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 in the case of finite graphs and then to a bijection with some cycle-rooted forests on the torus describing the period. A determinantal formula [5] counts all those forests and the refinement with some monodromy parameters allows to identify in some coefficients the number of recurrent configurations.

The Abelian sandpile model was introduced by physicists Bak, Tang and Wiesenfeld in [START_REF] Bak | Self-organized criticality[END_REF] as a model of self-organized criticality. Given a simple, undirected graph (V ∪ {s}, E) where we distinguish s as the sink of the graph, we consider configurations in this model which are an assignments η : V → Z of some grains of sand on each vertex. We say that η is stable at x ∈ V if η(x) < deg(x), and η is stable if it is stable at all x ∈ V . If η is unstable at x, then x is allowed to topple which means that the vertex x sends one grain along each incident edge. This toppling is said legal. A toppling is forced when it is not necessarily legal. Grains arriving at the sink are lost. Given a configuration η, we define a stabilization as a sequence of allowed topplings until a stable configuration is reached. The result of all stabilizations is unique due to commutations of topplings of unstable vertices and is noted stab(η).

Let P (η) be the result of a stabilization of η + 1 s∼ , that is η with an extra grain on each neighbour of s, which may be interpreted as a forced toppling of the sink. P (η) is also called the Dhar criterion since the set of recurrent configurations is a subset of the stable configurations characterized by Dhar [START_REF] Dhar | Equivalence of the Abelian sandpile model and the q → 0 limits of the Potts model[END_REF] as the fixed points of P . For such a fixed point, each vertex topples exactly once in this process. The notion of recurrence is related to a natural Markov chain in this model not discussed here [START_REF] Dhar | Self-organized critical state of sandpile automaton models[END_REF], and it is well studied for its connection with spanning trees [START_REF] Dhar | Equivalence of the Abelian sandpile model and the q → 0 limits of the Potts model[END_REF], uniform spanning tree, the Tutte polynomial on the underlying graph [START_REF] Cori | The sand-pile model and Tutte polynomials[END_REF]. Also on finite graphs, the set of recurrent configurations equipped with the operation (η, µ) → stab(η + µ) is an abelian group [START_REF] Dhar | Self-organized critical state of sandpile automaton models[END_REF]. When the graph is the grid Z 2 , the existence of such a group is open.

One of our motivations is the search of finite groups on a subset of recurrent configurations on Z 2 , which may be subgroups of the hypothetical (infinite) group. We focus on the subset of biperiodic configurations on the grid defined as follows. Let P 1 , P 2 ∈ Z 2 two non collinear vectors. A configuration η of Z 2 is biperiodic of period (

P 1 , P 2 ) if for all x ∈ Z 2 , η(x+ P 1 ) = η(x+ P 2 ) = η(x).
Several approaches are suggested by litterature to define the notion of recurrence: for example, adding one edge per period to an extra vertex called the sink (dissipative sandpiles [START_REF] Maes | The infinite volume limit of dissipative abelian sandpiles[END_REF]), another example merges in one sink vertex all vertices outside a finite polygon and then scale this polygon [START_REF] Paoletti | Deterministic Abelian Sandpile Models and Patterns[END_REF]. Our approach relies on a weaker form of Dhar criterion and leads to a degenerate polygon which is an half-plane. Indeed we place the sink at infinity in a direction by analogy to the projective plane. The sink s is a point at infinity and will be describe by an euclidean vector s = (s x , s y ) ∈ Z 2 where gcd(s x , s y ) = 1. Note that s and -s refer to different sinks.
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The sink being sent to infinity, the difficulty of toppling it appears. We replace this by a forced toppling of an half-plane of line boundary orthogonal to the sink s.

Definition 1 (Weak Dhar criterion in a rational direction). A configuration η is said recurrent in the direction of the sink s if and only if for any k ∈ Z the forced toppling of the vertices of the half-plane {(x, y) ∈ Z 2 | s x x + s y y ≥ k} leads to the legal toppling of all other vertices. Proposition 1. There exists execution of the weak Dhar criterion on biperiodic configurations that is auto-stabilizing to an ultimately periodical behaviour which does not depend on the position of the half-plane defined by a line colinear to s ⊥ and can be simulated in finite time.
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Used edge Frozen edge Toppled vertices Sketch of the proof when s = (0, -1) (that can be generalized for all s). Let η be a recurrent configuration in direction (0, -1) of period ( P 1 , P 2 ). Without losing generality, we can assume that P 1 = (W, 0) and P 2 = (0, H) where W, H > 0. We equip the set of edges with the following order ≺ s . Let e 1 (resp. e 2 ) be an edge of middle m 1 (resp. m 2 ) in the usual embedded of

Z 2 , e 1 ≺ s e 2 if and only if s• m 1 < s• m 2 or ( s• m 1 = s• m 2 and s ⊥ • m 1 < s ⊥ • m 2 )
where s• m 1 is the usual scalar product between s and m 1 and s ⊥ is the vector (-s y , s x ). For ≺ (0,-1) , edges are ordered increasingly from top to bottom in priority, ties broken from left to right. When a vertex become unstable, it topples and its grains are sent along incident edges which become pending. Such a crossing grain is received at opposite endpoint when this pending edge is activated. We control the process of stabilisation by activating the maximal pending edge according to ≺ s (see [START_REF] Cori | The sand-pile model and Tutte polynomials[END_REF] for details). We start by a forced toppling of the half-plane (x, y)• (-s) = y ≤ y 0 ∈ Z, denoted H ≤y 0 . The remaining legal topplings, more precisely edges allowed to be activated, are enclosed between this half-plane and a "sweep line" y = y 0 + t, where t ≥ 0 is called a step of execution for Dhar criterion. More precisely at each step t > 0, we only consider edges which middle has ordinate y ∈ [y 0 , y 0 + t]. Thus there is a forced toppled zone y ≤ y 0 , a frozen zone y > y 0 + t and a working zone y 0 < y ≤ y 0 + t, see Figure 1. Since η is recurrent, at step t there is at least one vertex v t that topples on line y = y 0 + t. The order ≺ s guarantees that the set of connected components of untoppled vertices in the working zone is periodic of period (W, 0) (C 1 and C 2 on Figure 1) and that these components are finite as long as η is recurrent since enclosed between the sweep line and the sequences of topplings leading to toppled vertices (v t + k P 1 ) k∈Z . Thus the toppling of a vertex v is independent of the toppling of each v + k(W, 0) with k ∈ Z * . This observation allows to simulate the criterion on a cylinder [1, W ] × Z with a periodic configuration of period (0, H) for some H.

The more we force topplings, the more we topple vertices. This and translation symmetry P 2 implies that if a vertex v topples at step t + H, then v -(0, H) = v -P 2 topples no later than step t. As a corollary, at most one of the vertices (v + k P 2 ) k∈Z can topple legally in any H consecutive steps. Thus for any H consecutive steps, there is at most W H vertices that topple.

We can show by contradiction that each vertex v topples at some step. For any vertex v, either all (v + k P 2 ) k∈Z topples or there exists k v such that exactly (v + k P 2 ) k≥kv do not topple. If not all vertices topples at some step, we can define k W H = max v k v where v runs over the subset S of the vertices of [1, W ] × [1, H] for which k v is defined and S := [1, W ] × [1, H] \ S the complement subset. By definition, in the half-plane H >y 0 +k W,H H , the subsets (S + k P 2 ) k≥k W H never topples and all other vertices in (S + k P 2 ) k≥k W,H topples. From this, we also deduce the existence of a step t W,H such that no vertex in the half plane H ≤y 0 +k W,H H can legally topple at steps t ≥ t W,H . For steps t ≥ t W,H , only vertices in (S + k P 2 ) k≥k W,H periodically topples. This describes an (infinite) sequence of legal topplings toward a stable configuration where (S + k P 2 ) k≥k W H did not topple, which is a contradiction with the recurrence of η (so S = ∅).

Hence, let T be the first step when all vertices of [1, W ] × [1, H] has been toppled. Since there is at most W H vertices that topple at step T , the sequence of toppling that destabilizes the last untoppled vertex of [1, W ] × [1, H] starts on line y = y 0 + T , is at most of length W H and ends to a line below y = y 0 + H so T ≤ H + W H. So the criterion is finite and effective.

Moreover, from steps T + 1 to T + H, we observe the ultimately periodic behaviour of the Dhar criterion: W H vertices topple, all having distinct copies in the fundamental domain [

1, W ] × [1, H].
In addition, for k ≤ H, the half-plane H ≤y 0 +k has toppled at step T so forcing toppling of this half-plane, instead of H ≤ y 0 , results after T -k steps in the same set of toppled vertices. So the ultimately periodic behaviour of Dhar criterion starting either by H ≤y 0 or H ≤y 0 +k are the same.

The proof induces a bijection with a subset of cycle rooted spanning forests [START_REF] Kenyon | Determinantal spanning forests on planar graphs[END_REF] on the toroidal grid: from step T + 1 to step T + H, we attach to each vertex and its repetitions the edge that destabilizes it. In order to respect the order ≺ s on the cylinder, it is enough to process the toppling in only one repetition of each connected component at a given step. The result is a cycle rooted spanning forest of the toroidal grid with non contractible cycles. These cycles correspond to infinite periodic branches in the plane whose slopes are not orthogonal to s.

Theorem 1. Let s be a sink. The set of recurrent biperiodic configuration of pattern size W × H on Z 2 is in bijection with the set of cycle rooted spanning forests of the toroidal grid

W × H whose slope (a, b) is such that a • s x + b • s y = 0.
We assume in the next part that W, H ≥ 2. We call NCRSF a non-contractible cycle rooted spanning forests. We want to count the recurrent configurations in a direction s. By definition of homology, the image of one copy of an (oriented) cycle of homology class (i, j) ∈ Z 2 starting at (x, y) into the plane ends at (x + jW, y + iH). Kenyon [START_REF] Kenyon | Determinantal spanning forests on planar graphs[END_REF] gives the following determinantal formula NCRSFs γ 2 -z i w j -z -i w -j k = det ∆ where (i, j) is the homology class of the cycles of γ and k their number, z is the monodromy of cycles with homology class (1, 0), w is the monodromy of cycles with homology class (0, 1), ∆ is the Laplacian on the line bundle with connection 1 over all oriented edges except those crossing the blue (connection w or w -1 ) and red sides (connection z or z -1 ) of a fix fundamental rectangle as in figure 2. Then ∆(v) = u→v v -Φ u→v u where Φ u→v is the connection value on edge u → v.

Due to planarity of the grid, a cycle cannot cross itself on the toroidal grid. Thus the homology class (i, j) of a cycle in this graph has gcd(i, j) = 1. Moreover the length of such a cycle is at least |W j| + |Hi|. That gives the first part of the following proposition. Proposition 2. Given γ a NCRSF on a toroidal grid W × H, if γ has k cycles with homology class (i, j) then i and j are co-prime and |kjW | + |kiH| ≤ W H. Reciprocally for any (i, j) ∈ Z 2 co-prime and any k > 0 such that |kjW | + |kiH| ≤ W H, there exists a NCRSF of parameters (i, j, k).

The second part of this proposition is achieved by k repetitions of a digital line from Bresenham's line algorithm (with corners).

We denote Q i,j,k = 2 -z i w j -z -i w -j k for any k > 0 and any (i, j) ∈ S = {(0, 1)} ∪ {(a, b) | a > 0 and gcd(a, b) = 1}, the (Q i,j,k ) i,j,k are linearly independent. So the number of NCRSFs is the sum of the coefficients (α i,j,k ) i,j,k of det ∆ in the decomposition in (Q i,j,k ) i,j,k : det ∆ = i,j,k α i,j,k Q i,j,k . One can show that α i,j,k = α i,-j,k for i > 0.

Proposition 3. The number of biperiodic recurrent configurations in direction s of size W × H is (i,j,k)∈S s α i,j,k where S s = {(i, j, k) | (i, j) ∈ S, k > 0, |kjW | + |kiH| ≤ W H, iW s x + jHs y = 0}. This formula enhances the counting the recurrent configurations in a direction that was limited to enumeration. Some explicit results are given on Figure 3. Some extra results up to m × n with m, n ≤ 9 can be found at https://www.labri.fr/perso/hderycke/biperiodic_recurrent/.
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 1 Figure 1: Weak Dhar criterion after step t, C 1 and C 2 are next connected components
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 3 Figure 2: Connection Φ on the torus W × H