

We place ourself in the case functions have only one 1-cycles. For any u ∈ V, we
denote by Ray(u) the ray of u in R, that is the set of edges in the orbite of u in R:
(u, R(u), R2(u), . . . ). Then, the fundamental cycle of an external edge uv is the symmet-
rical difference of Ray(u) and Ray(v): Cuv = Ray(u)∆Ray(v).

We can extend the definition of fundamental cycle for rooted spanning forests using
this definition.

Definition 2. Let G = (V, E) be a finite simple connected graph, R an weakly acyclic PAR-
ENTHOOD function. The fundamental cycle of an external edge with respect to R is defined by
Cuv = Ray(u)∆Ray(v).
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Then we can define the external activity for any rooted spanning forests using this
extension.

1.2 External activity for infinite graphs

Let G = (V, E) be a infinite simple connected graph and R be an weakly acyclic PAR-
ENTHOOD function. In this setup, rays may be infinite. For each external edge, we
associate its fundamental cycle using Definition 2. Let uv be an external edge. Either u
and v are in the same connected component of R then Cuv is finite, or Ray(u) and Ray(v)
are finite then Cuv is finite, or Ray(u) and/or Ray(v) are infinite then Cuv is infinite. In
the finite cases, the activity of uv is decidable for any order on the edges. In the infinite
case, the activity of uv is not straight forward unless we have some guarantees on the
order and R.

Assuming we can compute the activity of any external edges if rooted spanning
forests, we can define a analogue of Tutte polynomial on the distribution of external
activity on rooted spanning forests. However, the sum would be infinite and the external
activity of a rooted spanning forest might also be infinite.

Definition 3 (k−order assumption). A pair of an order <E and a set F of weakly acyclic
PARENTHOOD functions verifies the k−order assumption if for any f ∈ F and any vertex
u ∈ V, the minimal edge of Ray f (u) with respect to <E is among the k firsts edges of the ray.

Under the k−order assumption, we can compute efficiently the activity of any exter-
nal edge.

1.3 Restriction for summability

Let G = (V, E) be a infinite connected graph and <E an order on E. Let F be a finite
set of weakly acyclic PARENTHOOD function of G and E′ a finite subset of edges of E.
We assume that the choice of <E, F and E′ makes the external and internal activities
computable. Then we can define an polynomial

TF ,E′,<E(q, t) := ∑
F∈F

qextE′ (F)tinyE′ (F)

encoding the distribution of activities on F restricted to the edges of E′.

2 Restricted Tutte polynomial on completed square lattice

From this section, we work on the infinite square lattice indexed by Z2 where (x′, y′) ∈
V(x, y) ⇔ |x′ − x|+ |y′ − y| = 1. Generic restrictions of Tutte polynomials defined in
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Figure 2: Examples of acyclic periodic PARENTHOOD function of period (4, 3)

previous Section 1.3 allow to consider some well-defined polynomials on this graph. In
order to match with Tutte polynomial, we considers only weakly acyclic PARENTHOOD
function with at most 1 cycle. First we give two restrictions and an order to explicitly
compute the distribution of the external activity on families of endofunctions. Secondly,
by observing that the square lattice is self-dual, we define a family of restricted polyno-
mials on the distributions of both activities.

2.1 Periodicity

A natural finite subset of PARENTHOOD function of Z2 is the set of periodic endofunc-
tions of given fundamental domain. Such PARENTHOOD function has either an infinity
of cycle or is acyclic.

Definition 4. A PARENTHOOD function F of Z2 is periodic of period (W, H) ∈N2
>0 if for

any (x, y) ∈ Z2, we have F(x+W, y) = F(x, y)+ (W, 0) and F(x, y+ H) = F(x, y)+ (0, H).

An acyclic periodic PARENTHOOD function (see Figure 3) has periodic infinite
branches that share the same slope but can have different orientations. Then each in-
finite branch B has a signed slope θB ∈ Z2 with co-prime components. Let ~θ ∈ Z2 be a
non null vector and ~θ⊥ = (−θy, θx). A infinite branch B is positive for ~θ if 〈θ, θB〉 > 0
or 〈θ, θB〉 = 0 and 〈θ⊥, θB〉 > 0. We said it is strongly positive if 〈θ, θB〉 > 0. We denote
by admissible periodic spanning forests the results of the bijection of Section 1.1 applied
to acyclic periodic PARENTHOOD function. Since two PARENTHOOD can share the
same spanning forests (see Figure 2), we map bijectively the admissible periodic span-
ning forests to acyclic periodic PARENTHOOD function which infinite branches are
positive for ~θ.

Definition 5. An admissible periodic PARENTHOOD for ~θ 6= ~0 is an acyclic periodic PAR-
ENTHOOD function which infinite branches are positive for ~θ.

From this point, we only consider sets of admissible periodic PARENTHOOD func-
tion for a given ~θ. Since the infinite branches are oriented toward the direction ~θ, we add
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to the graph an additional vertex s /∈ Z2 that behaves like the crossing point of all the
infinite branches at infinity in the direction ~θ. This vertex can be seen as a projective root
for the PARENTHOOD function.

We denote by FW×H the set of admissible spanning forests of period (W, H). The
natural finite subset of edges on which we want to compute the activity is the set of
edges in a fundamental domain of the forests. For any F ∈ FW×H, we denote by ~F the
corresponding admissible PARENTHOOD function with respect to ~θ. By geometrically
identifying each edge by its middle point (xe, ye) in the usual embedding, we denote by
EW×H := {ei|~ei = (x, y) where 0 ≤ x ≤ W + 1/2 and 0 ≤ y ≤ H + 1/2} this subset of
2WH edges that contains one copy of each edge in the torus W × H, in the usual copy
of the torus containing the origin and sometimes called the fundamental domain.

In order to respect the k−order assumption, we need an order that guarantee that
(oriented) infinite branches are globally increasing. Since the branches are positive for ~θ,
we use a total order <Eθ

on edges of the square lattice:

ei <Eθ
ej ⇐⇒ (〈~ei|~θ〉, 〈~ei|~θ⊥〉) <lex (〈~ej|~θ〉, 〈~ej|~θ⊥〉)

where <lex is the usual lexicographic order giving priority to the first coordinate. In
other word, ignoring ties, the smallest edge is the more distant to the projective root
in direction ~θ. The pair (<Eθ

,FW×H) verifies the k−orded assumption with parameter
k = 2WH.

We aim for

T~θ,W×H(q, t) := TFW×H ,EW×H ,<Eθ
(q, t) = ∑

F∈FW×H
qextEW×H

(F)tinyEW×H
(F).

Notice that by self-duality of the infinite square lattice and stability by duality of dual
pairs these polynomials are symmetric in q and t: T~θ,W×H(q, t) = T~θ,W×H(t, q). For the

partial evaluation T~θ,W×H(q, 1) at t = 1, our main result is its independence of ~θ.

2.2 Result

Theorem 1. For any two rational directions ~θ and ~θ′ we have T~θ,W×H(q, 1) = T~θ′,W×H(q, 1).

By symmetry, T~θ,W×H(1, t) is the same polynomial independent of ~θ but the full poly-

nomial T~θ,W×H(q, t) may depend on ~θ , see Section 2.3 for examples. The end of this
section gives element of proof for this Theorem 1. This proof follows the same line as
in the finite case where a bijection defined for Lemma 1 allows to prove the invariance
by an elementary transposition on the order <E of edges. The main difficulty is that
turning the order <Eθ

into the order <Eθ+dθ
, even for small dθ requires an infinite num-

ber of elementary transpositions on the infinite number of edges so one has to ensure
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that updates commute and then directly describe the result of an infinite sequence of
elementary updates. The periodicity of forests allows to do so.

Let F be a periodic admissible forest of FW×H. We show that there exists a finite set
of directions (θi)i∈Zk indexed counterclockwise such that the restricted external activity
extEW×H(

~F) is piecewise constant on every [θi, θi+1) and that for any θi, there exists bijec-
tively a forest F′ ∈ FW×H such that extEW×H(

~F) for <Eθi
equals extEW×H(

~F′) for <Eθi+1
.

We denote by ~π(~F) ∈WZ× HZ the common period vector of any infinite branch of
~F with respect to W×H. Let e be a external edge of ~F, we denote by Ce,~F the fundamental
cycle of e in ~F as defined in section 1.3. Let H = H(Ce,~F) be the convex hull of the middle
points of the edges of Ce,~F (Figure 3). Note that if Ce,~F is finite, then the corners of H
are finitely many. Otherwise Ce,~F contains infinite periodic branches then H is a super
sets of every H + k~π(~F) where k > 0. The convex hull H has two semi infinite sides of
slope ~π(~F) with endpoint in Ce,~F. Since e is between the two infinite branches of Ce,~F,
every edges between this branches are inside H. In particular, e + ~π(~F) is inside H so
it cannot be on the infinite side of H. Then e is not an endpoint of this sides, those are
internal edges of Ce,~F. Since the path lengths from the endpoints of e to infinite branches
is bounded by 2WH, H has finitely many corners.

Lemma 2. For any e, H(Ce,~F) has finitely many corners.

We note (hi)1≤i≤k the corners of H indexed counterclockwise where h1 and hk are the
endpoint of the infinite sides when required. Based on the corners of the convex hull we
can show the following results.

Lemma 3. Let e a external edges of ~F. If an edge is minimal on Ce,~F for the direction ~θ, then it
is a corner of H(Ce,~F). Reciprocally if a edge is a corner of Ce,~F that is not adjacent to a infinite
side, then there exists a direction for which it is minimal.

Since the order defined from ~θ comes from usual scalar product, the minimality of
f ∈ Ce,~F for the direction ~θ means that Ce,~F is in the halfplane D

f ,~~θ
. This compatibility

gives the previous lemma. In particular, for any consecutive corners hi and hi+1 of H,
hi+1 is minimal for the direction

−−−→
hihi+1

⊥. Then an external edge can be active if it is a
corner of its fundamental cycle.

When Ce,~F is infinite, e cannot be active for the direction ~π(~F)⊥ since it is not on the
infinite sides. For this direction, the repetitions of each edge of infinite branches of ~F are
decreasing. We define ~F the oriented forest obtained by reversing the orientation of the
edges of the infinite branches.

Lemma 4. ~F and ~F have the same set of active external edges for the direction ~π(~~F)⊥.
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e1

e2

Figure 3: Periodic oriented forest ~F. e1 is a corner of H(Ce1,~F) and e2 is not a corner of
H(Ce2,~F). The corners of the convex hulls are the blue and red dots.

Indeed none of the external edges of fundamental cycles is active and the finite fun-
damental cycles are preserved in ~F.

We call a triplet (ae, e, be) a critical triplet if e is external and if (ae, e, be) are consecutive
corners of H(Ce,~F). Each critical triplet defines two directions −→aee⊥ and

−→
ebe
⊥ and e is

active for a direction θ if and only if θ ∈ [−→aee⊥,
−→
ebe
⊥). The set of critical triplets is finite

up to translations. We denote by Θ~F the finite set of these directions in addition to the

direction ~π(~~F)⊥. We select among Θ~F the (θi)1≤i≤k such that (〈~π(~F)|~θi〉, 〈~π(~F)⊥|~θi〉) >lex

(0, 0). We index them counterclockwise with θk ≡ ~π(~F)⊥ where ~u ≡ ~v⇔ ∃α > 0 s.t. ~u =
α~v.

Lemma 5. For any 1 ≤ i < k, the set of active external edges is invariant for any direction
θ ∈ [θi, θi+1).

Let θi+1 ∈ (θi)1≤i≤k. For any critical triplet (ae, e, be), the pair (ae, e) (resp. (e, be))
is a critical pair for the direction θi+1 if −→aee⊥ ≡ θi+1 (resp.

−→
ebe
⊥ ≡ θi+1). Then, we can

show that these critical pairs of ~F are pairwise disjoint and we note Pc~F,θi+1
the set of the

critical pairs.
If θi+1 = ~π(~F)⊥, then we replace ~F by ~F while preserving the critical pairs thanks to

the Lemma 4. We can assume that θi+1 6≡ ~π(~F)⊥.
We construct step by step F̃ = F∆Pc~F,θi+1

the forest obtained by swapping the edges
of each critical pairs in F. On each step, we swap periodically one critical pair. Let (e, f )
be a critical pair. We can define F′ = F∆∪v∈WZ×HZ {e + v, f + v}. It does not create any
finite cycle or finite tree, so F′ and F̃ are admissible periodic forests.
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Figure 4: Example of critical pair swap that changes the infinite branches

A swap may change the direction of infinite branches of F (see Figure 4). We skip
here the details to only sketch the proof. We can show that the set of critical pairs of F′

for the direction θi+1 is the same as F. And the newly created external edge of F′ has the
same activity for θi+1 than the previous external edge of F for the direction θi. Finally,
the other external edges keep their activity through this swap.

Since we preserve the critical pairs and the activity of all external edges that do not
appear in critical pairs, the order of the swap is not relevant. We can do all the swaps in
parallel. Moreover, since the critical pairs are preserved, this is an involution.

Corollary 1. The external activity of F̃ for the direction θi+1 is the same as the external activity
of F for θi.

Let Θ = ∪~F,F∈FW×H Θ~F. Since FW×H is finite, Θ is finite. We reuse the notation
Θ = (θi)i∈Z|Θ| indexed counterclockwise. For any F and any θi+1, we map bijectively a
F̃ such that the external activity of F̃ for the direction θi+1 is the same as the external
activity of F for θi.

So for any rational directions θ and θ′, we map step by step for each F a unique Fθ→θ′

preserving the external activity. This ends the proof of Theorem 1.

2.3 Restricted Tutte polynomials T~θ,W×H(q, t) for H = 1

When H = 1, the admissible periodic forests different from horizontal cycle on the tore
are naturally in bijection with the spanning trees of the wheel graph WW+1. Each cycle
(of length 1) is map to an edge toward the center in the wheel graph, and the other edges
maps to edges on the cycle of the wheel. Thus the T~θ,W×H(1, 1)− 1 counts the number
of these trees.

This case gives one of the smallest counter-example against the invariance on θ of
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T~θ,W×H(q, t): T~0,3×1(q, t) = q3t3 + 3q2 + 3qt + 3t2 + 3q + 3t + 1 and T ~π/2,3×1(q, t) = q3t3 +

3q2t + 3qt2 + 3q + 3t + 4.
We can refine these polynomials taking account of the slope of the infinite branches

using T~θ,W×H(w, z; q, t) where for any (i, j) coprime and for any k > 0, the polyno-
mial coefficient [wkizkj]T~θ,W×H(w, z; q, t))~θ count the Tutte polynomial restricted to forests
with k cycles on the torus and where the slope of infinite branches is ±(iW, jH). For
instance T~0,3×1(w, z; q, t) = w + 3z(1 + q + t) + 3z2(q2 + t2) + z3q3t3. The polynomial
T~θ,W×H(w, z; 1, 1) can be extracted from a determinantale formula (see [Ken17, DB18]).
Polynomials for some (W, H) can be found on https://www.labri.fr/perso/hderycke/
biperiodic_forests.

3 Application for the sandpile model

Sandpile model [Dha90], also called Chip-Firing Game, is a discrete model for diffusion
on graphs. Let G = (V, E) be a simple connected finite graph. A configuration η =
(ηv)v∈V for G is a function from V to N. A vertex v is unstable in configuration η if
ηv is at least the degree of v. The toppling of an unstable vertex v moves along each
edge incident to v a grain from v to the opposite endpoint, so v losses its degree in
grains and each neighbour gains one grain. An extra vertex s, called the sink, is added
to the vertices and some edges Es connect this sink to some other vertices leading to
Gs := (V ∪ {s}, E∪ Es). A configuration is stable if all vertices are stable, except possibly
at the sink s.

Given a configuration η on Gs, we topple the unstable vertices except the sink until
none remains. This algorithm is called stabilization and terminates on a stable configu-
ration noted stab(η) whatever the order on the toppled vertices is. When η is stable, we
denote by dhar(η) the result of the toppling of the sink s followed by a stabilization. The
application dhar is called the Dhar operator. A recurrent configuration is a stable config-
uration that is a fixed point of the Dhar operator. Note that for such configuration, all
vertices topple exactly once during this algorithm. This is called the Dhar criterion.

Various schedulings of this Dhar criterion provided many bijections from recurrent
configurations in Gs to spanning trees of Gs, e.g. [MD92, CB03], where one records for
each vertex distinct from the sink the edge crossed by the grain allowing toppling.

We consider the generating function Gs(q) := ∑
u

qlevel(u) where u runs over recurrent

configurations and level(u) :=
(
∑v 6=s uv

)
− |E| is up to a constant the number of grains

in configuration u. This generating function Gs(q) is also the generating function of
spanning trees according to the Tutte external activity [Lóp97] so an evaluation at t = 1
of the bivariate Tutte polynomial TGs(q, t).

In a recent work [DB18], the authors proposed a generalisation of the notion of recur-

https://www.labri.fr/perso/hderycke/biperiodic_forests
https://www.labri.fr/perso/hderycke/biperiodic_forests
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rent configuration for the infinite square lattice, usually denoted Z2. Other approaches
exist, for example in [GJ14] where recurrent configurations are defined as the image of
some spanning trees via an extension of a bijection of the finite case [MD92]. First, we
focus on periodic stable configurations of period W × H, where (W, H) ∈ N2

+. Our aim
was to define the notion of recurrent configuration for such periodic configurations via
an extension of Dhar criterion.

Selecting one vertex, say the origin, as the sink, will break the periodicity. Our
intuitive choice was to add the sink as an extra “projective” vertex of the square lat-
tice at infinity in a direction ~θ as in Section 2.1. With this choice, the definition of a
toppling of the sink now at infinity becomes challenging. We consider the half-plane
Dp,~θ := {v ∈ Z2|〈v− p|~θ〉 ≥ 0} where p is a vertex and 〈.|.〉 the usual scalar product.
Intuitively, this half-plane is made of vertices at least as close as p to the sink at infinity
in direction ~θ.

Definition 6 (Weak Dhar Criterion). A periodic stable configuration is recurrent for the
direction ~θ if for any p, after a forced toppling of the half-plane Dp,~θ, all other vertices in the
complement of Dp,~θ topple (once).

Proposition 1 ([DB18]). There exists an algorithm performing weak Dhar criterion on any
periodic stable configuration for any rational angle ~θ and the result do not depend on the choice
of the vertex p for the half-plane Dp,~θ.

As in the finite case, the algorithm performing the weak Dhar criterion leads to a
bijection, extending the one in [CB03] with some admissible PARENTHOOD function
for ~θ. Let FW×H

+ the subset of admissible spanning forests which infinite branches are
strongly positive.

Proposition 2 ([DB18]). Recurrent configurations of period W×H defined by weak Dhar crite-
rion with projective sink in direction~θ are in bijection with admissible spanning forests of FW×H

+ ,
hence excluding those of slope orthogonal to ~θ.

The details of the proof, see [Der18], initially depends on the vertex p defining the
half-plane Dp,~θ. But the scheduling of weak Dhar criterion, initially only periodic in the

orthogonal direction ~θ⊥ becomes also periodic in the direction ~θ and then independent
of p. This ultimate periodic behaviour leads via an adaptation of the used finite case
bijection, to the expected admissible forests.

We consider a new version of the weak Dhar criterion that will allow to extends
the set of recurrent configurations to obtain a bijection with all the admissible spanning
forests, hence the number of recurrent configurations of a given period W × H will no
more depend on ~θ.

The bijection from Proposition 2 links the number of grains on recurrent configura-
tions in direction ~θ with the activities of the edges on spanning forests with respect to
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~θ. Lemma 5 says that the activity per edges is piece-wise constant. Then the bijection
is stable for small variation of the direction ~θ. Using the same notation and we assume
θ ∈ [θi, θi+1) and define θ+ = (θ + θi+1)/2.

Proposition 3. For any direction ~θ, the new weak Dhar criterion for ~θ+ defines a bijection
between recurrent configurations of period W × H and all the admissible spanning forests of the
same period.

The polynomials studied in Section 2 satisfies T~θ,W×H(q, 1) = ∑
u

qlevel(u) where the left

member is the generating function of recurrent configurations of period W × H defined
for the new weak Dhar criterion ~θ+ and the level is the number of grains on uW×H on
the torus (or one period) minus 2WH that is the number of edges on the torus. This
identity relies on the fact that the used bijection, like in the finite case [CB03], turns the
level of a configuration into the external activity of the spanning tree for an order of
edges related to ~θ. It was a priori unclear that this polynomial summing over a strict
subset of spanning trees does not depend on θ and our main result states that it is.
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