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Abstract

For the sandpile model on the usual two dimensional grid, we propose a weaker version
of Dhar criterion to define recurrent configurations among stable biperiodic configurations. We
check this new criterion via an algorithm which auto-stabilises to a canonical ultimately periodic
behaviour independent of details in its not fully specified initialisation. This leads to ultimately
periodic edge/vertex traversals similar to those of Cori-Le Borgne [2] in the case of finite graphs
and then to a bijection with some cycle-rooted forests on the torus describing the period. A
determinantal formula [5] counts all those forests and the refinement with some monodromy
parameters allows to identify in some coefficients the number of recurrent configurations.

The Abelian sandpile model was introduced by physicists Bak, Tang and Wiesenfeld in [1]
as a model of self-organized criticality. Given a simple, undirected graph (V ∪ {s}, E) where we
distinguish s as the sink of the graph, we consider configurations in this model which are an
assignments η : V 7→ Z of some grains of sand on each vertex. We say that η is stable at x ∈ V if
η(x) < deg(x), and η is stable if it is stable at all x ∈ V . If η is unstable at x, then x is allowed
to topple which means that the vertex x sends one grain along each incident edge. This toppling
is said legal. A toppling is forced when it is not necessarily legal. Grains arriving at the sink are
lost. Given a configuration η, we define a stabilization as a sequence of allowed topplings until a
stable configuration is reached. The result of all stabilizations is unique due to commutations of
topplings of unstable vertices and is noted stab(η).

Let P (η) be the result of a stabilization of η + 1s∼, that is η with an extra grain on each
neighbour of s, which may be interpreted as a forced toppling of the sink. P (η) is also called
the Dhar criterion since the set of recurrent configurations is a subset of the stable configurations
characterized by Dhar [4] as the fixed points of P . For such a fixed point, each vertex topples
exactly once in this process. The notion of recurrence is related to a natural Markov chain in
this model not discussed here [3], and it is well studied for its connection with spanning trees [4],
uniform spanning tree, the Tutte polynomial on the underlying graph [2]. Also on finite graphs,
the set of recurrent configurations equipped with the operation (η, µ) 7→ stab(η + µ) is an abelian
group [3]. When the graph is the grid Z2, the existence of such a group is open.

One of our motivations is the search of finite groups on a subset of recurrent configurations
on Z2, which may be subgroups of the hypothetical (infinite) group. We focus on the subset of
biperiodic configurations on the grid defined as follows. Let ~P1, ~P2 ∈ Z2 two non collinear vectors.
A configuration η of Z2 is biperiodic of period (~P1, ~P2) if for all x ∈ Z2, η(x+ ~P1) = η(x+ ~P2) = η(x).

Several approaches are suggested by litterature to define the notion of recurrence: for example,
adding one edge per period to an extra vertex called the sink (dissipative sandpiles [6]), another
example merges in one sink vertex all vertices outside a finite polygon and then scale this polygon [7].
Our approach relies on a weaker form of Dhar criterion and leads to a degenerate polygon which is
an half-plane. Indeed we place the sink at infinity in a direction by analogy to the projective plane.
The sink s is a point at infinity and will be describe by an euclidean vector ~s = (sx, sy) ∈ Z2 where
gcd(sx, sy) = 1. Note that ~s and −~s refer to different sinks.
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The sink being sent to infinity, the difficulty of toppling it appears. We replace this by a forced
toppling of an half-plane of line boundary orthogonal to the sink ~s.

Definition 1 (Weak Dhar criterion in a rational direction). A configuration η is said recurrent in
the direction of the sink ~s if and only if for any k ∈ Z the forced toppling of the vertices of the
half-plane {(x, y) ∈ Z2 | sxx+ syy ≥ k} leads to the legal toppling of all other vertices.

Proposition 1. There exists execution of the weak Dhar criterion on biperiodic configurations that
is auto-stabilizing to an ultimately periodical behaviour which does not depend on the position of
the half-plane defined by a line colinear to ~s⊥ and can be simulated in finite time.

C1 C2 C1 C2 C1 C2

Forced zone

Frozen zone

W

y0

y0 + t
“sweep line”

Used edge Frozen edge Toppled vertices

Figure 1: Weak Dhar criterion after step t, C1 and C2 are next connected components

Sketch of the proof when ~s = (0,−1) (that can be generalized for all ~s). Let η be a recurrent con-
figuration in direction (0,−1) of period (~P1, ~P2). Without losing generality, we can assume that
~P1 = (W, 0) and ~P2 = (0, H) where W,H > 0. We equip the set of edges with the following order
≺~s. Let e1 (resp. e2) be an edge of middle m1 (resp. m2) in the usual embedded of Z2, e1 ≺~s e2
if and only if ~s· ~m1 < ~s· ~m2 or (~s· ~m1 = ~s· ~m2 and ~s⊥· ~m1 < ~s⊥· ~m2) where ~s· ~m1 is the usual scalar
product between ~s and ~m1 and ~s⊥ is the vector (−sy, sx). For ≺(0,−1), edges are ordered increas-
ingly from top to bottom in priority, ties broken from left to right. When a vertex become unstable,
it topples and its grains are sent along incident edges which become pending. Such a crossing grain
is received at opposite endpoint when this pending edge is activated. We control the process of
stabilisation by activating the maximal pending edge according to ≺~s (see [2] for details).

We start by a forced toppling of the half-plane ~(x, y)· (−~s) = y ≤ y0 ∈ Z, denoted H≤y0 .
The remaining legal topplings, more precisely edges allowed to be activated, are enclosed between
this half-plane and a “sweep line” y = y0 + t, where t ≥ 0 is called a step of execution for Dhar
criterion. More precisely at each step t > 0, we only consider edges which middle has ordinate
y ∈ [y0, y0 + t]. Thus there is a forced toppled zone y ≤ y0, a frozen zone y > y0 + t and a working
zone y0 < y ≤ y0 + t, see Figure 1. Since η is recurrent, at step t there is at least one vertex vt
that topples on line y = y0 + t. The order ≺~s guarantees that the set of connected components of
untoppled vertices in the working zone is periodic of period (W, 0) (C1 and C2 on Figure 1) and
that these components are finite as long as η is recurrent since enclosed between the sweep line
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and the sequences of topplings leading to toppled vertices (vt + k ~P1)k∈Z. Thus the toppling of a
vertex v is independent of the toppling of each v + k(W, 0) with k ∈ Z∗. This observation allows
to simulate the criterion on a cylinder [1,W ]×Z with a periodic configuration of period (0, H) for
some H.

The more we force topplings, the more we topple vertices. This and translation symmetry ~P2

implies that if a vertex v topples at step t+H, then v− (0, H) = v− ~P2 topples no later than step
t. As a corollary, at most one of the vertices (v + k ~P2)k∈Z can topple legally in any H consecutive
steps. Thus for any H consecutive steps, there is at most WH vertices that topple.

We can show by contradiction that each vertex v topples at some step. For any vertex v, either
all (v + k ~P2)k∈Z topples or there exists kv such that exactly (v + k ~P2)k≥kv do not topple. If not
all vertices topples at some step, we can define kWH = maxv kv where v runs over the subset S of
the vertices of [1,W ] × [1, H] for which kv is defined and S := [1,W ] × [1, H] \ S the complement
subset. By definition, in the half-plane H>y0+kW,HH , the subsets (S + k ~P2)k≥kWH

never topples

and all other vertices in (S+k ~P2)k≥kW,H
topples. From this, we also deduce the existence of a step

tW,H such that no vertex in the half plane H≤y0+kW,HH can legally topple at steps t ≥ tW,H . For

steps t ≥ tW,H , only vertices in (S + k ~P2)k≥kW,H
periodically topples. This describes an (infinite)

sequence of legal topplings toward a stable configuration where (S + k ~P2)k≥kWH
did not topple,

which is a contradiction with the recurrence of η (so S = ∅).
Hence, let T be the first step when all vertices of [1,W ]× [1, H] has been toppled. Since there

is at most WH vertices that topple at step T , the sequence of toppling that destabilizes the last
untoppled vertex of [1,W ]× [1, H] starts on line y = y0 + T , is at most of length WH and ends to
a line below y = y0 +H so T ≤ H +WH. So the criterion is finite and effective.

Moreover, from steps T + 1 to T +H, we observe the ultimately periodic behaviour of the Dhar
criterion: WH vertices topple, all having distinct copies in the fundamental domain [1,W ]× [1, H].
In addition, for k ≤ H, the half-plane H≤y0+k has toppled at step T so forcing toppling of this
half-plane, instead of H≤y0, results after T − k steps in the same set of toppled vertices. So the
ultimately periodic behaviour of Dhar criterion starting either by H≤y0 or H≤y0+k are the same.

The proof induces a bijection with a subset of cycle rooted spanning forests [5] on the toroidal
grid: from step T + 1 to step T + H, we attach to each vertex and its repetitions the edge that
destabilizes it. In order to respect the order ≺~s on the cylinder, it is enough to process the toppling
in only one repetition of each connected component at a given step. The result is a cycle rooted
spanning forest of the toroidal grid with non contractible cycles. These cycles correspond to infinite
periodic branches in the plane whose slopes are not orthogonal to ~s.

Theorem 1. Let ~s be a sink. The set of recurrent biperiodic configuration of pattern size W ×H
on Z2 is in bijection with the set of cycle rooted spanning forests of the toroidal grid W ×H whose
slope (a, b) is such that a · sx + b · sy 6= 0.

We assume in the next part that W,H ≥ 2. We call NCRSF a non-contractible cycle rooted
spanning forests. We want to count the recurrent configurations in a direction ~s. By definition of
homology, the image of one copy of an (oriented) cycle of homology class (i, j) ∈ Z2 starting at
(x, y) into the plane ends at (x+ jW, y+ iH). Kenyon [5] gives the following determinantal formula∑

NCRSFs γ

(
2− ziwj − z−iw−j

)k
= det ∆ where (i, j) is the homology class of the cycles of γ and

k their number, z is the monodromy of cycles with homology class (1, 0), w is the monodromy of
cycles with homology class (0, 1), ∆ is the Laplacian on the line bundle with connection 1 over all
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Figure 2: Connection Φ on the
torus W ×H
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Figure 3: The number of NCRSF on a toroidal
grid 4× 4 in each direction where k = gcd(ki, kj)

oriented edges except those crossing the blue (connection w or w−1) and red sides (connection z or
z−1) of a fix fundamental rectangle as in figure 2. Then ∆(v) =

∑
u→v v − Φu→vu where Φu→v is

the connection value on edge u→ v.
Due to planarity of the grid, a cycle cannot cross itself on the toroidal grid. Thus the homology

class (i, j) of a cycle in this graph has gcd(i, j) = 1. Moreover the length of such a cycle is at least
|Wj|+ |Hi|. That gives the first part of the following proposition.

Proposition 2. Given γ a NCRSF on a toroidal grid W ×H, if γ has k cycles with homology class
(i, j) then i and j are co-prime and |kjW |+ |kiH| ≤WH. Reciprocally for any (i, j) ∈ Z2 co-prime
and any k > 0 such that |kjW |+ |kiH| ≤WH, there exists a NCRSF of parameters (i, j, k).

The second part of this proposition is achieved by k repetitions of a digital line from Bresenham’s
line algorithm (with corners).

We denote Qi,j,k =
(
2− ziwj − z−iw−j

)k
for any k > 0 and any (i, j) ∈ S = {(0, 1)} ∪ {(a, b) |

a > 0 and gcd(a, b) = 1}, the (Qi,j,k)i,j,k are linearly independent. So the number of NCRSFs
is the sum of the coefficients (αi,j,k)i,j,k of det ∆ in the decomposition in (Qi,j,k)i,j,k: det ∆ =∑

i,j,k αi,j,kQi,j,k. One can show that αi,j,k = αi,−j,k for i > 0.

Proposition 3. The number of biperiodic recurrent configurations in direction ~s of size W ×H is∑
(i,j,k)∈S~s αi,j,k where S~s = {(i, j, k) | (i, j) ∈ S, k > 0, |kjW |+ |kiH| ≤WH, iWsx + jHsy 6= 0}.

This formula enhances the counting the recurrent configurations in a direction that was limited
to enumeration. Some explicit results are given on Figure 3. Some extra results up to m× n with
m,n ≤ 9 can be found at https://www.labri.fr/perso/hderycke/biperiodic_recurrent/.
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