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BPHZ renormalisation and vanishing subcriticality
asymptotics of the fractional Φ3

d model

Nils Berglund and Yvain Bruned
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Abstract

We consider stochastic PDEs on the d-dimensional torus with fractional Laplacian of
parameter ρ ∈ (0, 2], quadratic nonlinearity and driven by space-time white noise. These
equations are known to be locally subcritical, and thus amenable to the theory of regularity
structures, if and only if ρ > d/3. Using a series of recent results by the second named author,
A. Chandra, I. Chevyrev, M. Hairer and L. Zambotti, we obtain precise asymptotics on the
renormalisation counterterms as themollification parameter ε becomes small and ρ approaches
its critical value. In particular, we show that the counterterms behave like a negative power of
ε if ε is superexponentially small in (ρ−d/3), and are otherwise of order log(ε−1). This work
also serves as an illustration of the general theory of BPHZ renormalisation in a relatively
simple situation.

2010 Mathematical Subject Classification. 60H15, 35R11 (primary), 81T17, 82C28 (secondary).
Keywords and phrases. Stochastic partial differential equations, regularity structures, fractional Laplacian,
BPHZ renormalisation, subcriticality boundary.

1 Introduction

The last years have witnessed tremendous progress in the theory of singular stochastic partial
differential equations (SPDEs). The theory of regularity structures, introduced by Martin Hairer
in [19], provides a functional analysis framework in which many so-called locally subcritical sin-
gular SPDEs can be shown to admit (local in time) solutions. The theory has been successfully
applied to a number of different SPDEs, including the KPZ equation [18, 27, 30] and its generali-
sations to polynomial nonlinearities [25] and non-polynomial nonlinearities [29], the dynamic Φ4
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model [19, 28], the continuum parabolic Anderson model [22], the Navier–Stokes equation [34],
the motion of a random string on a curved surface [20, 5], the FitzHugh–Nagumo SPDE [2], the
dynamical Sine–Gordonmodel [26, 9], the heat equation driven by space-time fractional noise [14],
reaction-diffusion equations with a fractional Laplacian [3], and the multiplicative stochastic heat
equation [24, 23].

A limitation of the theory introduced in [19] is that, while it provides function spaces allowing
to prove fixed-point theorems in a very general setting, the applications to SPDEs also require a
renormalisation procedure, which had to be carried out in an ad hoc manner in each case. This
situation has been remedied in a series of papers by the second named author, Ajay Chandra, Ilya
Chevyrev, Martin Hairer and Lorenzo Zambotti [6, 8, 4]. These works provide a kind of black box,
allowing to automatically renormalise any locally subcritical SPDE. Owing to its great generality,
however, this theory is rather abstract, making it somewhat difficult of access.
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A first goal of the present work is to illustrate the general theory in one of the simplest possible,
yet interesting examples. This example is the Φ3 model with fractional Laplacian ∆ρ/2 on the
d-dimensional torus, driven by space-time white noise ξ, whose equation before renormalisation
reads

∂tu−∆ρ/2u = u2 + ξ . (1.1)
A family of SPDEs with fractional Laplacian, including the above example, was considered in [3].
Results in that work imply in particular that the above equation is locally subcritical if and only if
ρ > ρc = d

3 . As the parameter ρ of the fractional Laplacian decreases towards its critical value
ρc, the size of the model space describing a regularity structure for (1.1) diverges exponentially
fast in 1/(ρ − ρc). As we shall see, this has an effect on the renormalisation procedure for the
equation, since the counterterms entering this procedure involve sums over elements of the model
space having negative degree (see [6, Thm. 2.21] and (3.3) below). This should be a general
phenomenon for models approaching the subcriticality threshold.

The fact that the nonlinearity in (1.1) is quadratic entails a number of significant simplifications
when applying the general theory of [6, 8, 4], owing to the fact that the model space can be
described precisely in terms of binary trees. This considerably simplifies a number of combinatorial
arguments. Throughout the analysis, we provide numerous examples, which should help to illustrate
the general abstract theory.

A second goal of this work is to analyse in detail the limit ρ ↘ ρc, i.e. when approaching the
threshold where local subcriticality is lost. The hope is that this will improve the understanding
of the role of subcriticality in renormalisation of singular SPDEs and the theory of regularity
structures. The renormalisation procedure requires to modify the SPDE (1.1) by mollifying space-
time noise ξ on scale ε, and adding ε-dependent counterterms to the equation. Our main result,
Theorem 2.1, analyses the asymptotic behaviour of these counterterms as a function of ε and ρ−ρc.
We obtain that if ε is superexponentially small in terms of ρ − ρc, the counterterms scale like a
negative power of ε, while for larger ε, they have order log(ε−1).

Note that fractional models near criticality have been studied before, in particular in the context
of constructive Quantum Field Theory (QFT). For instance, the large-volume (infrared) behaviour
of the static Φ4

4−δ model has been studied in [7], by modifying the Laplacian of the Φ4
4 model in

order to make it subcritical. The picture that emerges from a renormalisation group (RG) analysis
is that while for δ = 0, the RG flow converges to a Gaussian fixed point, for δ > 0, this fixed
point becomes unstable, and a non-Gaussian fixed point appears. Recently, in [1] Aizenman and
Duminil–Copin proved that by taking both the large-volume and zero-spacing (ultraviolet) limit of
a lattice model converging to the Φ4

4 model, one converges to a model with Gaussian fluctuations.
It is thus of interest to try to connect what is known on static models at and near criticality, with
what happens to the renormalisation procedure in near-critical dynamical models.

A final motivation for this article is that the equation (1.1) is interesting in its own right. For
instance, it approximates the Fisher–KPPequation for population dynamics [16, 31] for intermediate
population values. Note that the real Fisher–KPP equation is semi-linear, as it contains a factor
of the form

√
u(1− u) in front of the noise ξ. It is currently not clear if such a nonlinearity

could be handled with the help of regularity structures. However, an understanding of the equation
with additive noise may provide some useful first insights on its dynamics. See also [3] for
further motivation on considering SPDEs with fractional Laplacians as a way to regularise coupled
SPDE–ODE systems.

The remainder of this article is organised as follows. Section 2 gives a detailed description of
the model, and states the main result, Theorem 2.1, on the asymptotic behaviour of counterterms.
Section 3 summarises the construction of themodel space, and themain results from [6, 8, 4] needed
to compute the renormalised equation. The most difficult step in applying the general theory is to
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compute the expectation of the renormalised canonical model elements, and is presented in the next
three sections. Section 4 describes how these expectations can be represented in terms of Feynman
diagrams (see Definition 4.11). Section 5 introduces the notions of forests (see Definition 5.5) and
Hepp sectors (see Definition 5.11), needed to apply ideas from BPHZ renormalisation theory, as
explained in [21] in the Euclidean case. Most of our formalism is taken from [21], which transposes
the algebraic construction in [6] and the proof of the renormalised model convergence in [8] to
Feynman diagrams. It has a strong connection with the algebraic structures observed by Connes
and Kreimer in [12, 13]. The main difference comes from the presence of Taylor expansions,
which are encoded at the level of the diagrams by changing decorations. In our model, we can to
a large extent circumvent these Taylor expansions and thus be closer to the extraction-contraction
renormalisation procedure on Feynman diagrams. The actual bounds on the expectations are then
obtained in Section 6, and the asymptotic analysis completing the proof of the main result is given
in Section 7.

Acknowledgments

We would like to thank Christian Kuehn for many useful discussions. Part of this work was
carried out while the authors attended the programme “Scaling limits, rough paths, quantum field
theory” (SRQ) held at the Isaac Newton Institute (INI) in Cambridge. We would like to thank
the organisers of this trimester for putting together a stimulating programme, and the members of
INI for providing a friendly working atmosphere. NB thanks the School of Mathematics at the
University of Edinburgh, and YB thanks the Institut Denis Poisson at the University of Orléans
for hospitality during mutual visits. Finally, we thank two anonymous referees for their remarks,
which led to an improvement in the presentation.

2 Model and results

We are interested in the SPDE
∂tu−∆ρ/2u = u2 + ξ (2.1)

for the unknown u = u(t, x) with (t, x) ∈ R+ × Td, where ∆ρ/2 = −(−∆)ρ/2 denotes the
fractional Laplacian with 0 < ρ 6 2, and ξ denotes space-time white noise. As such, this equation
is not well-posed in general, and a renormalisation procedure is required. The general form of the
renormalised equation is expected to be

∂tu−∆ρ/2u = u2 + C(ε, ρ, u) + ξε , (2.2)

where ξε = %ε ∗ ξ denotes space-time white noise mollified on scale ε, and C(ε, ρ, u) is a
counterterm which diverges as ε ↘ 0. Here %ε(t, x) = ε−(ρ+d)%(ε−ρt, ε−1x) for a smooth,
compactly supported mollifier % integrating to 1, and ∗ denotes space-time convolution.

The theory of regularity structures introduced in [19] applies, provided the equation (2.1) is
locally subcritical, or superrenormalisable in physicist’s terms. As shown in [3, Theorem 4.3],
(2.1) is locally subcritical for

ρ > ρc(d) =
d

3
.

Note that ρc < 2 imposes d 6 5. One can guess this threshold by a scaling argument. Indeed, let
us set ū(t, x) = λαu(λβt, λx) with λ > 0 and α, β ∈ R. Then, ū solves the equation

∂tū− λβ−ρ∆ρ/2ū = λβ−αū2 + λα+βξλβ ,λ = λβ−αū2 + λα+β
2
− d

2 ξ , (2.3)
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where the second equality is in law, and ξλβ ,λ denotes scaled space-time white noise given by

〈ξλβ ,λ, ϕ〉 = 〈ξ, ϕλβ ,λ〉 , ϕλ
β ,λ(t, x) =

1

λβ+d
ϕ

(
t

λβ
,
x

λ

)
for any compactly supported test function ϕ. Setting α = d−β

2 , the noise intensity is the same
in (2.1) and (2.3). Then one has β − α = 3

2β(ρ− ρc), so that

∂tū− λβ−ρ∆ρ/2ū = gū2 + ξ , g = λ
3
2
β(ρ−ρc) . (2.4)

The natural choice is then β = ρ, which corresponds to the fractional scaling s = (ρ, 1, . . . , 1)
(cf. (4.2)). One thus obtains two regimes:

• If ρ > ρc and we let λ tend to 0, then g tends to 0, i.e. (2.4) converges to a linear equation.
This is exactly the definition of local subcriticality.

• If ρ = ρc, we recover the non-linear equation we started with, i.e. the system is invariant
under this particular scaling. This is reminiscent of what is called a fixed point of the
Wilsonian renormalisation group in the language of physicists.

The counterterm C(ε, ρ, u) in (2.2) is expected to diverge also in the limit ρ ↘ ρc, and the
main goal of this work is to determine how C(ε, ρ, u) behaves as a function of ε and ρ − ρc for
small values of these parameters.

In order to formulate the main result, we define, for a ∈ R and k > 0, the threshold value

εc(ρ, a, k) = exp

{
− 1

ρ− ρc

[
log k + a− log(k + 1)

2k

]}
.

Then we set
εc(ρ, a) = εc(ρ, a, kmax) , ε̄c(ρ, a) = εc(ρ, a, k̄max) ,

where
kmax =

d− ρ
3(ρ− ρc)

and k̄max =
d− 2ρ

3(ρ− ρc)
.

The integer parts of kmax and k̄max measure the size of the model space of the regularity structure
(cf. [3, Thm. 4.18]), where kmax is associated with the part of the counterterm C(ε, ρ, u) that does
not depend on u, while k̄max determines its part linear in u. Note that εc(ρ, a) > ε̄c(ρ, a), and that
as ρ decreases to ρc, εc(ρ, a) and ε̄c(ρ, a) both go to zero superexponentially fast, namely like

exp

{
− 1

ρ− ρc

[
log

(
1

ρ− ρc

)
+O(1)

]}
. (2.5)

Finally, for η < 0, we denote by Cη(Td) the Besov–Hölder space defined as the set of distributions
ζ on Td such that λ−η|〈ζ,S λ

x ϕ〉| is bounded uniformly in λ ∈ (0, 1] for any x ∈ Td and any
compactly supported test function ϕ of class Cd−ηe, where (S λ

x ϕ)(y) = λ−dϕ(λ−1(y − x)).
Our main result is then the following.

Theorem 2.1 (Main result). There exist functions Ci(ε, ρ), i ∈ {0, 1}, such that for any initial
condition u0 ∈ Cη(Td) with η > −ρ

2 , the regularised renormalised SPDE (2.2) with counterterm

C(ε, ρ, u) = C0(ε, ρ) + C1(ε, ρ)u
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ρ− ρc

ε εc(ρ)

ε̄c(ρ)

C0 ' log(ε−1)

C1 ' log(ε−1)

C0 ' ε−(d−ρ)

C1 ' ε−(d−2ρ)

Figure 1: Behaviour of the counterterms as a function of ρ− ρc and ε. The small-ε asymptotics
of C0 changes on the blue curve ε = εc(ρ), while the asymptotics of C1 changes on the green
curve ε = ε̄c(ρ).

admits a sequence of local solutions uε, converging in probability to a limiting process as ε→ 0.
Furthermore, there exist constants a,M ,A0 and Ā0, all independent of ε and ρ, such that, writting
εc = εc(ρ, a) and ε̄c = ε̄c(ρ, a), the first counterterm satisfies

∣∣C0(ε, ρ)
∣∣ 6Mε−(d−ρ)

c

[
log(ε−1) +

1

ρ− ρc

(
εc

ε

)3(ρ−ρc)]
if ε > εc , (2.6)∣∣∣∣ C0(ε, ρ)

A0ε−(d−ρ)
− 1

∣∣∣∣ 6 M

ρ− ρc

(
ε

εc

)3(ρ−ρc)

if ε < εc ,

while the second counterterm satisfies

∣∣C1(ε, ρ)
∣∣ 6Mε̄−(d−2ρ)

c

[
log(ε−1) +

1

ρ− ρc

(
ε̄c

ε

)3(ρ−ρc)]
if ε > ε̄c , (2.7)∣∣∣∣ C0(ε, ρ)

Ā0ε−(d−2ρ)
− 1

∣∣∣∣ 6 M

ρ− ρc

(
ε

ε̄c

)3(ρ−ρc)

if ε < ε̄c .

Remark 2.2. Convergence is in probability in Cαs ([0, T ],Td), for any fixed T > 0, and for the
process stopped when its Cαs -norm exceeds a fixed large cut-off L. Here α is any real number
satisfying α < −1

2(d− ρ), and Cαs is the scaled Hölder–Besov space associated with the scaling of
the fractional Laplacian. This space is defined in an analogous way as Cα(Td), but with a fractional
scaling given by (S λ

(t,x),sϕ)(s, y) = λ−(ρ+d)ϕ(λ−ρ(s− t), λ−1(y − x)). ♦
Remark 2.3. The condition η > −ρ

2 is related to the exponents of the space Dγ,η of modelled
distributions in which one solves a fixed-point equation, where γ measures the Hölder regularity,
while η controls the singularity at time zero (cf. [19, Def. 6.2]). Indeed, [19, Lemma 7.5] shows
that if u0 ∈ Cη(Td), then its convolution with the Green function of the fractional Laplacian can
be identified with an element ofDγ,η for every γ > max{η, 0}. The fixed point U cannot be more
regular than the fractional stochastic convolution, which has regularity α for any α < −1

2(d− ρ)
(cf. [2, Sect. 4.1]). If U ∈ Dγ,η has regularity α < 0, then U2 has regularity ᾱ = 2α, while [19,
Prop. 6.12] shows that U2 ∈ Dγ̄,η̄ with γ̄ = γ + α and η̄ = η + min{α, η}. In order to
apply [19, Thm. 7.8] yielding existence of a unique fixed point, one needs to fulfill the condition
min{η̄, ᾱ} > −ρ, which holds if −ρ

2 < η 6 α. (The other required condition η < min{η̄, ᾱ}+ ρ
is automatically satisfied if η < 0.) ♦

In less technical terms, the first estimate in Theorem 2.1 shows that, up to error terms which
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are small unless ε is close to εc,

C0(ε, ρ) '

{
ε
−(d−ρ)
c log(ε−1) if ε > εc ,
A0ε

−(d−ρ) if ε < εc .

In the same spirit, the second counterterm satisfies

C1(ε, ρ) '

{
ε̄
−(d−2ρ)
c log(ε−1) if ε > ε̄c ,
Ā0ε

−(d−2ρ) if ε < ε̄c .

We thus obtain a saturation effect at values of the mollification parameter ε which are not superex-
ponentially small: for ε larger than its critical value, the counterterms are of order log(ε−1), with
a prefactor becoming very large when ρ approaches ρc (Figure 1). For superexponentially small
ε, on the other hand, the counterterms diverge respectively like ε−(d−ρ) and ε−(d−2ρ). This is due
to the fact that both counterterms can be written as the sum of a large number of contributions.
Only one of these terms, which has the strongest singular behaviour as ε goes to 0, dominates for
superexponentially small ε. The vast majority of the terms diverge only logarithmically, but their
number is large enough for them to dominate when ε is larger than its critical value.

The constants A0 and Ā0 can be characterised more precisely. Assuming that the mollifier has
the form %ε(t, x) = %ε0(t)%ε1(x) with %ε0(t) = ε−ρ%0(ε−ρt), %ε1(x) = ε−d%1(ε−1x), and %1 even,
we have

A0 = −1

2
lim
ε→0

εd−ρ(%ε1 ∗x Gρ)(0) = −1

2
lim
ε→0

∫
Rd
%1(x)εd−ρGρ(εx) dx , (2.8)

whereGρ = (∆ρ/2)−1 is the Green function of the fractional Laplacian and ∗x denotes convolution
in space. Scaling properties of Gρ (see for instance [32, Section 4]) imply that A0 is indeed finite.
We also have

Ā0 = −2 lim
ε→0

εd−2ρ

∫
Rd+1

Pρ(t, x)(Gερ ∗x P̃ ερ )(|t|, x) dtdx , (2.9)

where Pρ is the fractional heat kernel, Gερ = %ε1 ∗x Gρ, and P̃ ερ = Pρ ∗ %ε ∗ %ε.
The main insight provided by Theorem 2.1 is as follows. The usual way of renormalising

the singular SPDE (1.1) is to fix ρ > ρc, and then to take the limit ε → 0. Our result then
shows that a well-defined limit exists, provided one adds counterterms to the equation that behave
logarithmically in ε as long as ε is not too small, but ultimately diverge like a negative power
of ε. On the other hand, one could also fix a small positive value of ε and look at the limit
ρ↘ ρc. In physical terms, this would model a situation where space-time is discrete at very small
scales, perhaps defined by Planck’s scale. Since discrete models are usually harder to solve than
continuous ones, the vanishing ε limit can be considered as an idealised mathematical object that
really only approximates the real system. Note that for ε > 0, the SPDE is no longer singular,
and local existence of solutions does not pose a problem at all. What our result says in this case,
is that in order to have a chance to be close, for small ε, to a well-defined continuous model, one
should add counterterms of order log(ε−1), but which diverge superexponentially fast in ρ− ρc in
the sense of (2.5).

A more ambitious goal would be to look at possible limiting dynamics when ε and ρ − ρc

simultaneously converge to zero, along some path in the (ρ, ε) plane, cf. Figure 1. There are two
reasons why obtaining such a convergence result is currently out of reach. The first reason is
that when changing ρ, one changes both the model space and the space of modelled distributions
in which one tries to solve a fixed-point equation, so that the general theory of convergence in
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regularity structures does not immediately apply. The second, more serious reason is that as
ρ↘ ρc, the number of symbols in the model space having negative degree diverges exponentially.
However, many arguments in the theory of regularity structures only apply when the number of
these symbols remains bounded. This fact is then crucial in showing that the sequence of ε-
dependent models converges in an appropriate topology to a well-defined limiting model. It is not
clear at this point whether a similar convergence argument can be obtained when the number of
symbols having negative degree is unbounded.

Before moving to the proof of Theorem 2.1, we list some extensions and interesting open
questions related to our results.

• Obtaining a matching lower bound on the counterterms in the regime of large ε seems out
of reach at this stage, because of the existence of cancellations in the sums defining these
counterterms. However, as explained in Section 7.3, one can show that there exist terms in
the sum defining C0(ε, ρ) which have the same asymptotic behaviour as the upper bound
obtained above. Therefore, the counterterm can only be of smaller order in case unexpected
cancellations occur in this sum.

• One can extend the results to the following generalisation of (1.1):

∂tu− γ∆ρ/2u = gu2 + σξ .

Its renormalised version reads

∂tu− γ∆ρ/2u = gu2 + Cγ,g,σ(ε, ρ, u) + σξε ,

where
Cγ,g,σ(ε, ρ, u) = Cγ,g,σ0 (ε, ρ) + Cγ,g,σ1 (ε, ρ)u .

One can then show (see Section 7.4) that

∣∣Cγ,g,σ0 (ε, ρ)
∣∣ . (g2σ2

γ3

)kmax gσ2

γ
Ĉ0(ε, ρ) if ε > εc ,

Cγ,g,σ0 (ε, ρ) =
gσ2

γ

[
C0(ε, ρ) +O

(
g2σ2

γ3

(
ε

εc

)3(ρ−ρc))]
if ε < εc , (2.10)

where Ĉ0(ε, ρ) denotes the upper bound on |C0(ρ, ε)| in (2.6), and wewrite a(ε, ρ) . b(ε, ρ)
if there exists a constantM > 1, independent of ε and ρ, such that a(ε, ρ) 6Mb(ε, ρ) holds
for ε and ρ− ρc small enough. In a similar way, we have

∣∣Cγ,g,σ1 (ε, ρ)
∣∣ . (g2σ2

γ3

)kmax g2σ2

γ2
Ĉ1(ε, ρ) if ε > ε̄c ,

Cγ,g,σ1 (ε, ρ) =
g2σ2

γ2

[
C1(ε, ρ) +O

(
g2σ2

γ3

(
ε

ε̄c

)3(ρ−ρc))]
if ε < ε̄c , (2.11)

where Ĉ1(ε, ρ) denotes the upper bound on |C1(ρ, ε)| in (2.7). Note that for ε > εc, the
important parameter is g2σ2γ−3. In particular, (2.5) implies

|Cγ,g,σ0 (ε, ρ)| . gσ2

γ
exp

{
d− ρ
ρ− ρc

[
log

(
g2/3σ2/3

γ(ρ− ρc)

)
+O(1)

]}
.

A similar relation holds for Cγ,g,σ1 (ε, ρ) for ε > ε̄c. Thus if γ, g and σ are fixed, the
counterterms diverge in the same way as for γ = g = σ = 1 as ρ ↘ ρc. However, if γ, g
and σ are allowed to depend on ρ, new regimes can occur.
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• The above choice of counterterms is not unique. In this work, we have chosen the BPHZ
renormalisation, which is natural in some sense. However, as shown in [6], the set of all
potential choices of counterterms is parametrised by a group, called the renormalisation
group. This group can be very large, since its order is equal to the number of symbols
in the model space having negative degree. However, in our case only a two-parameter
family of counterterms really matters: this family is obtained by adding constants to both
C0(ε, ρ) and C1(ε, ρ). It is interesting to note that a one-parameter family of these choices
of counterterms can be realised by a simple shift v = u+ k of the random field, where k is
a constant. Indeed, the equation for v reads

∂tv −∆ρ/2v = v2 +
(
C0(ε, ρ)− C1(ε, ρ)k + k2

)
+ (C1(ε, ρ)− 2k)v + ξε .

In fact, one can observe that this is nothing but the equation obtained by applying the BPHZ
renormalisation to the equation

∂tv −∆ρ/2v = v2 − 2kv + k2 + ξ .

Indeed, the term C1(ε, ρ)k comes from the fact that almost full binary trees (as defined in
Section 3 below) can be generated by kv, and they will come with a factor k. Note that
time-dependent shifts are currently out of the scope of the general theory, though one may
expect that they lead to time-dependent renormalisation constants.

• A common way to analyse the effect of the interaction term as ρ↘ ρc is to study moments
of the solution of the form

E
{
u(t, x1)u(t, x2)u(t, x3)

}
.

So far, such moments have been computed only for very specific models such as the two-
dimensional parabolic Anderson model, see [17]. The main issue of such an approach
is that in our case, the solutions are only local in time. However, it may be possible to
obtain moment estimates for the process stopped when its Hölder norm exceeds some large
threshold, and analysing their behaviour as ε→ 0 and ρ↘ ρc may yield information on the
potential convergence to a non-trivial model.

3 Model space and renormalised equation

In order to apply the theory of regularity structures, the first step is to introduce a model space.
This is a graded vector space spanned by abstract symbols, which allow to represent solutions
of (2.1) by an abstract fixed-point equation of the form

U = Iρ(Ξ + U2) + P (U) . (3.1)

Here U represents the solution, Ξ stands for space-time white noise, Iρ is an abstract integration
operator standing for convolution with the fractional heat kernel, and P (U) is a polynomial part,
required by a recentering procedure.

More precisely, let s = (ρ, 1, . . . , 1) ∈ Rd+1
+ be the scaling associated with the fractional

Laplacian. Then we construct a set of symbols τ , each admitting a degree |τ |s ∈ R, in the
following way.

• For each multiindex k = (k0, . . . , kd) ∈ Nd+1
0 , we define the polynomial symbol Xk =

Xk0
0 . . . Xkd

d , which has degree |Xk|s = |k|s = ρk0 + k1 + · · · + kd. In particular, X0 is
denoted 1 and has degree |1|s = 0.
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• The symbol Ξ representing space-time white noise has degree |Ξ|s = −1
2(ρ+d)−κ, where

κ > 0 is arbitrarily small.
• If τ, τ ′ are two symbols, then ττ ′ is a new symbol of degree |ττ ′|s = |τ |s + |τ ′|s.
• Finally, if τ is a symbol which is not of the form Xk, then Iρ(τ) denotes a new symbol of
degree |τ |s+ρ, while for k ∈ Nd+1

0 , ∂kIρ(τ), stands for a new symbol of degree |τ |s+ρ−|k|s
(where we use the multiindex notation ∂k = ∂k0

t ∂
k1
x1
. . . ∂kdxd ).

It is convenient to represent symbols by trees, in which edges stand for integration operators
Iρ, leaves stand for noise symbols Ξ, and multiplication of symbols is represented by joining them
at the root. For instance,

= Iρ(Ξ)2 , =
[
Iρ
(
Iρ
(
Iρ(Ξ)2

)
Iρ(Ξ)

)]2
.

Multiplication by a polynomial symbol Xk is represented by adding a node decoration k to the
relevant node of the tree, while derivatives ∂`Iρ are denoted by edge decorations `. Thus for
instance

k
`

= Iρ(Xk∂`Iρ(Ξ)) .

The degree of a tree with p leaves (for the noise), q edges (for integration operators), node
decorations of total exponent k and edge decorations of total exponent ` is given by

|τ |s =

(
−ρ+ d

2
− κ
)
p+ ρq + |k|s − |`|s . (3.2)

Not all symbols are needed to represent the abstract fixed-point equation (3.1). In fact, for its
right-hand side, we only need the smallest set T such that

• Xk ∈ T for any k ∈ Nd+1
0 ,

• Iρ(Ξ) ∈ T ,
• if d 6 2 and τ, τ ′ ∈ T , one has Iρ(ττ ′) ∈ T ,
• if d > 2 and τ, τ ′ ∈ T are such that ττ ′ /∈ {Xk∂xiIρ(τ̄), ∂xiIρ(τ̄)∂xjIρ(τ̄ ′), τ̄ , τ̄ ′ ∈
T, k ∈ Nd+1

0 , 1 6 i, j 6 d}, then Iρ(ττ ′) ∈ T and ∂xiIρ(ττ ′) ∈ T .
We denote by T the linear span of T . It is a consequence of local subcriticality that T has
only finitely many symbols of degree smaller than any α < ∞ (see [19, Lemma 8.10]). The
difference between d 6 2 and d > 2 is due to the fact that for d 6 2, one has ρ < 1 when ρ
is close to ρc = d

3 6
2
3 . This means that the abstract operator ∂xiIρ decreases the degree of the

tree. Therefore, if we were to keep this rule, we would break subcriticality. For both cases, we
have exhibited rules which are complete in the sense that they are stable under the action of the
renormalisation.

Let T− ⊂ T denote the set of symbols/decorated trees of negative degree, and T− (resp. T̂−) the
linear span of the forests composed of elements in T− (resp. T ). On T− we define a commutative
and associative forest product. The product of two forests τ1 and τ2 is simply the forest containing
all the trees of both forests, where the same tree may occur several times. The neutral element for
this product is the empty forest, that we will denote by 1.

The structure of the trees in T− will be very important later on to control the renormalisation
constants, which will be expressed in terms of sums over all trees of negative degree. We know
from [3, Prop. 4.17] that trees in T− are necessarily either full binary trees (every vertex has either
two children or no child), in which case q = 2p−2, or full binary trees with one edge missing (then
q = 2p − 1), which we will call almost full binary trees. It turns out that for symmetry reasons,
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full binary trees can only contribute to the renormalized equation if they contain no nontrivial
node decoration, while the almost full ones can contain one node decoration k with |k|s = 1.
Furthermore, (3.2) implies that the latter can only have negative degree if d > 3.

The form of the renormalised equation can be determined using the methods introduced in [6]
and expanded in [4]. As shown in [4, Thm. 2.21], it has the form (2.2) with

C(ε, ρ, u) =
∑
τ∈TF−

cε(τ)
ΥF (τ)(u)

S(τ)
, (3.3)

where the terms ΥF (τ)(u) describe the effect of the nonlinearity F (u, ξ) = u2 + ξ, S(τ) is a
symmetry factor, and cε(τ) is the expectation of the element of the Wiener chaos represented by τ .

More precisely, the terms ΥF (τ)(u) are elementary differential operators defined recursively
by ΥF (Ξ)(u) = 1 and

ΥF

(
Xk

m∏
j=1

Iρ[τj ]
)

(u) =

m∏
j=1

ΥF (τj)(u)∂k∂mu u
2 . (3.4)

We write TF− for the subset of elements of T− for which ΥF is non-zero, see [4, Def. 2.12].
We could extend the previous definition of ΥF to elements of the form ∂xiIρ(τj) by using the
derivative ∂∂xiu. However, such a derivative applied to F gives zero, which is why we omit this
case in the definition of ΥF .

Lemma 3.1. Let ninner(τ) be the number of inner nodes of τ ∈ T−, where an inner node is any
node which is not a leaf (including the root). Then

ΥF (τ)(u) =


2ninner(τ) if τ is a full binary tree ,
2ninner(τ)u if τ is an almost full binary tree without decoration Xi ,
2ninner(τ)∂xiu if τ is an almost full binary tree with a decoration Xi .

Proof: By induction on the size of the tree. The base case follows from ninner(Ξ) = 0. If τ is a
full binary tree, then it can be written as τ = Iρ(τ1)Iρ(τ2), where each τi is a full tree with ni inner
nodes. Then (3.4) and the induction hypothesis yield ΥF (τ)(u) = 2n1+n2+1, where n1 + n2 + 1
is exactly the number of inner nodes of τ .

If τ is an almost full tree without decoration, there are two possibilities. Either τ = Iρ(τ1) is
a planted tree, where τ1 is a full tree with n1 inner nodes. Then (3.4) yields ΥF (τ)(u) = 2n1+1,
where n1 +1 is the number of inner nodes of τ . Or τ = Iρ(τ1)Iρ(τ2), where τ1 is full with n1 inner
nodes, and τ2 is almost full with n2 inner nodes. In that case, we obtain ΥF (τ)(u) = 2n1+n2+1u,
where n1 + n2 + 1 is again the number of inner nodes of τ .

The case of an almost full tree with decoration Xi is straightforward, because then ∂k = ∂xi
commutes with the other terms.

The second new quantity appearing in (3.3) is the symmetry factor S(τ). It is defined induc-
tively by setting S(Ξ) = 1, while if τ is of the form Xk

(∏m
j=1 Iρ[τj ]βj

)
with τi 6= τj for i 6= j,

then

S(τ) = k!
( m∏
j=1

S(τj)
βjβj !

)
.

Lemma 3.2. Let nsym(τ) be the number of inner nodes of τ ∈ T− having two identical lines of
offspring. Then S(τ) = 2nsym(τ).
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Proof: First note that k! = 1 for any τ ∈ T−. Then the proof proceeds by induction on the size of
the tree, noting that m = 1 and β1 = 2 whenever two identical trees are multiplied, while m = 2
and β1 = β2 = 1 when two different trees are multiplied, and m = β1 = 1 when τ is a planted
tree of the form Iρ(τ1).

Remark 3.3. Note that S(τ) is exactly the order of the symmetry group of the tree, which is
generated by the nsym(τ) reflections around symmetric inner nodes. For instance, S(τ) = 2
for a comb tree, that is, a full binary tree in which each generation but the root has exactly two
individuals, i.e.

S( ) = S( ) = S( ) = S( ) = · · · = 2 .

Maximal symmetry is reached for regular trees, in which all individuals of the s first generations
have exactly two offspring, while those of the last generation have no offspring. For such a tree,
nsym(τ) = 2s − 1, and thus S(τ) = 22s−1, e.g.

S( ) = 2 , S( ) = 23 , S( ) = 27 . (3.5)
♦

The final new quantity appearing in (3.3) is the ε-dependent factor cε(τ), which is related to
the expectation of the model of τ . We analyse it in the next sections.

4 Canonical model

As in [19, Section 5], we decompose the fractional heat kernel Pρ as the sum

Pρ(z) = Kρ(z) +Rρ(z) , (4.1)

where Rρ is smooth and uniformly bounded in Rd+1, while Kρ is compactly supported and has
special algebraic properties. More precisely, let

|z|s = |z0|1/ρ +

d∑
i=1

|zi| (4.2)

be the pseudonorm associated with the fractional scaling. Then by [19, Lemma 5.5], we may
assume thatKρ is supported in the ball {z : |z|s 6 1}, thatKρ = Pρ in the ball {z : |z|s 6 1

2}, and
that Kρ integrates to zero all polynomials of degree up to 2. In addition, Kρ and its derivatives
satisfy a number of analytic bounds, cf. [3, (3.1)–(3.4)]. See also [10] for a derivation of the
associated Schauder estimate.

To any symbol τ ∈ T , we associate the canonical model Πετ , defined (cf. [19, proof of
Prop. 8.27]) by

(Πε1)(z) = 1 , (ΠεXi)(z) = zi , (ΠεΞ)(z) = ξε(z) , (4.3)

and extended inductively by the relations

(Πετ τ̄)(z) = (Πετ)(z)(Πετ̄)(z) ,

(Πε∂kIρτ)(z) =

∫
∂kKρ(z − z̄)(Πετ)(z̄) dz̄ . (4.4)
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We then set
E(τ) = E

{
(Πετ)(0)

}
,

which has in general the form of a Gaussian iterated integral. The computations will be greatly
simplified by removing symbols that are in the kernel of E. We denote by IE the ideal generated
by forests having at least one decorated tree τ satisfying one of the following properties:

• τ has an odd number of leaves;
• τ is a planted tree (i.e., of the form Iρ(τ ′) or ∂xiIρ(τ ′));
• τ has one Xi as a node decoration and no edge of the form ∂xiIρ.

Proposition 4.1. Let τ be a decorated tree. Then E(τ) = 0 whenever τ ∈ IE .

Proof: If τ has an odd number of leaves, then (Πετ)(0) is a centred Gaussian random variable. If
τ = Iρ(τ ′), thenE(τ) = Kρ ∗E(τ ′) = E(τ ′)Kρ ∗1 by translation invariance. The termKρ ∗1 is
equal to zero by definition of the kernelKρ (Kρ integrates polynomials to zero up to a certain order).
For the last case, the conclusion follows by noticing that (Πετ)(t,−x) = −(Πετ)(t, x).

4.1 Simplifying the twisted antipode

The ε-dependent coefficients cε(τ) are defined by

cε(τ) = E(Ã−τ) , (4.5)

where Ã− : T− → T̂− is a linear map encoding the renormalisation procedure, called the twisted
antipode. The twisted antipode is defined in [6, Proposition 6.6], in terms of a coaction ∆− :
T̂− → T− ⊗ T̂− which is close in spirit to the Connes–Kreimer extraction-contraction coproduct
introduced in [11]. However, the coaction ∆− is more complicated than the one used in [11],
because it acts on decorated trees, where the decorations encode multiplication by monomials and
derivatives appearing in Taylor expansions. This results in rather complicated expressions for the
twisted antipode, cf. Proposition 4.4 below. It turns out, however, that thanks to Proposition 4.1,
in our case many terms of Ã−τ give a vanishing contribution when applying E. The purpose of
this section is to derive the simplified expression (4.7) of Ã−, which only involves extraction of
subtrees and contractions, without any decorations. Furthermore, this simplified expression allows
to define Ã− in an iterative way, which does not involve the coaction ∆− at all.

In order to derive the simplified expression of the twisted antipode, we have to start with
the general construction given in [6]. The twisted antipode can be defined inductively by setting
Ã−(1) = 1 for the empty forest 1, and

Ã−τ = −M̂−(Ã− ⊗ id)(∆−τ − τ ⊗ 1) ,

cf. [6, Prop. 6.6]. Here M̂− is the multiplication operator (acting on forests), and τ is a tree of
negative degree (we have omitted the natural injection of T− into T̂− because we view T− as a
subset of T̂−). Elements of T̂− are of the form (F, n, e) where F is a forest with node set NF and
edge set EF , n : NF → Nd+1

0 represents the node decoration and e : EF → Nd+1
0 represents the

edge decoration. The forest product is defined by

(F, n, e) · (G, n̄, ē) = (F ·G, n̄ + n, ē + e) ,

where the sums n̄+ n and ē+ emean that decorations defined on one of the forests are extended to
the disjoint union by setting them to vanish on the other forest. Then the map ∆− : T → T− ⊗ T
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defined in [6] is given for T n
e ∈ T by

∆−T n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
(A, nA + πeA, e�EA)⊗ (RAT, [n− nA]A, e + eA) , (4.6)

where we use the following notations.
• Factorials and binomial coefficients are understood in multiindex notation, and the latter
vanish unless nA is pointwise smaller that n.

• For C ⊂ D and f : D → Nd+1
0 , f�C is the restriction of f to C.

• The first sum runs over A(T ), the set of all subtrees A of T , where A may be empty. The
second sum runs over all nA : NA → Nd+1

0 and eA : ∂(A, T ) → Nd+1
0 where ∂(A, T )

denotes the edges in ET \ EA that are adjacent to NA.
• We write RAT for the tree obtained by contracting the connected components of A. Then
we have an action on the decorations, in the sense that for f : NT → Nd+1

0 and A ⊂ T ,
one has [f ]A(x) =

∑
x∼Ay f(y), where x is an equivalence class of ∼A, and x ∼A y

means that x and y are connected in A. For g : ET → Nd+1
0 , we define for every x ∈ NT ,

(πg)(x) =
∑

e=(x,y)∈ET g(e).

Remark 4.2. The name “twisted antipode” is due to the fact that Ã− satisfies the relation

M̂−(Ã− ⊗ id)∆−τ = 1
?(τ)1 ,

where 1? is the projection on the empty forest and ∆− is a coaction (but not a coproduct). If
the spaces T− and T̂− were equal, (T−, ·,∆−,1,1?, Ã−) would be a Hopf algebra, similar to
the extraction-contraction Connes–Kreimer Hopf algebra of [11] which involves trees without
decoration. ♦
Example 4.3. Consider the case τ = (with zero node and edge decorations). Then

∆− = 1⊗ + 2
∑
k

1

k!k
⊗ k + ⊗ 1 ,

where the sum is over k ∈ Nd+1
0 such that the extracted symbol has negative degree. Here the first

term corresponds to extracting A = 1, the second one to A = , and the last one to A = .

Consider now a case when the tree has one node decoration, say τ = k . Then

∆−k = 1⊗ k +
∑
m

1

m!m
⊗ k

m +
∑
`

(
k

`

)
` ⊗ k − ` ,

where we first extract A = 1, then A = and finally A = . As before, the sums on ` andm are
restricted by the fact that the extracted symbol has to have a negative degree. ♣

As a short-hand notation for (4.6), we use

∆−T n
e =

∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
AnA+πeA

e ⊗RAT n−nA
e+eA

.

We extend this map to T̂− by multiplicativity regarding the forest product. Then one can turn this
map into a coproduct ∆− : T− → T− ⊗ T− and obtain a Hopf algebra for T− endowed with this
coproduct and the forest product see [6, Prop. 5.35]. The main difference here is that we do not
consider extended decorations, but the results for the Hopf algebra are the same as in [6].
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Using the definition of ∆−, one can write a recursive formulation for Ã− in which one doesn’t
see any tensor product. It is convenient to introduce the reduced coaction ∆̃−τ = ∆−τ − τ ⊗ 1−
1⊗ τ . Then, using Sweedler’s notation, if ∆̃−τ =

∑
(τ) τ

′ ⊗ τ ′′ one has

Ã−τ = −τ −
∑
(τ)

(Ã−τ ′)τ ′′ .

Proposition 4.4. For a decorated tree T n
e with negative degree, one has the relation

Ã−T n
e = −T n

e −
∑

A∈A?(T )

∑
eA,nA

1

eA!

(
n

nA

)
Ã−AnA+πeA

e · RAT n−nA
e+eA

,

where A?(T ) = A(T ) \ {1, T}.

Proof: The proof follows from a straightforward manipulation of the definitions:

Ã−T n
e = −M̂−(Ã− ⊗ id)(∆−T n

e − T n
e ⊗ 1)

= −M̂−(Ã− ⊗ id)(1⊗ T n
e )− M̂−(Ã− ⊗ id)∆̃−T n

e

= −T n
e −

∑
A∈A?(T )

∑
eA,nA

1

eA!

(
n

nA

)
Ã−AnA+πeA

e · RAT n−nA
e+eA

,

where we have treated separately the cases A = 1 and A = T .

The construction of the twisted antipode can be substantially simplified by using Proposi-
tion 4.1. Indeed, one has the property ∆−IE ⊂ IE ⊗ T̂− + T− ⊗ IE , which makes IE a kind of
biideal associated to ∆−. Therefore, ∆− is a well-defined map from T E− into T E− ⊗ T̂ E− , where
T E− = T−/IE and T̂ E− = T̂−/IE (in other words, if τ ′− τ ∈ IE , then ∆−(τ ′)−∆−(τ) belongs to
IE⊗T̂−+T−⊗IE , and thus equivalence classes modulo IE are mapped into equivalence classes).

In what follows, we will use the notation ÃE− when Ã− is considered as acting on T E− . As the
consequence of the biideal property, we get

Proposition 4.5. One has cε(τ) = E(Ã−τ) = E(ÃE−τ).

Proof: This follows from Proposition 4.1, which implies IE ⊂ kerE.

Proposition 4.6. If we consider ∆− as a map from T E− into T E− ⊗ T̂ E− , then it reduces to an
extraction-contraction map with some restrictions: for any tree τ ∈ T E− , we have

∆−τ =
∑

τ1·...·τn⊂Eτ
τ1 · . . . · τn ⊗ τ/(τ1 · . . . · τn) ,

where ⊂E means that we consider all the subforests τ1 · . . . · τn of τ such that τi ∈ TE− , and
τ/(τ1 · . . . · τn) denotes the tree obtained by contracting τ1, . . . , τn to a single node. Therefore,
one can define a multiplicative map ÃE− for the forest product as

ÃE−τ = −τ −
∑

1 τ1·...·τn Eτ
ÃE−(τ1 · . . . · τn) · τ/(τ1 · . . . · τn) . (4.7)

Proof: The simplification for ∆− and ÃE− comes from the precise description of T E− which is
composed of full and almost full binary trees. Therefore, ∆−τ does not contain any sum on the
node decorations and there remains only the extraction-contraction procedure.
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Remark 4.7. The very simple expression (4.7) for the twisted antipode is a direct consequence of
the fact that we may remove trees with oneXi as a node decoration. This expression may be useful
for numerical computations of the constants. ♦

Example 4.8. We have ÃE−( ) = − , since no nontrivial tree can be extracted. Therefore, we
obtain

ÃE− = − − 4 ÃE−( ) · − 4 ÃE−( · ) ·

= − + 4 · − 4 · · , (4.8)

where · ∈ T− and ∈ T̂− \ T−. ♣

4.2 From expectations to Feynman diagrams

We now discuss the computation of expectations E(τ), starting with some examples.
Example 4.9. It follows from (4.3) and (4.4) that

(Πε )(0) =

∫
Kρ(−z)ξε(z) dz =

∫
Kε
ρ(−z)ξ(dz) ,

where we have assumed that ξε = %ε ∗ξ for a scaled mollifier %ε, and definedKε
ρ = Kρ ∗%ε. Since

this is a centred Gaussian random variable, we have E( ) = 0, in accordance with Proposition 4.1.
It then follows from the defining property of space-time white noise that

E( ) = E
{

(Πε )(0)
}

= E
{

(Πε )(0)2
}

(4.9)

=

∫
Kε
ρ(−z1)Kε

ρ(−z2)E
{
ξ(dz1)ξ(dz2)

}
=

∫
Kε
ρ(−z1)2 dz1 . ♣

Example 4.10. A more complicated example is

E( ) = E
{

(Πε )(0)2
}

= E
{(∫

Kρ(−z)Kε
ρ(z − z1)Kε

ρ(z − z2)ξ(dz1)ξ(dz2) dz

)2}
.

Wick calculus implies that E{ξ(dz1)ξ(dz2)ξ(dz̄1)ξ(dz̄2)} is a sum of three terms, which can be
symbolised by the pairings

, and .

The first pairing yields (∫
Kρ(−z)Kε

ρ(z − z1)2 dz dz1

)2

= 0 ,

owing to the fact that Kρ integrates to zero. By symmetry, the second and third pairing yield the
same value, namely∫

Kρ(−z)Kε
ρ(z − z1)Kε

ρ(z̄ − z1)Kρ(−z̄)Kε
ρ(z − z2)Kε

ρ(z̄ − z2) dz dz̄ dz1 dz2 .
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It is convenient to represent such an integral graphically by the diagram

, (4.10)

where small black vertices denote integration variables, the large green vertex denotes the point 0,
solid arrows denote kernelsKρ, and broken arrows denote kernelsKε

ρ . The benefit of the graphical
representation (4.10), besides saving space, is that it will allow to represent in a more visual way
the extraction-contraction operations associated with renormalisation. ♣

These examples motivate the following definition, which is a particular case of [21, Def. 2.1].

Definition 4.11 (Feynman diagram). A Feynman diagram (or, more precisely, a vacuum diagram)
is a finite oriented graph Γ = (V ,E ), with a distinguished node v? ∈ V , and in which each edge
e ∈ E has a type t belonging to a finite set of types L. With each type t ∈ L, we associate a degree
deg(t) ∈ R and a kernelKt : Rd+1 \ {0} → R. The degree of Γ is defined by

deg(Γ) = (ρ+ d)(|V | − 1) +
∑
e∈E

deg(e) , (4.11)

where |V | denotes the cardinality of V and deg(e) = deg(t(e)). The value of the diagram
Γ = (V ,E ) is defined as

E(Γ) =

∫
(Rd+1)V \v?

∏
e∈E

Kt(e)(ze+ − ze−) dz , (4.12)

where each oriented edge is written e = (e−, e+) ∈ V 2, and zv? = 0.

The graph in (4.10) is an example of Feynman diagram, with a set of types L consisting of 2
types corresponding to the kernelsKρ andKε

ρ . We define their degrees by

deg( ) = deg( ) = −d . (4.13)

To each symbol τ ∈ T without decorations, we associate a linear combination of Feynman diagrams
in the following way.

Definition 4.12 (Pairing). Let τ ∈ T \ IE be a symbol without decorations, and denote its set of
leaves by Nτ . A pairing of τ is a partition P of Nτ into two-elements blocks. We denote the set
of pairings of τ by P(2)

τ . Then Γ(τ, P ) is the Feynman diagram obtained by merging the leaves of
a same block, and assigning to every edge adjacent to a former leaf the type Kε

ρ , and to all other
edges the typeKρ.

Proposition 4.13. Let τ ∈ T \ IE . If τ has p leaves and q edges, then each Γ(τ, P ) has q+ 1− p
2

vertices and q edges. Therefore,

deg(Γ(τ, P )) = |τ |s
∣∣∣
κ=0

(4.14)

holds for any P ∈ P(2)
τ . In addition, we have

E(τ) =
∑

P∈P(2)
τ

E(Γ(τ, P )) . (4.15)
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Proof: By (3.2), we have |τ |s = −p
2(ρ+ d) + ρq − pκ. Since τ is a tree, it has q + 1 nodes, and

therefore q + 1− p inner nodes. When contracting the p leaves pairwise, one obtains a Feynman
diagram with q edges of typeKρ orKε

ρ , and q+1−p+ p
2 vertices. Therefore its degree is given by

−qd+ (ρ+ d)(q − p
2), which agrees with (4.14). The relation (4.15) is then a direct consequence

of the rules (4.4) defining the model and Wick calculus.

The following simple result shows that we can limit the analysis to Feynman diagrams which
are at least 2-connected.

Lemma 4.14. If Γ is 1-connected (i.e., if one can split Γ into two disjoint graphs by removing one
edge), then E(Γ) = 0.

Proof: IfΓ = (V ,E ) is 1-connected, then there exist two vertex-disjoint subgraphsΓ1 = (V1,E1)
and Γ2 = (V2,E2) such that V = V1∪V2 and E = E1∪E2∪{e0}. By a linear change of variables,
we may arrange that e0 = (v?, v1) where v1 ∈ V1. We thus obtain

E(Γ) =

∫
(Rd+1)V1

Kt(e0)(z1)
∏
e∈E1

Kt(e)(ze+ − ze−) dz E(Γ2) .

Performing the change of variables zv = z̄v + z1 for all v ∈ V1 \ {v1}, we can factor out the
integral over z1. This integral vanishes by construction.

4.3 Simplification rules for Feynman diagrams

Integrals of the type encountered above can be somewhat simplified by using the fact that Pρ is the
kernel of a Markov semigroup, describing a rotationally symmetric ρ-stable Lévy process (see for
instance [32]). While this is not essential for the general argument, it reduces the size of diagrams
and thus improves the graphical representation. It also allows to compute the explicit expressions
for the renormalisation constants A0 and Ā0 given in (2.8) and (2.9).

Lemma 4.15. Assume the scaled mollifier has the form %ε(t, x) = ε−(ρ+d)%(ε−ρt, ε−1x), where
%(t, x) = %0(t)%1(x) is even in x, supported in a ball of scaled radius 1, and integrates to 1. Then
Kε
ρ satisfies the following properties for all (t, x) ∈ Rd+1:
1. Non-anticipation: Kε

ρ(t, x) = 0 for t 6 −ερ;
2. Spatial symmetry: Kε

ρ(t,−x) = Kε
ρ(t, x);

3. Chapman–Kolmogorov equation: there exists a function Rε1 : Rd+2 → R, uniformly
bounded and integrable in its first two arguments, such that∫

Kε
ρ(t, x− y)Kε

ρ(s, y) dy = K̃ε
ρ(t+ s, x) +Rε1(t, s, x) , (4.16)

where K̃ε
ρ = Kε

ρ ∗ %ε = Kρ ∗ %ε ∗ %ε is a kernel with a different mollifier;
4. Green function: there exists a uniformly bounded function Rε2 : Rd+1 → R such that∫ ∞

t
Kε
ρ(s, x) ds = −(Gρ ∗x P ερ )(t, x) +Rε2(t, x) , (4.17)

where Gρ = (∆ρ/2)−1 is the Green function of the fractional Laplacian, P ερ = Pρ ∗ %ε and
∗x denotes convolution in space.
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Proof: The first two properties follow immediately from the definition. For the third one, we use
the Chapman–Kolmogorov relation Pρ(t, ·) ∗x Pρ(s, ·) = Pρ(t+ s, ·) to obtain

Kρ(t, ·) ∗x Kρ(s, ·) = Kρ(t+ s, ·) +Rρ(t+ s, ·)
−Kρ(t, ·) ∗x Rρ(s, ·)−Rρ(t, ·) ∗x Kρ(s, ·)−Rρ(t, ·) ∗x Rρ(s, ·) .

Using the fact that Rρ is bounded and Kρ is integrable, one obtains that all terms involving Rρ
are bounded. The relation (4.16) then follows upon convolving twice with %ε. The last relations
follows from the fact that

∆ρ/2

∫ ∞
t

Pρ(s, ·) ds =

∫ ∞
t

∆ρ/2 es∆
ρ/2

ds = es∆
ρ/2

∣∣∣∣∞
t

= −Pρ(t, ·) .

Convolving with Gρ, we obtain∫ ∞
t

Pρ(s, x) ds = −Gρ ∗x Pρ(t, x) .

The result then follows by decomposing Pρ on the left-hand side into Kρ + Rρ, and convolving
with %ε.

Applying these properties to (4.9), we obtain

E( ) =

∫∫
Kε
ρ(−t,−x)Kε

ρ(−t, x) dx dt =

∫
K̃ε
ρ(−2t, 0) dt+O(1) =

1

2
Gερ(0) +O(1) ,

where Gερ = %ε1 ∗x Gρ, O(1) denotes a constant bounded uniformly in ε, and we used the fact that
Pρ(0, x) = δ(x). Note that this implies the expression (2.8) for the counterterm associated with

. The expression (2.9) for Ā0 is obtained by a similar argument applied to the element .

Lemma 4.16. There exists a uniformly bounded function Rε3 : R2(d+1) → R such that∫
Kε
ρ(z1 − z)Kε

ρ(z2 − z) dz =

∫
Kε
ρ(z − z1)Kε

ρ(z − z2) dz

= −1

2
(Gερ ∗x P̃ ερ )(|t1 − t2|, x1 − x2) +Rε3(z1, z2) , (4.18)

where P̃ ερ = P ερ ∗ %ε.

Proof: The first two terms in (4.18) are equal, as can bee seen by a change of variables z 7→ −z.
Using (4.16) and setting s = t1 + t2 − 2t, we obtain that∫

Kε
ρ(z1 − z)Kε

ρ(z2 − z) dz

=

∫
Kε
ρ(t1 − t, x1 − x)Kε

ρ(t2 − t, x2 − x)1{t<t1∧t2} dt dx+Rε3,1(z1, z2)

=

∫
Kε
ρ(t1 + t2 − 2t, x1 − x2)1{t<t1∧t2} dt+Rε3,2(z1, z2)

=
1

2

∫ ∞
|t1−t2|

Kε
ρ(s, x1 − x2) ds+Rε3,2(z1, z2)

for some uniformly bounded remainders Rε3,1 and Rε3,2. The result follows from (4.17).

18



We represent (4.18) symbolically, for ε = 0 and ε 6= 0, by
z1 z2

=
z1 z2

= −1

2

z1 z2
,

z1 z2
=
z1 z2

= −1

2

z1 z2
, (4.19)

where we do not put arrows on edges representing kernels that are symmetric in both variables,
and discard terms bounded uniformly in ε.
Example 4.17. Applying Lemma 4.16 to (4.10), and using the fact that the root, marked by the
green vertex, can be moved to a different node by a linear change of variables in the integral, we
obtain

E( ) = −1

4
.

Here and below, we will sometimes make a slight abuse of notation, by identifying a Feynman
diagram Γ with its value E(Γ). A similar computation yields

E( ) = 2 =
1

2

Moving the root and introducing the new kernel

0 z
=

0 z
, (4.20)

we obtain

E( ) =
1

2
. (4.21)

Proceeding in the same way, we obtain for instance

E( ) =
1

8
+

1

4
+

1

4
(4.22)

and

E( ) = −1

4

 + + + +

 .

♣
Definition 4.11 can be applied to this setting, by expanding the set of typesL by 3 new elements,

with degrees

deg( ) = deg( ) = ρ− d
deg( ) = 2ρ− d . (4.23)

The associated kernels are Gρ ∗x P̃ρ, Gερ ∗x P̃ ερ and Kρ ∗ Gερ ∗x P̃ ερ . We will say that a Feynman
diagram is reduced if the reduction rules (4.19) and (4.20) have been applied. Then Proposition 4.13
extends as follows.
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Proposition 4.18. Let τ ∈ T \ IE . If τ has p leaves and q edges, then each reduced Γ(τ, P ) has
q − p vertices. The relation (4.14) still holds in this case, while (4.15) becomes

E(τ) =
∑

P∈P(2)
τ

(
−1

2

)1+ p
2

E(Γ(τ, P )) +O(1) , (4.24)

where O(1) denotes a constant uniform in ε.

Proof: Recall that the unreduced Feynman diagram has q edges of typeKρ orKε
ρ , and q+1−p+ p

2
vertices. Since τ cannot be a planted tree, the number of reductions is equal to 1+ p

2 , each decreasing
by 1 the number of edges and vertices, which is why each reduced Γ(τ, P ) has q − p vertices.
The degree is conserved by the reductions. The relation (4.24) is then a direct consequence of
Lemma 4.16 and (4.20).

5 Forests

5.1 Zimmermann’s forest formula

The aim of this and the following section is to derive upper bounds for the expectations E(Ã−τ)
when τ ∈ T−. We want to prove that

|E(Ã−τ)| 6 Cf(τ)ε|τ |s , (5.1)

where the constant C does not depend on τ , ε or ρ, and f(τ) is a function to be determined, which
depends on the structure of the tree τ .

A nice feature is that one can define a twisted antipode Ã− acting on Feynman diagrams
of negative degree, which is essentially the same as in [21], and reduces in this case to a mere
extraction/contraction of divergent subdiagrams. Denote by G the vector space spanned by all
admissible Feynman diagrams (not necessarily connected), and by G− the subspace spanned by
diagrams of negative degree. We say that Γ′ = (V ′,E ′) is a subgraph of Γ = (V ,E ) if E ′ ⊂ E ,
and V ′ contains all vertices in V which belong to at least one edge e ∈ E ′. Then we define the
twisted antipode to be the map Ã− : G− → G given by

Ã−Γ = −Γ−
∑
Γ̄ Γ

Ã−Γ̄ · Γ/Γ̄ ,

where the sum runs over all not necessarily connected subgraphs of negative degree, and Γ/Γ̄
denotes the graph obtained by contracting Γ̄ to a single vertex.
Remark 5.1. The name twisted antipode is again related to the fact that one can introduce a Hopf
algebra structure on (decorated) graphs, see [21, Section 2.3], which generalises the extraction-
contraction Hopf algebra on undecorated graphs introduced by Connes and Kreimer in [12, 13].
The twisted antipode differs from the antipode of that Hopf algebra because of the use of a coaction
instead of a coproduct, meaning that the extracted graphs Γ̄ and the contracted graphs Γ/Γ̄ are not
in the same space: while the former have negative degree, the latter can have arbitrary degree. ♦

Proposition 5.2. One has
E(Ã−τ) =

∑
P∈P(2)

τ

E(Ã−Γ(τ, P ))
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Proof: It follows from Propositions 4.5 and 4.6 that

E(Ã−τ) = −E(τ)−
∑

1 τ1·...·τn Eτ
E(Ã−(τ1 · . . . · τn) · τ/(τ1 · . . . · τn)) .

We then apply Proposition 4.13 to the expectations on the right-hand side and by an inductive
argument, we get

E(Ã−τ) = −
∑

P∈P(2)
τ

E(Γ(τ, P ))−
∑

1 τ1·...·τn Eτ

n+1∏
i=1

∑
Pi∈P

(2)
τi

E(Ã−Γ(τi, Pi)) .

where τn+1 = τ/(τ1 · . . . · τn)). Indeed, one has P(2)
τ = tn+1

i=1 P
(2)
τi and any subdiagram of Γ(τ, P )

is of the form Γ(τ̄ , P̄ ) where τ̄ is a subtree of τ and P̄ is a subpairing of P .

Example 5.3. Consider the symbol τ = . The effect of the twisted antipode on τ has been
determined in Example 4.8, and E(τ) is given in (4.22). Applying the twisted antipode directly
to (4.22), we find

Ã−(E( )) = −E( ) +
1

2
− 1

4

( )2
. (5.2)

Indeed, one easily checks that since ρ > ρc = d/3, the only nontrival subgraph of negative
degree in (4.22) is the “bubble” having two edges, one of typeKρ and one of type Gερ ∗x P̃ ερ . The
expression (5.2) is indeed equivalent to the one obtained by transforming the expression (4.8) for
ÃE−(τ) into Feynman diagrams.

Note that the degree of all diagrams in (4.22) is 7ρ − 3d, while the total degree of the
two extracted diagrams in (5.2) is 2(2ρ − d) < 7ρ − 3d. This is an instance of the degree of
subdivergences being worse than the degree of the whole diagram. ♣
Remark 5.4. If γ is any (non-reduced) diagram with n + 1 vertices and q edges, then its degree
can be written as

deg(γ) = (ρ+ d)n− qd = (4n− 3q)
d

3
+ n(ρ− ρc) .

In particular, if γ is of the form Γ(τ, P ), one has

deg(γ) = −2

3
d+

3m− 1

2
(ρ− ρc) , deg(γ) = −1

3
d+

3m̄+ 1

2
(ρ− ρc) ,

respectively, for full and almost full binary trees, wherem, m̄ are such that τ has 2m edges in the
first case, and 2m̄ + 1 edges in the second case. Note that in both cases, the degree is a strictly
increasing function of the number of edges.

For practical counting of degrees, it is sometimes useful to consider the limiting case ρ↘ ρc,
and to use d

3 as degree unit. Then edges of the three types in (4.13) and (4.23) count for −3, −2
and−1 respectively, while vertices have weight +4. Similarly, for trees τ ∈ T−, edges have weight
+1 and leaves have weight −2. ♦

Proposition 5.2 allows to reduce the estimation of the coefficients cε(τ) to the problem of
estimating the value of Feynman diagrams. The difficulty is that the twisted antipode is essential
to obtain a bound of the form (5.1): such a bound is not true in general for E(τ), because, as
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the above example shows, Feynman diagrams Γ(τ, P ) may contain subdiagrams whose degree is
strictly less than the degree of Γ(τ, P ). In order to deal with this difficulty, our plan is now to adapt
the approach of [21] to the present situation. While we will use its formalism, the main novelty is
an adaptation of the proof of [21, Thm. 3.1] in order to derive ε-dependent bounds for Feynman
diagrams given in Proposition 6.1 below. This proposition can be considered as one of the main
results of this work, as the bound it provides is new and was not proved in [21].

Definition 5.5 (Forests). Let Γ be a Feynman diagram, and denote by G−Γ the set of all connected
subgraphs Γ̄ ⊂ Γ of negative degree. We denote by< the partial order on G−Γ defined by inclusion.
A subsetF ⊂ G−Γ is called a forest if any two elements ofF are either comparable by<, or vertex-
disjoint. The set of forests on Γ is denoted by F−Γ . Given a forest F and two graphs Γ̄, Γ̄1 ∈ F ,
we say that Γ̄1 is a child of Γ̄ if Γ̄1 < Γ̄, and there is no Γ̄2 ∈ F such that Γ̄1 < Γ̄2 < Γ̄. In that
case, Γ̄ is called the parent of Γ̄1.

Example 5.6. Let τ be the comb with eight leaves, and consider the following pairings:

P1 = , P2 = .

The corresponding Feynman diagrams are given by

Γ1 = Γ(τ, P1) =

γ1γ2

γ3

Γ2 = Γ(τ, P2) = γ1

γ2

.

The diagram Γ1 has 3 identical divergent bubbles γ1, γ2, γ3, indicated by shaded frames. The left-
hand bubble γ2 is part of two overlapping subdivergences, each consisting of two bubbles and the
joining edge. However, these subdiagrams are 1-connected, and thus do not matter in the analysis.
If we restrict our attention to the set G−Γ1,E

of subgraphs with non-vanishing expectation, we obtain
indeed a forest G−Γ1,E

= {Γ1, γ1, γ2, γ3,∅}. The corresponding parent-child relationship graph
consists of the parent Γ1 and its three children γ1, γ2, γ3.

The diagram Γ2 has two nested subdivergences: a bubble γ1, and the bubble together with the
3 adjacent edges, denoted γ2. In this case again, the set G−Γ2,E

is a forest, while the associated
graph is a linear graph with parent Γ, child γ2 and grandchild γ1. ♣

In what follows, we will occasionally need decorated Feynman diagrams Γ̄n
e , though as in

the case of trees, decorations will play almost no role. Such a diagram is defined by a graph
Γ = (V ,E ) with a distinguished node v? ∈ V , a node decoration n : V → Nd+1

0 and a vertex
decoration e : E → Nd+1

0 . The degree of Γ̄n
e is defined as

deg(Γ̄n
e ) = (ρ+ d)(|V | − 1) +

∑
v∈V

|n(v)|s +
∑
e∈E

[
deg(e)− |e(e)|s

]
, (5.3)

and its value is given by

E(Γ̄n
e ) =

∫
(Rd+1)V \v?

∏
e∈E

∂e(e)Kt(e)(ze+ − ze−)
∏

w∈V \v?
(zw − zv?)n(w) dz . (5.4)
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Note that when the decorations n and e vanish identically, (5.3) and (5.4) reduce to the expres-
sions (4.11) and (4.12) for undecorated Feynman diagrams. Given a divergent subdiagram γ ∈ G−Γ ,
we define an extraction-contraction operator Cγ by

CγΓ̄n
e =

∑
eγ ,nγ

1
deg(γ

nγ+πeγ
e )<0

(−1)|out eγ |

eγ !

(
n

nγ

)
γ
nγ+πeγ
e · RγΓ̄

n−nγ
e+eγ , (5.5)

where πeγ and Rγ are defined in the same way as for decorated trees in (4.6), and |out eγ | is
the number of derivatives on outgoing edges from γ. This operator can be naturally extended to
undecorated diagrams Γ, by identifying them with Γ̄n

e with n = 0 and e = 0. Note that in that
case, the sum over nγ disappears in (5.5). The main difference with the case of trees is that eγ has
a different support: it is supported on the edges (x, y) such that either x or y belongs to the vertex
set V (γ). Therefore, one gets a minus sign for each derivative on outgoing edges. In the case of a
tree, by contrast, eγ is supported only on the incoming edges. However, using this representation
does not make any difference. Indeed, by taking v? to be the root of the underlying tree behind the
construction of γ, one obtains a vanishing contribution whenever one puts a monomial at v? and a
derivative on the only outgoing edge at v?.

We can now define a forest extraction operator CF recursively by setting C∅Γ = Γ and

CF Γ = CF\%(F )

∏
γ∈%(F )

CγΓ ,

where %(F ) denotes the set of roots of γ in the graph of parent-child relationships. Then
Zimmermann’s forest formula states that

Ã−Γ = −
∑

F∈F−Γ

(−1)|F |CF Γ , (5.6)

cf. [21, Prop. 3.3]. In the particular case where G−Γ is itself a forest, (5.6) can be rewritten as

Ã−Γ = −RG−Γ
Γ ,

where R is defined recursively by R∅Γ = Γ and

RF Γ = RF\%(F )

∏
γ∈%(F )

(id−Cγ)Γ , (5.7)

which turns out to be simpler to handle than (5.6). This is a consequence of the “inclusion–exclusion
identity” ∏

i∈A
(id−Xi) =

∑
B⊂A

(−1)B
∏
j∈B

Xj

valid for any finite set A, and operators {Xi : i ∈ A}, cf. [21, (3.3)]. In general, however, G−Γ
is not a forest, so that (5.7) does not hold. This is the problem of overlapping subdivergences: a
divergent subgraph Γ̄ ⊂ Γ can be part of two different divergent subgraphs Γ̄1 and Γ̄2, none of
which is included in the other one.

The above example suggests that in our case, G−Γ,E may always be a forest, so that (5.7) is
applicable. In order to establish this fact, we define a grafting operation on trees. If τ1 and τ2 are
two non-planted trees, with τ1 being almost full, we denote by τ1 x τ2 the tree obtained by joining
the root of τ2 to the vertex of τ1 of degree 2 which is not the root. For instance, we have

x = .
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Note that this operation is associative, but not commutative.
The following observation allows to characterise divergent subgraphs.

Lemma 5.7. Let τ be a full binary tree with an even number of leaves. Then there exists a pairing
P such that Γ(τ, P ) is at least 2-connected, and a divergent subdiagram Γ̄ = Γ(τ̄ , P̄ )  Γ, if and
only if τ̄ is an almost full binary tree of negative degree, having an even number of leaves, and
which does not contain the root of τ .

Proof: Assume first that τ̄ is an almost full binary tree of negative degree, not containing the root
and with an even number of leaves. Let P̄ be any pairing of the leaves of τ̄ and Γ̄ = Γ(τ̄ , P̄ ). Then
τ = τ0 x τ̄ x τ1, where τ0 is almost full and τ1 is full. By pairing at least one leaf of τ0 and one
leaf of τ1, we obtain a 2-connected diagram Γ.

Conversely, assume Γ(τ, P ) is at least 2-connected, with a divergent subdiagram Γ̄ = Γ(τ̄ , P̄ ).
Then τ̄ cannot contain the root of τ . Indeed, if this were the case, τ̄ would necessarily be an
almost full binary tree (being divergent and a proper subtree of τ ), so that τ̄ and τ1 = τ \ τ̄ would
be connected by a single edge. Since P cannot connect leaves of τ̄ to leaves of τ1, Γ would be
1-connected. Similarly, if τ = τ0 x τ̄ , we would obtain a 1-connected diagram. Thus τ has to be
of the form τ = τ0 x τ̄ x τ1, showing that τ̄ is almost full and does not contain the root of τ .

Example 5.8. Some examples of subtrees τ̄ leading to divergent subdiagrams are

, , , , , .

One can check that they do not lead to any overlapping subdivergences. ♣

Proposition 5.9. A Feynman diagram Γ(τ, P ) which is at least 2-connected cannot have overlap-
ping subdivergences. As a consequence, G−Γ,E is always a forest.

Proof: Assume the contrary, that is, there exist 3 subdivergences Γ̄, Γ1, Γ2, such that Γ1 \ Γ2

and Γ2 \ Γ1 are both non-empty and Γ̄ ⊂ Γ1 ∩ Γ2. Then there exist subtrees τ̄ , τ1, τ2 such that
τ1 \ τ2 6= ∅, τ2 \ τ1 6= ∅, τ̄ ⊂ τ1 ∩ τ2 and each diagram is obtained by restricting the pairing P ,
e.g. Γ̄ = Γ(τ̄ , P �τ̄). In particular, P can only pair leaves of τ̄ .

The previous lemma shows that we must have

τ1 = τ1,− x τ̄ x τ1,+ and τ2 = τ2,− x τ̄ x τ2,+ .

Since τ1 \ τ2 6= ∅ and τ2 \ τ1 6= ∅, we may assume without restricting the generality that
τ2,− ( τ1,− and τ1,+ ( τ2,+. Since the leaves of τ1,− \ τ2,− cannot be paired with those of τ2, they
have to be paired among themselves. But this results in Γ(τ, P ) being 1-connected, contradicting
the assumption.

Remark 5.10. Another consequence of Lemma 5.7 is that a divergent subdiagram γ ( Γ has a
degree strictly larger than −d

3 . Therefore, in dimension d 6 3, the operator CγΓ defined in (5.5)
reduces to a simple extraction-contraction, while in dimension d ∈ {4, 5}, the sum also contains
terms γπeγ with edge decorations e of degree at most 1. However, the value (5.4) of these additional
terms vanishes by symmetry. ♦
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5.2 Hepp sectors and forest intervals

In this section, we present the main tools and definitions for renormalising Feynman diagrams:
Hepp sectors, safe and unsafe forests, and forest intervals. All these notions have originally been
introduced in the physics literature, see for instance [33, Chapter II.3] for an overview. We follow
mainly [21], where these notions have been reformulated in connectionwith [6, 8]. They first appear
in the context of singular SPDEs in [8], and were imported from [15]. A first important concept in
order to evaluate Feynman diagrams is the one of Hepp sector (cf. [21, proof of Prop. 2.4]).

Definition 5.11 (Hepp sector). Fix a finite set V and a bounded set Λ ⊂ Rd+1. With any point
configuration z ∈ ΛV , one can associate a binary tree T = T (z), whose leaves are given by
V , and a function n = n(z) defined on the inner nodes of T and taking values in N0, with the
following properties:

• u 7→ nu is increasing when going from the root to the leaves of T ,
• for any leaves v, v̄ ∈ V , one has

‖zv − zv̄‖s � 2−nu ,

where u = v ∧ v̄ is the first common ancestor of v and v̄ in T and � is a shorthand notation
for

C−12−nu ≤ ‖zv − zv̄‖s ≤ C2−nu , (5.8)

where the constant C only depends on the size of Λ.
WritingT = (T,n) for these data, theHepp sectorDT ⊂ ΛV is defined as the set of configurations
z ∈ ΛV for which (T (z),n(z)) = T.

zv1

zv2

zv3 zv4

zv5

Λ

v1 v2 v3 v4 v5

0

1

2 2

T(z)

Figure 2: A point configuration z ∈ ΛV with its minimal spanning tree (left), and the associated
labelled tree T = (T (z),n(z)) (right). Here V = {v1, v2, v3, v4, v5}, and node decorations n
are shown in green. For instance, nv1∧v2 = 2, so that zv1 and zv2 are at a distance of order 2−2,
while nv3∧v5 = 1, so that zv3 and zv5 are at a distance of order 2−1.

The main idea is that in each Hepp sector, the kernels have a given order of magnitude. Since
the Hepp sectors provide a partition of ΛV , the value of the Feynman diagram can be written as a
sum of integrals over individual Hepp sectors, so that it suffices to obtain uniform bounds on the
products of kernels valid in each sector.

In order to exploit cancellations, it turns out to be necessary to adapt the way contractions are
performed to the particular Hepp sector, cf. [21, Section 3.2]. If Γ is a Feynman diagram (possibly
with decorations) and γ is a divergent subdiagram of Γ, one defines a new diagram ĈγΓ as in (5.5),
but with the following differences. First the vertices of Γ are given an arbitrary order, and its
edges e are assigned an additional label d(e) = 0 indicating their depth. Instead of extracting the
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subdiagram γ, all edges of Γ adjacent to γ are reconnected to the first vertex of γ (according to the
chosen order), while the depth d(e) of all edges e of γ is incremented by 1. Finally, when applying
ĈγΓ to a diagram having edges of strictly positive depth, we set ĈγΓ = 0 unless all edges adjacent
to γ have a smaller depth than those of γ.
Example 5.12. Let

Γ = Γ2 =

1

23
4

5
6

γ1

γ2

be the second diagram in Example 5.6 (without decorations n and e). We order the vertices
counterclockwise, starting at the green vertex, as indicated by blue labels. Assume furthermore
that d 6 3, so that Cγ does not create any terms with nontrivial decoration. Then we have

Ĉγ1Γ =

1

23

4
5

6

1

1

, Ĉγ2Γ = 1

2

34

5 6

1 1

1

1

1 , (5.9)

where violet edge labels denote the depth d(e) (we do note indicate zero depths). Extracting both
subdiagrams, we obtain

Ĉγ1Ĉγ2Γ = Ĉγ2Ĉγ1Γ =
1

2

3

4
5

6

2

2
1

1

1 . (5.10)
♣

Note that Ĉγ1 and Ĉγ2 commute. Given a forest F ∈ G−Γ , one can thus define in an unam-
biguous way the operator KF performing all contractions Ĉγ with γ ∈ F . We denote by σ the
bijection between vertices and edges of KF Γ and those of Γ.

We now fix a Hepp sector DT, T = (T,n) and a forest F ∈ G−Γ , which we assume to be full
in the sense that all γ ∈ F contain all edges of Γ joining two vertices of γ. As in [21, Section 3.2],
we construct a partition PT of G−Γ into subsets which are adapted to the particular Hepp sector.
The first step is to define, for each edge e of Γ, the common ancestor of the extremities of e viewed
as an element of KF Γ, that is

ve = σ(σ−1(e)−) ∧ σ(σ−1(e)+) .

Then the integer
scaleF

T (e) = nve

measures the distance between the extremities of e in KF Γ. For γ ∈ F , define

intF
T (γ) = inf

e∈E F
γ

scaleF
T (e) , extF

T (γ) = sup
e∈∂E F

γ

scaleF
T (e) ,

where E F
γ denotes the set of edges belonging to γ, but not to any of its children in F , while ∂E F

γ

denotes the set of edges adjacent to γ belonging to its parent A (γ) in F . If γ is a root of F ,
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we set A (γ) = Γ. Thus intF
T (γ) describes the longest distance between points in γ without its

children, while extF
T (γ) describes the shortest distance between points in γ and those in its parent

in F . Examples 5.14, 6.5 and 6.12 below provide illustrations of these concepts.

Definition 5.13 (Safe and unsafe forests).
• A subdiagram γ ∈ F is safe in F if

extF
T (γ) > intF

T (γ)

and unsafe otherwise.
• A subdiagram γ of Γ is safe (resp. unsafe) for F if F ∪ {γ} is a full forest and γ is safe
(resp. unsafe) in F ∪ {γ}.

• A forest F is safe if every γ ∈ F is safe in F .

Loosely speaking, a subdiagram γ is thus unsafe if the diameter of γ (without its children) is
much shorter than the distance between γ and its parent. In other words, children are unsafe if they
are small and far away from their parents.
Example 5.14. Consider again the diagram Γ of the previous example, with the forest F =
{γ1, γ2}. Then for most edges e = (e−, e+) we have scaleF

T (e) = ne−∧e+ , except for the two
cases

scaleF
T ((5, 6)) = n4∧6 , scaleF

T ((6, 1)) = n3∧1 .

Indeed, the edges (5, 6) and (6, 1) are exactly those which are reconnected when applying KF . It
follows that γ1 is safe in F if and only if

n3∧4 ∨ n4∧6 > n4∧5 , (5.11)

and one checks that this is also the condition for γ1 to be safe in {γ1} (that is, for {γ1} to be a safe
forest). The condition for γ2 to be safe in F reads

n2∧3 ∨ n3∧1 > n3∧4 ∧ n4∧6 ∧ n3∧6 . (5.12)

This time, it turns out that γ2 is safe in the forest {γ2} if and only if

n2∧3 ∨ n3∧1 > n3∧4 ∧ n4∧5 ∧ n5∧6 ∧ n3∧6 ,

because of the difference between Ĉγ2 and Ĉγ1Ĉγ2 . Note, however, that the ultrametricity of n·∧·
implies that n4∧6 > n4∧5 ∧ n5∧6, so that if γ2 is safe in F , then it is also safe in {γ2}. ♣

This example shows that the property of being safe or unsafe may depend on the choice of
forest F . A crucial property, shown in [21, Lemma 3.6], is the following. If Fs is a safe full
forest, and

Fu =
{
γ ∈ G−Γ : γ is unsafe for Fs

}
, (5.13)

then Fs ∪Fu ∈ F−Γ is a full forest, and every γ ∈ Fs is safe in Fs ∪Fu, while every γ ∈ Fu

is unsafe in Fs ∪ Fu. This implies in particular that any full forest F ⊂ G−Γ has a unique
decomposition F = Fs ∪ Fu, where Fs is safe and Fu is given by (5.13). Moreover, the
properties of being safe/unsafe and the construction of Fu depend only on the structure of the tree
T , and not on the scale assignment n defining T.

The last step to construct the partition PT relies on the notion of forest interval, cf. [21,
Section 3.1]. In general, forest intervals have two purposes: one of them is to deal with overlapping
divergences, and the other one is to simplify the combinatorics when dealing with unsafe forests.
In our model, we do not have overlapping divergences, but forest intervals are still useful to deal
with unsafe forests. Moreover, they will allow us to obtain estimates on cε(τ) that can be extended
to cases with overlapping divergences.
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Definition 5.15 (Forest interval). LetM ⊂ M be two forests in F−Γ . A forest interval is a subset
M ⊂ F−Γ defined by

M = [M,M] =
{
F ∈ F−Γ : M ⊂M ⊂M

}
.

Alternatively, we have
M =

{
M ∪F : F ⊂ δ(M)

}
,

where δ(M) = M \M is a forest such that δ(M) ∩M = ∅.

Given a Hepp sector DT, T = (T,n), we write F
(s)
Γ (T ) for the set of all safe forest in Γ.

Then we have a partition

PT =
{

[Fs,Fs ∪Fu] : Fs ∈ F
(s)
Γ (T )

}
, (5.14)

where Fu is defined by (5.13). The point of PT is that Zimmermann’s forest formula (5.7) can
be rewritten as

RΓ = RG−Γ
=

∑
Mi∈PT

R̂MiΓ , (5.15)

where
R̂MΓ =

∏
γ∈δ(M)

(id−Ĉγ)
∏
γ̄∈M

(−Ĉγ̄)Γ .

Here, the factors (id−Ĉγ) are interpreted as renormalising the subdiagrams in δ(M), and the
factors (−Ĉγ̄) as extracting those inM.
Example 5.16. Continuing with the previous example, there are 4 cases to be considered.

1. If {γ1, γ2} is a safe forest, then we have seen that both {γ1} and {γ2} are safe. We thus have

F
(s)
Γ (T ) =

{
∅, {γ1}, {γ2}, {γ1, γ2}

}
,

and the corresponding partition is simply

PT =
{

[∅,∅], [{γ1}, {γ1}], [{γ2}, {γ2}], [{γ1, γ2}, {γ1, γ2}]
}
,

which is in fact identical with F
(s)
Γ (T ). Thus (5.15) becomes

RΓ = Γ− Ĉγ1Γ− Ĉγ2Γ + Ĉγ1Ĉγ1Γ , (5.16)

which is indeed compatible with (5.7).
2. If {γ1} is safe, but γ2 is unsafe for {γ1}, then {γ2} may be safe or unsafe. In the former

case, we have

F
(s)
Γ (T ) =

{
∅, {γ1}, {γ2}

}
,

PT =
{

[∅,∅], [{γ1}, {γ1, γ2}], [{γ2}, {γ2}]
}
,

RΓ = (id−Ĉγ2)Γ− (id−Ĉγ2)Ĉγ1Γ , (5.17)

while in the latter case,

F
(s)
Γ (T ) =

{
∅, {γ1}

}
,

PT =
{

[{γ1}, {γ1, γ2}], [∅, {γ2}]
}
,

RΓ = −(id−Ĉγ2)Ĉγ1Γ + (id−Ĉγ2)Γ . (5.18)

Naturally, the expressions (5.17) and (5.18) are equivalent to (5.16), but the point is that the
terms in each expression can be controlled individually.
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3. If {γ2} is safe, but γ1 is unsafe for {γ2}, then {γ1} is unsafe. Hence

F
(s)
Γ (T ) =

{
∅, {γ2}

}
,

PT =
{

[∅, {γ1}], [{γ2}, {γ1, γ2}]
}
,

RΓ = (id−Ĉγ1)Γ− (id−Ĉγ1)Ĉγ2Γ .

4. Finally, if both {γ1} and {γ2} are unsafe, then

F
(s)
Γ (T ) =

{
∅
}
,

PT =
{

[∅, {γ1, γ2}]
}
,

RΓ = (id−Ĉγ1)(id−Ĉγ2)Γ . ♣

6 Bounds on E(ÃE−τ)

Combining Zimmermann’s forest formula (5.15), our choice (5.14) of partition of F−Γ , and the
expression (4.12) for the expectation of a Feynman diagram, we obtain (cf. [21, Section 3.2])

E(Ã−Γ(τ, P )) = −
∑
T

∑
Fs∈F

(s)
Γ (T )

∑
n

∫
DT

(W KR̂[Fs,Fs∪Fu]Γ(τ, P ))(z) dz , (6.1)

where the sums run over all binary trees T with |V | leaves, and all increasing node labels n of T .
Here

(W K Γ̄n
e )(z) =

∏
e∈E

∂e(e)Kt(e)(zσ(e+) − zσ(e−))
∏

w∈V \v?

(zσ(w) − zσ(v?)))
n(w)

corresponds to the integrand in (5.4) (recall that σ is the bijection between vertices and edges of
KF Γ and Γ), and v? is by definition the first vertex in the component of KFsΓ containing w. An
upper bound for (6.1) is given by∣∣E(Ã−Γ(τ, P ))

∣∣ 6∑
T

∑
Fs∈F

(s)
Γ (T )

∑
n

sup
z∈DT

∣∣(W KR̂[Fs,Fs∪Fu]Γ(τ, P ))(z)
∣∣C |VΓ|

0

∏
v∈T

2−(ρ+d)nv .

Here |VΓ| is the number of vertices of the graph Γ(τ, P )), C0 is a constant depending only on the
size of Λ through the definition 5.11 of Hepp sectors, and C |VΓ|

0 times the product corresponds to
the volume of the Hepp sector DT. The aim of this section is to prove the following bound.

Proposition 6.1. There exists a constantK1, depending only on the kernelsKt, such that

∑
n

sup
z∈DT

∣∣(W KR̂[Fs,Fs∪Fu]Γ)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv 6

{
K
|E |
1 εdeg(Γ)

[
log(ε−1)

]ζ if deg Γ < 0 ,
K
|E |
1

[
log(ε−1)

]1+ζ if deg Γ = 0 ,

where ζ ∈ {0, 1} is the number of children of Γ having degree 0.

The existence of the exponent ζ has no influence on the main result, because ζ = 1 occurs only
for very few diagrams. The fact that ζ ∈ {0, 1} is shown in Lemma 6.11 below.

The proof of Proposition 6.1 follows rather closely the one given in [21, Section 3.2]. There
are a few differences, due to the facts that we work with a non-Euclidean scaling, and that the
Feynman diagrams we consider have no legs. Owing to the special structure of the equations we
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consider, decorations of vertices and edges can be almost entirely avoided, they only arise in one
estimate involving unstable forests (cf. Section 6.2).

We first need to quantify the singularity of the kernels. Similarly to [19, 21], we use the notation

‖Kt‖ = sup
|k|s62

sup
z

|∂kKt(z)|
‖z‖deg t−|k|s

s

.

It then follows from [19, Lemma 10.7] that there exists a constant Ct such that

|Kε
t (z)| 6 Ct‖Kt‖

(
‖z‖s ∨ ε

)deg t

holds uniformly in ε ∈ (0, 1]. We will write K0 for the maximal value of Ct‖Kt‖ for all kernels
involved. Indeed t runs over a finite set of types, so that the maximum is finite.

A difference with [21] is that we have to deal explicitly with the fact that some kernels are
regularised, and others are not. To indicate this, we attach to each edge e ∈ E an additional
label reg(e) with value 0 if e corresponds to a bare kernel, and with value 1 if it corresponds to a
mollified kernel, and we write

E ◦ = {e ∈ E : reg(e) = 0} , E ε = {e ∈ E : reg(e) = 1} .

6.1 The case Fu = ∅

As in [21], we start by discussing the case Fu = ∅. First note that according to Remark 5.10,
any diagram with nontrivial decorations obtained by applying an operator Ĉγ has zero expectation.
Therefore we may simply set

R̂[Fs,Fs∪Fu]Γ =
∏
γ∈Fs

(−Ĉγ)Γ = (−1)|Fs|KFsΓ .

Lemma 6.2. For any inner node v ∈ T , define

η◦(v) = ρ+ d+
∑
e∈E ◦

deg(e)1e↑(v) ,

ηε(v) =
∑
e∈E ε

deg(e)1e↑(v) , (6.2)

where e↑ = σ(e−) ∧ σ(e+) is the last common ancestor of the vertices of e seen as an edge of Γ.
Let

f(v,nv) = η◦(v)nv + ηε(v)
[
nv ∧ nε

]
, (6.3)

where nε is the smallest integer such that 2−nε 6 ε. Then there exists a constant K̄0 > K0 such
that ∑

n

sup
z∈DT

∣∣(W KKFsΓ)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv 6 K̄ |E |0 C− deg Γ
∑
n

∏
v∈T

2−f(v,nv) , (6.4)

where C is the constant appearing in the relation (5.8) characterising Hepp sectors.

Proof: The definitions of Hepp sectors and of K0 imply that uniformly over z ∈ DT, one has∣∣(W KKFsΓ)(z)
∣∣ 6 K |E |0 C−

∑
e∈E deg(e)

∏
e∈E ◦

2−n(e↑) deg(e)
∏
e∈E ε

2−(n(e↑)∧nε) deg(e) .
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Since only edges of negative degree give an unbounded contribution, the term C−
∑
e∈E deg(e) can

be bounded by C− deg Γ, enlarging if necessary the value of K0. Now it suffices to observe that

− log2

∏
e∈E ◦

2−n(e↑) deg(e) =
∑
v∈T

∑
e∈E ◦

deg(e)1e↑(v)nv =
∑
v∈T

[
η◦(v)− ρ− d

]
nv ,

− log2

∏
e∈E ε

2−(n(e↑)∧nε) deg(e) =
∑
v∈T

∑
e∈E ε

deg(e)1e↑(v)
[
nv ∧ nε

]
=
∑
v∈T

ηε(v)
[
nv ∧ nε

]
.

Substituting in the left-hand side of (6.4) yields the result.

Our aim is now to bound the quantity∑
n

∏
v∈T

2−f(v,nv) (6.5)

by a recursive argument, starting from the leaves of T . The argument is somewhat similar to the
one given in [25, Lemma A.10], but with an explicit control of the bound’s dependence on the
properties of the graph Γ.

Given an inner node v of T , we say that w is an offspring of v if w > v, and there exists no w̄
with w > w̄ > v (we do not use the term child to avoid confusion with the notion of child in Fs).
We denote the set of offspring of v by O(v). Note that since T is a binary tree, O(v) has at most
two elements.

For any v ∈ T and nv ∈ N0, we introduce the notation

Sv(nv) =
∑
n̄>nv

∏
w>v

2−f(w,n̄w) ,

where the sum runs over all increasing node decorations n̄ of {w : w > v}. We can rewrite this as

Sv(nv) =
∏

wi∈O(v)

Ŝwi(nv) , (6.6)

where
Ŝw(nv) =

∑
n̄>nv

∏
w̄>w

2−f(w̄,n̄w̄) =
∑

nw>nv

2−f(w,nw)Sw(nw) . (6.7)

Then (6.5) is equal to Ŝ∅(0), where ∅ denotes the root of T . Our plan is now to compute the
quantities Ŝw(nv) inductively, starting from the leaves of T . In order to initialise the induction,
we set Ŝ`(nv) = 1 on the leaves ` of T . (Equivalently, one could set Sv(nv) = 1 for all nodes v
of T with no offspring.) Then we have the following recursive bound.

Lemma 6.3. Let v be an inner node of T . Assume that there exist non-negative functions α, β, γ
and ᾱ, β̄ such that the relation

Ŝw(nv) .

{
2α(w)nε2−β(w)nv(nε − nv)

γ(w) if nv < nε

2ᾱ(w)nε2−β̄(w)nv if nv > nε
(6.8)

holds for all w ∈ O(v). Assume furthermore that one has

η◦(v) +
∑

wi∈O(v)

β̄(wi) > 0 , (6.9)

α(wi)− β(wi) > ᾱ(wi)− β̄(wi) ∀wi ∈ O(v) , (6.10)
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and define
η(v) = η◦(v) + ηε(v) , λ(v) = η(v) +

∑
wi∈O(v)

β(wi) . (6.11)

Then Ŝv(nu) satisfies the analogue of (6.8), with exponents given as follows:

α(v) =


∑

wi∈O(v)

α(wi)− λ(v) if λ(v) < 0 ,∑
wi∈O(v)

α(wi) otherwise ,
(6.12)

while

β(v) =

{
0 if λ(v) 6 0 ,
λ(v) otherwise ,

(6.13)

and

γ(v) =



0 if λ(v) < 0 ,∑
wi∈O(v)

γ(wi) + 1 if λ(v) = 0 ,∑
wi∈O(v)

γ(wi) otherwise .
(6.14)

Finally, we have

ᾱ(v) =
∑

wi∈O(v)

ᾱ(wi)− ηε(v) ,

β̄(v) =
∑

wi∈O(v)

β̄(wi) + η◦(v) . (6.15)

Proof: Combining (6.6) and (6.7), we obtain

Ŝv(nu) =
∑

nv>nu

2−f(v,nv)
∏

wi∈O(v)

Ŝwi(nv) .

Consider first the case nu > nε. Using (6.8) and the definition (6.3) of f(v,nv), we get

Ŝv(nu) . 2ᾱ(v)nε
∑

nv>nu

2−β̄(v)nv

with ᾱ(v) and β̄(v) given by (6.15). By Condition (6.9), one can sum the geometric series, yielding
the claimed bound.

For nu < nε, we decompose the sum into two parts, yielding

Ŝv(nu) . 2
∑
i α(wi)nε

nε−1∑
nv=nu

2−λ(v)nv(nε − nv)
∑
i γ(wi) + 2ᾱ(v)nε

∑
nv>nε

2−β̄(v)nv .

The first sum can be evaluated using the bound

N−1∑
n=n0

(N − n)γ2−ηn .


(N − n0)γ2−ηn0 if η > 0 ,
(N − n0)γ+1 if η = 0 ,
2−ηN if η < 0 ,

valid for any n0 < N ∈ N, η ∈ R and γ > 0. The second sum has order 2(ᾱ(v)−β̄(v))nε , and is
negligible thanks to Condition (6.10).
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1 2 3 4 6 5

a

b

c

d e

e σ(e) e↑ deg(e) reg(e)

(1, 2) (1, 2) d −1 1
(1, 2) (1, 2) d −2 1
(2, 3) (2, 3) c −3 0
(3, 1) (6, 1) c −3 0
(3, 4) (3, 4) b −3 0
(4, 6) (5, 6) e −3 0
(3, 6) (3, 6) b −2 1
(4, 5) (4, 5) a −3 0
(4, 5) (4, 5) a −2 1

Figure 3: A tree T defining a Hepp sectorDT for the diagram KFs
Γ in (5.10). The table shows,

for each edge e, its image σ(e) = (σ(e)−, σ(e)+), the ancestor e↑, the degree of e measured in
units of d3 in the limit ρ↘ ρc, and the index showing whether the edge has been mollified. Since
there can be multiple edges between two given vertices, they have been colour-coded according
to their type.

v η◦(v) ηε(v) η(v) η>(v) λ(v) α(v) β(v) γ(v) ᾱ(v) β̄(v)

e 1 0 1 1 1 0 1 0 0 1
d 4 −3 1 1 1 0 1 0 3 4
c −2 0 −2 −1 −1 1 0 0 3 2
b 1 −2 −1 −1 0 1 0 1 5 4
a 1 −2 −1 −2 −1 2 0 0 7 5

Table 1: Coefficients appearing in the recursive computation described in Lemma 6.3, in the
case of the Hepp tree T given in Figure 3. The first four exponents are defined in (6.2), (6.11)
and (6.16). All coefficients are shown in units of d3 and in the limit ρ↘ ρc.

Example 6.4. Consider again the diagramofExample 5.12, with the forestF = {γ1, γ2}. Consider
a Hepp sector DT such that T has the structure given in Figure 3. The forest F is safe according
to (5.11) and (5.12). Table 1 shows the values of the different exponents, computed iteratively
starting from the leaves of the tree T , in the limit ρ↘ ρc. In particular, we obtain∑

n

∏
v∈T

2−f(v,nv) = Ŝa(0) . 2α(a)nε = 22dnε/3 6 ε−2d/3 ,

which is indeed equal to εdeg Γ in that limit. A similar computation can bemade for any ρ > ρc. ♣
Let us now examine the inductive bounds inmore detail. The initialisation is made by setting all

functionsα, β, γ, ᾱ and β̄ equal to zero on the leaves of T . Combining the recursive relations (6.12)
and (6.13), we obtain

α(v)− β(v) =
∑

wi∈O(v)

(
α(wi)− β(wi)

)
− η(v) .

Together with the initial values on the leaves, this yields

α(v)− β(v) = −
∑
w>v

η(w) =: −η>(v) (6.16)

for all nodes v of T . In the same way, (6.15) yields

ᾱ(v)− β̄(v) = η>(v) .
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This shows in particular that Condition (6.10) is always satisfied. Regarding Condition (6.9), we
observe that (6.15) implies

β̄(v) =
∑
w>v

η◦(w) =: η◦>(v) .

We thus have to show that η◦>(v) is strictly positive on all inner vertices v if T , and to bound
η>(v) below in order to control (6.5). To do this, we will import some further notations from [21].
For γ ∈ Fs ∪ {Γ}, we write K(γ) = (Vγ ,Eγ) for the subgraph of KFsΓ with edge set Eγ =
σ−1(E (γ \ C (γ))), where C (γ) denotes the set of children of γ in Fs. Given an inner vertex
v ∈ T , we let Γ0 = Γ0(v) = (V0,E0) be the subgraph of KFsΓ containing all vertices w ∈ V
such that σ(w) > v. Note that this implies

e ∈ E0(v) ⇔ e↑ > v .

In addition, we have
scaleFs

T (e) > scaleFs
T (ē) ,

and thus e↑ > ē↑, for all e ∈ E0 and all ē adjacent to Γ0 in KFsΓ.
Example 6.5. Continuing with Example 6.4, we have

K(γ1) = 45 , K(γ2) =

3

4

6

, K(Γ) =

1

2

3 .

Examples of subgraphs Γ0(v) are

Γ0(b) =
1

2

3

4

6

, Γ0(d) =

1

2

, Γ0(e) = 4

6

,

while Γ0(c) = K(Γ) and Γ0(a) = KFsΓ is the diagram given in (5.10). ♣

Lemma 6.6. Let v be an inner vertex of T such that Γ0(v) is non-empty. Then the quantity η>(v)
satisfies the following properties :

1. η>(v) = deg(Γ) if v = ∅ is the root of T , and η>(v) > deg(Γ) otherwise;
2. if v > ∅, then η>(v) = deg(Γ) happens only if Γ has at least one child γ ∈ C (Γ)

satisfying deg(γ) = 0, and Γ0(v) =
⋃
γ̄ K(γ̄), where the union runs over all γ̄ which are

not descendents of a child with vanishing degree;
3. if O(v) = {w1, w2}, then there exists at least one i ∈ {1, 2} such that η>(w) > 0 for all
w > wi.

If, furthermore, Γ has at least one regularised edge, then there exists a constant κ > 0 such that

η◦>(v) :=
∑
w>v

η◦(v) > κ . (6.17)

Proof: Since T is a tree, {w > v} has |V0| − 1 elements, so that we can write

η>(v) = (ρ+ d)(|V0| − 1) +
∑

e∈E∩E0

deg(e) .
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By construction, the K(γ) have disjoint edge sets, and two K(γ) can share at most one vertex. We
can thus decompose

η>(v) =
∑

γ∈Fs∪{Γ}

η>,γ(v) , (6.18)

where
η>,γ(v) = (ρ+ d)(|V0 ∩ Vγ | − 1) +

∑
e∈Eγ∩E0

deg(e) .

As in [21], we say that γ ∈ Fs ∪ {Γ} is
• full if Eγ ∩ E0 = Eγ ;
• empty if Eγ ∩ E0 = ∅;
• normal in all other cases.

By [21, Lemma 3.7], a full γ cannot have an empty parent, and

η>,γ(v) =


deg(γ)−

∑
γ̄∈C (γ) deg(γ̄) if γ is full ,

0 if γ is empty ,
deg(γ̂)−

∑
γ̄∈C∗(γ) deg(γ̄) if γ is normal ,

(6.19)

where C∗(γ) is the set of children γ̄ of γ such that Kγ̄ shares a vertex with Γ0(v), and γ̂ is the
subdiagram of Γ with edge set σ(Eγ ∩ E0)

⋃
γ̄∈C∗(γ) E (γ̄). The fact that γ is safe implies that

deg(γ̂) > 0, and is also used to prove the absence of empty parent.
The result follows by considering all possibilities for the types of the subgraphs γ.
• A first case occurs when no γ ∈ Fs ∪ {Γ} is full. Since Γ0 is not empty, the γ cannot all be
empty, so that η>(v) is a non-empty sum of strictly positive terms. Therefore, η>(v) > 0.

• A second case occurs when Γ is not full, but there exists at least one subgraph γ ( Γ which
is full. Since the parent of γ is not empty, the negative term deg(γ) is compensated by the
corresponding term stemming from its parent. Since Γ is not full, there must exist a full
subgraph γ whose parent is normal. Since the inequality for normal subgraphs is strict, we
have again η>(v) > 0.

• It remains to consider the case where Γ is full (which does not occur in [21]). The case of
all γ ⊂ Γ also being full can only occur when v = ∅ (because only in that case is Γ0(v)
equal to KFs(γ)), and leads to the sum being equal to deg(Γ).
Consider next the case when there is no normal subgraph. Then all subgraphs are full or
empty. Since a full subgraph cannot have an empty parent, we obtain η>(v) = deg(Γ) −∑

i deg(γi), where the γi are all empty subgraphs with a full parent. This shows in particular
that η>(v) > deg(Γ) if v is not the root. Equality can only hold when all γi have zero degree.
These γi must all be children of Γ, since Lemma 5.7 and Remark 5.4 imply that the degree
of strict subdiagrams, which all arise from almost full trees, is strictly increasing in terms of
their number of edges. In addition, all γ ⊂ γi are empty, so that the second property follows.
The only remaining case occurs when there exists a γ ( Γ which is normal. Then one
obtains η>(v) > deg(Γ)− deg(γ) + deg(γ̂) > deg(Γ).

To prove the third property of η>, we note that since the edge sets E0(w1) and E0(w2) are
disjoint, Γ cannot be full for both Γ0(w1) and Γ0(w2). Since E0(w) ⊂ E (wi) for all w > wi, there
is at least one i such that Γ is not full for any Γ0(w) such that w > wi. Therefore, η>(w) > 0 for
these w.
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It remains to prove (6.17). Here we note that η◦>(v) can be written as the sum of η◦>,γ(v), where

η◦>,γ(v) = (ρ+ d)(|V0 ∩ Vγ | − 1) +
∑

e∈E ◦∩Eγ

deg(e) .

We define full, empty and normal subgraphs as above, but with E0 replaced by E0 ∩ E ◦. Since Γ
admits at least one regularised edge, it cannot be full. The same argument as above thus shows
that η◦>(v) is strictly positive.

Remark 6.7. If follows from Lemma 5.7 that for any subtree τ̄ ( τ of negative degree, τ has at
least two leaves that do not belong to τ̄ . As a consequence, for any divergent subdiagram γ ( Γ,
Γ \ γ admits at least one regularised edge. Therefore, the assumption that K(Γ) admit at least one
regularised edge is indeed satisfied in our situation. ♦
Example 6.8.We illustrate the lemma and the notions of full, normal and empty subgraphs used
in its proof on Example 6.5:

• for Γ0(a), all γ ∈ Fs ∪ {Γ} are full;
• for Γ0(b), Γ and γ2 are full, while γ1 is empty;
• for Γ0(c), Γ is full, while γ2 and γ1 are empty;
• for Γ0(d), Γ is normal, and the other graphs are empty;
• for Γ0(e), γ2 is normal, and the other graphs are empty.

The first three cases lead to η>(v) 6 0, since there is no normal subgraph. The last two cases lead
to η>(v) > 0, since there is no full subgraph (compare with Table 1).

Consider now the case where the Hepp tree is of the form

T =

1 2 3 4 6 5

a

b

c

d

e (6.20)

The forest F = {γ1, γ2} is again safe, and we have in particular Γ0(b) = K(Γ). This shows that
for Γ0(b), Γ is full, and γ1 and γ2 are empty. If ρ = 2

5d, then deg(Γ) = deg(γ2) = 0, and we
are in a situation where Property 2. of Lemma 6.6 applies: we have η>(a) = η>(b) = 0, while
η>(v) > 0 for v ∈ {c, d, e}. ♣

Corollary 6.9. There exists a constantK1, depending only on K̄0 and d, such that

∑
n

sup
z∈DT

∣∣(W KKFsΓ)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv 6

{
K
|E |
1 εdeg(Γ)

[
log(ε−1)

]ζ if deg Γ < 0 ,
K
|E |
1

[
log(ε−1)

]1+ζ if deg Γ = 0 ,
(6.21)

where ζ is the number of children of Γ having degree 0.

Proof: The lower bound (6.17) on η◦> shows that Condition (6.9) is satisfied, so that Lemma 6.3
applies for all inner vertices of T . Combining (6.16) with the induction relations (6.12) and (6.13),
we obtain

α(v) = max

{
−η>(v),

∑
wi∈O(v)

α(wi)

}
. (6.22)
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We claim that in fact, we have

α(v) 6 max
(
{0} ∪ {−η>(w) : w > v}

)
. (6.23)

This relation is clearly true if v has no offspring. We now proceed by induction, and assume
that (6.23) holds for all wi ∈ O(v). If all α(wi) vanish, (6.23) trivially holds. Property 2. of
Lemma 6.6 implies that at most one of the α(wi), say α(w1), can be strictly positive. Then
α(v) = max{−η>(v), α(w1)}, and (6.23) follows from the induction assumption.

The result is then a consequence of the fact that (6.5) is bounded by

Ŝ∅(0) . 2α(∅)nεnγ(∅)
ε .

Indeed, we have α(∅) = −deg(Γ), as a consequence of Property 1. of Lemma 6.6, which implies

max{−η>(w) : w > ∅} = −η>(∅) = −deg(Γ) .

Therefore (6.23) yields α(∅) 6 −deg(Γ), but by (6.22) this is actually an equality. Since deg(Γ)
is bounded below by a constant depending only on d, the termC− deg Γ in (6.4) can be incorporated
intoK1.

It remains to determine γ(∅). We first note that (6.16) implies

λ(v) = η>(v) +
∑

wi∈O(v)

α(wi) .

In the case deg(Γ) = 0, we have α(v) = 0, and thus λ(v) = η>(v) for all v ∈ T . By Property 3.
of Lemma 6.6, at most one of the offspring of v, say w1, satisfies η>(w1) = 0. Therefore, (6.14)
shows that γ(v) = γ(w1) + 1 if η>(v) = 0, and vanishes otherwise. It follows that γ(∅) is equal
to the length ζ of the longest sequence (w1, . . . , wζ) such that wi+1 ∈ O(wi) and η>(wi) = 0 for
each i. By Property 2. of Lemma 6.6, each Γ0(wi) is of the form

⋃
γ̄i
K(γ̄i), where the γ̄i are not

descendents of a given γi ∈ C (Γ) with vanishing degree. Since Γ0(wi+1) ( Γ0(wi) for each i, ζ
is bounded by the number of these γi.

In the case deg(Γ) < 0, consider the longest sequence (w0 = ∅, w1, . . . , wζ′) such that
wi+1 ∈ O(wi) and η>(wi) 6 0 for each i. Then Property 3. of Lemma 6.6 implies that η>(v) > 0
for all other v ∈ T , which yields α(v) = 0, λ(v) > 0 and thus γ(v) = 0 for those v. For the wi,
we get the induction relations

λ(wi) = η>(wi) + α(wi+1) ,

α(wi) = max
{
−η>(wi), α(wi+1)

}
> α(wi+1) ,

γ(wi) =


0 if λ(wi) < 0 ,
γ(wi+1) + 1 if λ(wi) = 0 ,
γ(wi+1) if λ(wi) > 0 ,

with the convention that α(wζ′+1) = γ(wζ′+1) = 0. Note that we have the implications

γ(wi) 6= 0 ⇒ λ(wi) > 0 ⇔ α(wi+1) > −η>(wi) ⇔ α(wi) = α(wi+1) .

In addition, γ is incremented only if λ(wi) = 0, which happens if and only if α(wi) = α(wi+1) =
−η>(wi). It follows that γ(∅) is equal to the length ζ 6 ζ ′ of the longest sequence (w0, . . . , wζ−1)
such that η>(wi) = deg(Γ) for all i. Property 2. of Lemma 6.6 again implies that ζ is bounded by
the number of children of Γ having degree 0.
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Example 6.10. Consider again the Hepp sector with tree T as in (6.20) in Example 6.8. As we
have seen, when ρ = 2

5 , one has deg(Γ) = deg(γ2) = 0. Therefore, the bound (6.21) has order
(log(ε−1))2. ♣

Though we find that nontrivial powers of log(ε−1) can occur, the following result shows that
in our situation, these powers cannot exceed the value 2.

Lemma 6.11. If Γ = Γ(τ, P ) and τ is an almost full binary tree, then Γ cannot have any children
of degree 0, i.e., ζ = 0. If Γ = Γ(τ, P ) and τ is a full binary tree, then Γ can have at most one
child of degree 0, i.e., ζ 6 1.

Proof: Let τ be almost full with 2m + 1 edges, and assume that Γ contains a subdiagram γ
with deg(γ) = 0. By Lemma 5.7, γ is of the form Γ(τ̄ , P̄ ) with τ̄ an almost full binary tree
having 2m̄ + 1 < 2m + 1 edges. By Remark 5.4, we necessarily have deg(γ) < deg(Γ), so that
deg(γ) = 0 would imply deg(Γ) > 0, which is not permitted.

If τ is full with 2m edges, then any divergent subdiagram γ results from an almost full tree τ̄
with 2m̄+1 < 2m edges. ByRemark 5.4, the condition deg(Γ) 6 0 = deg(γ) yieldsm 6 2m̄+1.
If Γ contains ζ non-overlapping divergent subdiagrams of degree 0, they must all have the same
number of edges, and we obtain ζ(2m̄+ 1) < 2m 6 2(2m̄+ 1), yielding ζ < 2.

6.2 The case Fu 6= ∅

We turn now to the case Fu 6= ∅, where we can write

R̂[Fs,Fs∪Fu]Γ = (−1)|Fs|KFs

∏
γ∈Fu

(id−Ĉγ)Γ . (6.24)

We define as before subgraphs K(γ) = (Vγ ,Eγ) of KFs , except that C (γ) now denotes the set
of children of γ in Fs ∪ {γ}. For any γ ∈ Fu, we denote by γ↑ the inner vertex of T such that
σ(Vγ) = {v ∈ V : v > γ↑}, and

γ↑↑ = sup
{
e↑ : e ∈ EA (γ) and e ∼ K(γ)

}
.

Recall that A (γ) denotes the parent of γ in F , while ∼ denotes adjacency. In other words, we
are considering edges in EA (γ) which are not in Eγ . It follows that we necessarily have γ↑ > γ↑↑.
Finally, we set

N(γ) = 1 + b−deg(γ)c .

Lemma 5.7 implies that all subdivergences γ have a degree deg(γ) > −d
3 (cf. Remark 5.4). Thus

in space dimensions d 6 3, N(γ) is always equal to 1, while for d ∈ {4, 5} it can take the value
2, and is always equal to 2 when ρ is sufficiently close to ρc. In the latter case, the operator Ĉγ
produces terms with nontrivial node labels, which are here essential for the renormalisation.
Example 6.12. Consider again the diagram of Example 5.12, with the forest F = {γ1, γ2}.
Consider now a Hepp sector DT such that T has the structure given in Figure 4. In this example,
γ1 is unsafe, γ2 is safe, and we have γ↑1 = d and γ↑↑1 = b.

If d 6 3, the extraction operation Ĉγ1Γ has the same form as in (5.9) in Example 5.12. If
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4 5 1 2 6 3

a

γ↑↑1 = b

c

γ↑1 = d e

e σ(e) e↑

(1, 2) (1, 2) e
(1, 2) (1, 2) e
(2, 3) (2, 3) a
(3, 1) (6, 1) a
(3, 4) (3, 4) a
(5, 6) (5, 6) b
(3, 6) (3, 6) a
(4, 5) (4, 5) d
(4, 5) (4, 5) d

Figure 4: A tree T defining a Hepp sector DT for the diagram Ĉγ2Γ, cf. (5.9). The table shows,
for each edge, its image σ(e) = (σ(e)−, σ(e)+), and the ancestor e↑.

d ∈ {4, 5}, it becomes

Ĉγ1Γ =

1

23

4
5

6

+

d∑
i=1

1

23

4
5

6

ei

ei

−
d∑
i=1

1

23

45

6

ei

ei

, (6.25)

where edge and node decorations have been indicated in green (ei being the ith canonical basis
vector). Note that this produces a factor

Kρ(z4 − z3)
[
Kρ(z6 − z5)−Kρ(z6 − z4) +

d∑
i=1

∂iKρ(z6 − z4)(z4 − z5)ei
]

in the integrand giving the value of (id−Ĉγ1)Γ, since the terms proportional to (z4 − zv?)
ei

stemming from the second term in (6.25) are killed because v? = 4. The point of the whole
procedure is that the term in square brackets is bounded by a positive power of ‖z4 − z5‖s, which
is much smaller than ‖z6 − z5‖s owing to the fact that γ1 is unsafe. ♣

Lemma 6.13. There exists a constant K̄0 depending only on the kernelsKt such that∑
n

sup
z∈DT

∣∣(W KR̂[Fs,Fs∪Fu]Γ)(z)
∣∣ ∏
v∈T

2−(ρ+d)nv 6 K̄ |E |0 C− deg Γ
∑
n

∏
v∈T

2−f(v,nv) ,

where

f(v,nv) = η◦(v)nv + ηε(v)
[
nv ∧ nε

]
+
∑
γ∈Fu

N(γ)
[
1γ↑(v)− 1γ↑↑(v)

]
nv , (6.26)

with the same η◦(v) and ηε(v) as in (6.2).
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Proof: The difference with the proof of Lemma 6.2 is the presence of the factors (id−Ĉγ) with
γ unsafe in (6.24). These produce a factor∏

e∈EA (γ)

e∼K(γ)

[
Kt(e)(zσ(e+) − zσ(e−))−

∑
|`|s<N(γ)

1

`!
(zσ(e′+) − zσ(v?))

`∂`Kt(e)(zσ(v?) − zσ(e′−))
]
,

where e′ is the image of e under Ĉγ . By the Taylor formula-type bound given in [21, Lemma 3.8],
this factor is bounded by

K12
N(γ)[n

γ↑↑−nγ↑ ]
∏

e∈EA (γ)

e∼K(γ)

‖zσ(e+) − zσ(e−)‖
deg(e)
s ,

which accounts for the last sum in (6.26).

Writing as before η(v) = η◦(v) + ηε(v), we introduce the notations

η̂(v) = η(v) +
∑
γ∈Fu

N(γ)
[
1γ↑(v)− 1γ↑↑(v)

]
, η̂>(v) =

∑
w>v

η̂(w) .

Lemma 6.14. The conclusions of Lemma 6.6 still hold in the present situation, with η> replaced
by η̂>.

Proof: The only difference with the proof of Lemma 6.6 is the presence of the sum over diagrams
in γ ∈ Fu. We claim that we have the equivalences

v 6 γ↑ ⇔ K(γ) ⊂ Γ0(v) ∩ K(A (γ)) ,

v > γ↑↑ ⇔ Γ0(v) ∩ K(A (γ)) ⊂ K(γ) . (6.27)

Indeed, we always have K(γ) ⊂ K(A (γ)), so that the first equivalence follows from the fact that
v 6 γ↑ ⇔ K(γ) ⊂ Γ0(v). For the second equivalence, we observe that if e ∈ Γ0(v) ∩ K(A (γ)),
then e↑ > v, and e is either in Eγ , or adjacent to K(γ). However, the second case is ruled out if
v > γ↑↑. Conversely, if Γ0(v) ∩ K(A (γ)) ⊂ K(γ), then any edge e ∼ K(γ) cannot belong to E0,
and must thus satisfy e↑ < v, which implies that γ↑↑ < v.

It follows from (6.27) that∑
w>v

[
1γ↑(w)− 1γ↑↑(w)

]
= 1γ↑↑<v6γ↑ = 1K(γ)=Γ0(v)∩K(A (γ)) .

Thus, η̂>(v) satisfies the equivalent of the decomposition (6.18), with

η̂>,γ(v) = (ρ+ d)(|V0 ∩ Vγ | − 1) +
∑

e∈Eγ∩E0

deg(e) +
∑
γ̄∈Fu

N(γ̄)1K(γ̄)=Γ0(v)∩K(A(γ̄)) . (6.28)

One then shows that the properties (6.19) of full, empty and normal subgraphs still hold in this
case. The case of γ being normal requires the presence of the last term in (6.28), to which only
γ̂ contributes, together with the fact that deg(γ̂) + N(γ̂) > 0. The remainder of the proof is the
same as for Lemma 6.6.

The analogue of Corollary 6.9 is then proved in the same way as above, completing the proof
of Proposition 6.1.
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7 Asymptotics

Fix a tree τ ∈ TF− with p leaves and q edges. It follows from the definition (4.5) of cε(τ),
Propositions 4.5 and 5.2, the decomposition (6.1) into Hepp sectors and Proposition 6.1 that

cε(τ) = (−2)−1− p
2

∑
P∈P(2)

τ

∑
T

∑
Fs∈F

(s)
Γ(τ,P )

(T )

I (τ, P, T,Fs) ,

where
I (τ, P, T,Fs) =

∑
n

∫
DT

(W KR̂[Fs,Fs∪Fu]Γ(τ, P ))(z) dz

satisfies ∣∣I (τ, P, T,Fs)
∣∣ 6 C |V (Γ(τ,P ))|

0 K
|E (Γ(τ,P ))|
1 εdeg Γ(τ,P )

[
log(ε−1)

]ζ(Γ(τ,P ))

(with the convention that εdeg Γ(τ,P ) is to be replaced by log(ε−1) if deg Γ(τ, P ) = 0). To obtain
an upper bound on |cε(τ)|, it thus remains to control the sums over Hepp trees T , permutations
P , and safe forests Fs. Summing over all τ ∈ TF− will then provide an upper bound on the
renormalisation constants.

7.1 Full binary trees

Recall that a full binary tree τ with p leaves has q = 2p − 2 edges and p − 1 inner vertices. It
will be useful to parametrise the set of full binary trees with an even number of leaves by integers
k such that p = 2k + 2 and q = 4k + 2. It follows from Proposition 4.13 that for any pairing P ,
the corresponding (reduced) Feynman diagram Γ = Γ(τ, P ) will have 2k vertices, 3k edges, and
degree

deg Γ(τ, P ) = (3k + 1)ρ− (k + 1)d

= −2

3
d+ (3k + 1)(ρ− ρc) ∀P ∈ P(2) . (7.1)

This degree is negative if and only if

k 6 kmax =
d− ρ
3ρ− d

=
d− ρ

3(ρ− ρc)
. (7.2)

We can thus rewrite (7.1) as

deg Γ = −(d− ρ)

(
1− k

kmax

)
=: αk . (7.3)

The number of possible pairings of the 2k + 2 leaves is equal to (2k + 1)!! =
∏k
i=1(2i+ 1). The

number of Hepp trees T is bounded above by (2k − 1)!, and is reached when T is a comb tree,
whose 2k leaves can be associated in (2k − 1)! inequivalent ways to the 2k vertices of Γ. The
number of safe forests Fs can be bounded as follows.

Lemma 7.1. There are at most 2|G
−
Γ | safe forests in Γ, where the number of divergent subdiagrams

satisfies |G−Γ | 6 k.
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Proof: Let Nm denote the number of edges of a Feynman diagram Γ having m divergent subdi-
agrams. Then N1 > 2, and Nm1+m2 > Nm1 + Nm2 + 1, since elements of a forest have to be
strictly included into one another or vertex disjoint. By induction onm, one obtainsNm > 3m−1,
implying 3|G−Γ | − 1 6 3k, and thus |G−Γ | 6 k. The bound on the number of safe forests then
simply follows from the fact that a finite set with n elements has 2n subsets, and is reached when
all forests are safe.

Finally, we need to control the number of terms yielding an exponent ζ = 1 rather than ζ = 0.
We write P(2)

τ = P(2)
τ,0 t P

(2)
τ,1 ,where P(2)

τ,i denotes the set of pairings yielding a diagram Γ(τ, P )
with ζ(Γ) = i. Then we have the following key estimate.

Lemma 7.2. P(2)
τ,1 is non-empty only when kmax is an odd integer and 2k > kmax + 1. In that

case, we have
|P(2)
τ,1 |

|P(2)
τ,0 |
6 r(k) :=

kmax!!(2k − kmax)!!

(2k + 1)!!
. (7.4)

Furthermore, we have
r(k) 6M2−(2k−kmax) (7.5)

for kmax + 1 6 2k 6 2kmax, whereM is a constant independent of k, ρ and ε.

Proof: Assume Γ = Γ(τ, P ) has a child γ having degree 0. By Lemma 5.7, γ = Γ(τ̄ , P̄ ) where
τ̄ is an almost full binary subtree of τ , and P̄ is the restriction of P to the leaves of τ̄ . Let k̄ < k
be such that τ̄ has 2k̄ + 2 leaves and 4k̄ + 3 edges. Then we have

deg γ = −1

3
d+ (3k̄ + 2)(ρ− ρc) = 0 .

In view of (7.1), this implies

2(3k̄ + 2)(ρ− ρc) = −2

3
d = (3k + 1)(ρ− ρc)− deg Γ ,

which yields 2k̄+1 = kmax by (7.2) and (7.3). Thus kmax must be an odd integer, and the condition
k > k̄ yields 2k > kmax + 1. Finally, the number of pairings that do not mix leaves of τ̄ with
those of τ \ τ̄ is given by (2k̄ + 1)!!(2k − 2k̄ − 1)!! = kmax!!(2k − kmax)!!, which proves (7.4).
To prove (7.5), we write k = xkmax and use Stirling’s formula to obtain

log r(k) =
kmax

2

[
(2x− 1) log(2x− 1)− 2x log(2x)

]
− 1

2
log(x) +O(1)

6 − log(2)(2xkmax − kmax) +O(1) ,

where we have used a convexity argument to obtain the last line.

Remark 7.3. In what follows, we will always assume that kmax > 1. Indeed, for kmax < 1 (that
is, ρ > d

2 ), the only potentially divergent tree is , while for kmax = 1, the trees with 4 leaves
considered in Example 4.17 have degree 0. These cases can be treated “by hand”, in particular the
expectation (4.21) can be shown to diverge like log(ε−1). ♦

The above combinatorial considerations show that

|cε(τ)| 6 (2k + 1)!!(2k − 1)!C2k
0 K3k

1 εdeg Γ
[
1 + r(k) log(ε−1)

]
,

42



where deg Γ is given by (7.3), and εdeg Γ has to be replaced by log(ε−1) if deg Γ = 0. Let us write
C2k

0 K3k
1 = K3k

2 , whereK2 = C
2/3
0 K1. It follows from Stirling’s formula that

log
(
(2k+1)!!(2k−1)!K3k

1 εdeg Γ
)
6 3k log k+3k

[
log 2−1+logK2

]
− log(ε−1) deg Γ+O(1) ,

where the remainder term O(1) is independent of k, ρ and ε.
When computing the contribution of full binary trees to the renormalisation counterterm (3.3),

we have to take into account the number of these trees, as well as the combinatorial factor
2ninner(τ)−nsym(τ). The latter can be bounded above by 22k+1, while the former is given by the
(2k+ 2)nd Wedderburn–Etherington number (sequence A001190 in the On-Line Encyclopedia of
Integer Sequences OEIS), cf. [3, Section 4.4.1]. These numbers are known to grow like k−3/2β−2k

2 ,
where β2 ' 0.4026975 (OEIS sequence A240943) is the radius of convergence of the generating
series of the sequence.

The renormalisation counterterm C0(ε, ρ) due to full binary trees can thus be written in the
form

C0(ε, ρ) =

bkmaxc−1∑
k=0

Akε
αk + 1kmax∈NAkmax log(ε−1) (7.6)

+ 1kmax∈2N+1

[
kmax−1∑

k=(kmax−1)/2

Akε
αkr(k) +Akmaxr(kmax) log(ε−1)

]
log(ε−1) ,

where αk is defined in (7.3) and

log|Ak| 6 3
[
k log k + ak − 1

2
log(k + 1)

]
+O(1) ,

a = log 2− 1 + logK2 +
2

3
log(β−1

2 ) .

As a consequence, we have the bound∣∣Akεαk ∣∣ 6M e3F (k) , (7.7)

whereM is a constant independent of k, ρ and ε, and

F (k) = k log k + (a− bε)k + bεkmax −
1

2
log(k + 1) , (7.8)

with
bε = (ρ− ρc) log(ε−1) .

Note in particular that e3F (0) = ε−(d−ρ), and that F is strictly convex.

Proposition 7.4. Define the threshold

εc(ρ) = exp

{
− 1

ρ− ρc

[
log kmax + a− log(kmax + 1)

2kmax

]}
.

Then there exist constants M1,M2, independent of ε and ρ, such that the counterterm C0(ε, ρ)
satisfies

C0(ε, ρ) = A0ε
−(d−ρ)

[
1 +R1(ε, ρ)

]
for ε < εc(ρ) ,

|C0(ε, ρ)| 6Mεc(ρ)−(d−ρ)
[
log(ε−1) +R2(ε, ρ)

]
for ε > εc(ρ) ,

where the remainders satisfy∣∣R1(ε, ρ)
∣∣ 6 M1

ρ− ρc

(
ε

εc(ρ)

)3(ρ−ρc)

,
∣∣R2(ε, ρ)

∣∣ 6 M2

ρ− ρc

(
εc(ρ)

ε

)3(ρ−ρc)

.
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Proof: Since F is convex, we have F (k) 6 F (0) +Hk for all k ∈ [0, kmax], where

H =
F (kmax)− F (0)

kmax
= log kmax − bε + a− 1

2

log(kmax + 1)

kmax
. (7.9)

Note that εc(ρ) has been defined in such a way that

H = (ρ− ρc) log

(
ε

εc(ρ)

)
,

and that e3F (kmax) = εc(ρ)−(d−ρ). We will repeatedly use the fact that if β ∈ R and N > k0 are
positive integers, then

N−1∑
k=k0

eβk 6


[
(N − k0) ∧ β−1

]
eβ(N−1) if β > 0 ,

N − k0 if β = 0 ,[
(N − k0) ∧ |β|−1

]
eβk0 if β < 0 .

(7.10)

In the case ε > εc(ρ), i.e. H > 0, we rewrite (7.6) as

C0(ε, ρ)− 1kmax∈NAkmax log(ε−1) =

bkmaxc−1∑
k=0

Akε
αk +

kmax−1∑
k=(kmax+1)/2

Akε
αkr(k) log(ε−1)

+Akmaxr(kmax)
[
log(ε−1)

]2
=: M e3F (kmax)

[
R1(ε, ρ) +R2(ε, ρ) +R3(ε, ρ)

]
,

where the termsR2 andR3 vanish unless kmax is an odd integer, which we can assume to be at least
3 byRemark 7.3. By (7.7), the leading termAkmax log(ε−1) has indeed order εc(ρ)−(d−ρ) log(ε−1).
To boundR1, we use (7.10) with N = bkmaxc, k0 = 0 and β = 3H to get

|R1(ε, ρ)| . kmax e−3H .
1

ρ− ρc

(
εc(ρ)

ε

)3(ρ−ρc)

.

RegardingR2, we use (7.5) to get

|R2(ε, ρ)| 6M e−3Hkmax ekmax log 2
kmax−1∑

k=(kmax+1)/2

e(3H−2 log 2)k log(ε−1) .

We use (7.10) differently in several regimes. If 3H 6 1, we obtain

|R2(ε, ρ)| . e−
3
2
H(kmax−1) log(ε−1) 6 e−3H log(ε−1) .

If 1 < 3H < 2 log 2, we get

|R2(ε, ρ)| . kmax e−
3
2
H(kmax−1) log(ε−1) 6 e−3H kmax e−

3
2

(kmax−3) log(ε−1) ,

which yields a bound of the same form, since kmax e−
3
2

(kmax−3) is bounded uniformly in kmax > 3.
If 3H > 2 log 2, we have

|R2(ε, ρ)| . e−3H kmax2−kmax log(ε−1) .
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Note that in all three regimes, we have |R2(ε, ρ)| . e−3H log(ε−1). Regarding R3, we observe
that it is bounded by r(kmax) log(ε−1)2, showing that

e3H |R3(ε, ρ)| . 2−kmax

εc(ρ)3(ρ−ρc)
ε3(ρ−ρc)

[
log(ε−1)

]2
.

For fixed ρ, the right-hand side is maximal for ε = ε∗ = e−2/(3(ρ−ρc). Therefore, by definition of
kmax and εc(ρ), we have

e3H |R3(ε, ρ)| . 2−kmax

εc(ρ)3(ρ−ρc)

4 e−2

9(ρ− ρc)2
. 2−kmaxk3

maxk
2
max ,

which is bounded uniformly in kmax > 1. Therefore, we have |R3(ε, ρ)| . e−3H , completing the
proof for ε > εc(ρ).

It remains to consider the case ε < εc(ρ), i.e. H < 0. Here we decompose

C0(ε, ρ)−A0ε
α0 =

bkmaxc−1∑
k=1

Akε
αk +Akmax log(ε−1)

+

kmax−1∑
k=(kmax+1)/2

Akε
αkr(k) log(ε−1) +Akmaxr(kmax)

[
log(ε−1)

]2
=: M e3F (0)

[
R1(ε, ρ) +R2(ε, ρ) +R3(ε, ρ) +R4(ε, ρ)

]
,

whereR3 andR4 vanish unless kmax is an odd integer. Applying (7.10) withN = bkmaxc, k0 = 1
and β = 3H , we obtain

|R1(ε, ρ)| . kmax e3H .
1

ρ− ρc

(
ε

εc(ρ)

)3(ρ−ρc)

.

Using (7.7), we find

|R2(ε, ρ)| 6 e3Hkmax log(ε−1) =

(
ε

εc(ρ)

)d−ρ
log(ε−1) .

RegardingR3, using again (7.10) we get

|R3(ε, ρ)| . e
3
2
H(kmax+1) log(ε−1) =

(
ε

εc(ρ)

) 3
2

(kmax+1)(ρ−ρc))

log(ε−1) .

Finally, by (7.5) we also have

|R4(ε, ρ)| 6
(

ε

εc(ρ)

)d−ρ
2−kmax

[
log(ε−1)

]2
.

Since kmax > 1, we have d− ρ > 3(ρ− ρc), so thatR2 andR4 are negligible with respect toR1.
In addition,R3 only occurs when kmax > 3, and then it is also dominated byR1.
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7.2 Almost full binary trees

It remains to consider the case of almost full binary trees without decorationsXi, as the contribution
of almost full binary trees with a decoration Xi vanishes by symmetry.

Almost full trees with an even number of leaves can be parametrised by an integer k such that
these trees have p = 2k + 2 leaves and q = 4k + 3 edges. The corresponding reduced Feynman
diagrams have 2k + 1 vertices, 3k + 1 edges, and degree

deg Γ(τ, P ) = (3k + 2)ρ− (k + 1)d ∀P ∈ P(2) .

The main difference with the case of full trees is that the maximal value of k for deg Γ(τ, P ) to be
negative is now

k̄max =
d− 2ρ

3ρ− d
=

d− 2ρ

3(ρ− ρc)
,

which is smaller than kmax by a factor approaching 2 as ρ↘ ρc. Furthermore, Lemma 7.2 shows
that ζ always vanishes in this case. The remaining combinatorial arguments remain unchanged,
with the result that

C1(ε, ρ) =

k̄max−1∑
k=0

Ākε
ᾱk + 1k̄max∈NĀk̄max

log(ε−1) ,

where
ᾱk = −(d− 2ρ)

(
1− k

k̄max

)
and |Ākεᾱk | 6M e3F̄ (k) with

F̄ (k) = k log k + (a− bε)k + bεk̄max −
1

2
log(k + 1) .

It thus suffices to modify the threshold value of ε to obtain the result.

7.3 A remark on lower bounds

The results we have obtained provide upper bounds on the counterterms. Obtainingmatching lower
bounds seems out of reach at this stage, because, as we have seen, the behaviour in εdeg Γ(τ,P ) of
the terms cε(τ) is a consequence of cancellations of more singular terms in Zimmermann’s forest
formula.

However, we can at least argue that among the many terms contributing to the counterterms
C0(ε, ρ) and C1(ε, ρ), there exist terms which are bounded above and below by a quantity of the
same order. This does not of course exclude that cancellations among these terms exist, which
ultimately make the counterterms much smaller. However, such a scenario seems unlikely, unless
some hidden symmetries have been overlooked.

Indeed, assume that τ is a regular binary tree (cf. (3.5)). Then ninner(τ) = nsym(τ), so that
the contribution of τ to C0(ε, ρ) is given by

cε(τ) = E(ÃE−τ) =
∑

P∈P(2)
τ

E(Ã−Γ(τ, P )) .

It follows fromLemma 5.7 thatΓ(τ, P ) cannot have any divergent strict subdiagram, since a regular
binary tree does not contain any almost full binary subtree. Therefore, (6.1) reduces to

E(Ã−Γ(τ, P )) = −
∑
T

∑
n

∫
DT

(W KΓ(τ, P ))(z) dz .
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It is know that whenever ρ < d, the fractional heat kernel Pρ is given by the Riesz kernel which has
a constant sign. This sign is not conserved by the decomposition (4.1) of the kernel into its singular
and smooth parts, but one can add a bounded, compactly supported term toKρ in such a way that
Kρ has a constant sign, and without changing the divergent part of the integrals. Therefore, we
obtain

|E(Ã−Γ(τ, P ))| > a
∑
T

K
|E |
2 εdeg(Γ)

for a constant a > 0. Since the number of pairings P and of Hepp trees T have the same factorial
behaviour as above, we indeed obtain for cε(τ) an asymptotic behaviour in εc(ρ)−(d−ρ) log(ε−1).

7.4 Extension to other parameter regimes

In this section, we extend the results to the more general family of equations

∂tu− γ∆ρ/2u = gu2 + σξ , (7.11)

where γ, g and σ are parameters measuring the strength of each component of the equation, that
is, the smoothing effect given by the fractional Laplacian, the nonlinearity u2 and the noise ξ. Our
aim is to understand how the model behaves when one lets these parameters vary, and to determine
some potentially interesting parameter regimes.

The extension can actually be done in two equivalent ways: using directly the BPHZ renormal-
isation on the parameter-dependent equation (7.11), or using a scaling argument for the original
equation (1.1). We will briefly outline both arguments, which will serve as a reality check of the
results. Using the BPHZ renormalisation (3.3) on (7.11), one obtains the renormalised equation

∂tu− γ∆ρ/2u = gu2 + Cγ,g,σ(ε, ρ, u) + σξε , (7.12)

where the new counterterm is given by

Cγ,g,σ(ε, ρ, u) = Cγ,g,σ0 (ε, ρ) + Cγ,g,σ1 (ε, ρ)u

with

Cγ,g,σ0 (ε, ρ) =
∑
τ full

cγ,σε (τ)gninner(τ)2n̄(τ) ,

Cγ,g,σ1 (ε, ρ) =
∑

τ almost full

cγ,σε (τ)gninner(τ)2n̄(τ) ,

and n̄(τ) = ninner(τ)− nsym(τ). The new renormalisation constant cγ,σε associated to a tree τ is
given by

cγ,σε (τ) = σnleaves(τ)cγε (τ) ,

where nleaves(τ) is the number of leaves of τ . Here in the notation cγε (τ), we stress that the value of
the renormalisation constant depends on γ via the scaled Green functionK(γ)

ρ = (∂t − γ∆ρ/2)−1

of the fractional Laplacian that now appears on every edge of the tree τ . One key property that we
use in the sequel is

K(γ)
ρ (t, x) = Kρ(γt, x).

Indeed, since f(t, x) = (Kρ ∗ h)(t, x) satisfies the equation ∂tf −∆ρ/2f = h, setting h̄(t, x) =
γh(γt, x) it is easy to check that

f̄(t, x) = f(γt, x) =

∫
R

∫
Rd
Kρ(γ(t− s), x− y)h̄(s, y) dy ds
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satisfies ∂tf̄ − γ∆ρ/2f̄ = h̄. Then, performing a linear change of variable for all time integrals in
the definition (4.12) of E(Γ), we get

cγε (τ) =
1

γντ−1
cε(τ)

where ντ is the number of nodes of the Feynman diagram Γ(τ, P ) associated with τ .
• If τ is a full tree with p leaves and q = 2p− 2 edges, then we have

ντ = q + 1− p

2
=

3

2
p− 1 , ninner(τ) = p− 1 .

Therefore, we obtain

Cγ,g,σ0 (ε, ρ) =
∑
p

gp−1σp

γ
3
2
p−2

∑
τ full with p leaves

cε(τ)2n̄(τ) . (7.13)

• If τ is an almost full tree with p leaves and q = 2p− 1 edges, then we have

ντ =
3

2
p , ninner(τ) = p ,

yielding

Cγ,g,σ1 (ε, ρ) =
∑
p

gpσp

γ
3
2
p−1

∑
τ almost full with p leaves

cε(τ)2n̄(τ) . (7.14)

The second argument allowing to obtain (7.13) and (7.14) is based on scaling. If u satisfies the
renormalised equation

∂tu−∆ρ/2u = u2 + C(ε, ρ, u) + ξε ,

then for any λ > 0 and α, β ∈ R, ū(t, x) = λαu(λβt, λx) solves the equation

∂tū− λβ−ρ∆ρ/2ū = λβ−αū2 + λα+βC(ε, ρ, λ−αū) + λα+βξελβ ,λ , (7.15)

where

ξελβ ,λ(t, x) = ξε(λβt, λx)

=
1

ερ+d

∫
Rd+1

%

(
λβt− t′

ερ
,
λx− x′

ε

)
ξ(dt′, dx′)

=
1

ε̄ρ+d

∫
Rd+1

λβ−ρ%

(
λβ−ρ(t− t′′)

ε̄ρ
,
x− x′′

ε̄

)
ξ(λβ dt′′, λdx′′) .

In the last line, we have set ε = λε̄, and made the change of variables t′ = λβt′′, x′ = λx′′. By the
scaling property of space-time white noise, this is equal in law to

λ−
β
2
− d

2

ε̄ρ+d

∫
Rd+1

λβ−ρ%

(
λβ−ρ(t− t′′)

ε̄ρ
,
x− x′′

ε̄

)
ξ(dt′′, dx′′) = λ−

β
2
− d

2 ξ̃ε̄(t, x) ,

where ξ̃ε̄ = %̃ε̄ ∗ ξ is defined like ξε, but using %̃(t, x) = λβ−ρ%(λβ−ρt, x) as new mollifier.
Thus (7.15) is indeed of the form (7.12) with parameters

γ = λβ−ρ, g = λβ−α, σ = λα+β
2
− d

2 . (7.16)
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Using the expression (3.3) of C(ε, ρ, u), we find

λα+βC(λε̄, ρ, λ−αū) = λα+β
∑
τ full

cλε̄(τ)2n̄(τ) + λβ
∑

τ almost full

cλε̄(τ)2n̄(τ)u

If deg(τ) < 0, then
cε(τ) ∼ εdeg(τ) , cλε̄(τ) ∼ ε̄deg(τ)λdeg(τ) ,

which implies that cλε̄ = λdeg(τ)cε̄(τ) (note that since log(λε̄) = log λ + log ε̄, logarithmic
divergences do not change the leading order of cε(τ)). In the case of τ being a full tree with
p = 2k + 2 leaves, by (7.1) we have

deg(τ) = (3k + 1)ρ− (k + 1)d =
3

2
p(ρ− ρc)− 2ρ

where we have used the fact that ρc = d
3 . For almost full trees, we obtain

deg(τ) = (3k + 2)ρ− (k + 1)d =
3

2
p(ρ− ρc)− ρ .

It follows that (7.15) becomes

∂tū− γ∆ρ/2ū = gū2 + C̄0(ε̄, ρ) + C̄1(ε̄, ρ)ū+ σξε̄

with

C̄0(ε̄, ρ) = λα+β
∑
p

λ
3
2
p(ρ−ρc)−2ρ

∑
τ full with p leaves

cε̄(τ)2n̄(τ) ,

C̄1(ε̄, ρ) = λβ
∑
p

λ
3
2
p(ρ−ρc)−ρ

∑
τ almost full with p leaves

cε̄(τ)2n̄(τ) .

By (7.16), these expressions for the counterterms are indeed equivalent to (7.13) and (7.14).
It remains to prove the relations (2.10) and (2.11). For full binary trees, setting as before

p = 2k + 2, we obtain from (7.13) that

Cγ,g,σ0 (ε, ρ) =

bkmaxc−1∑
k=0

g2k+1σ2k+2

γ3k+1
f(k) =

gσ2

γ

bkmaxc−1∑
k=0

δkf(k) ,

where f(k) is as on the right-hand side of (7.6) and δ = g2σ2γ−3. We can now proceed as in
the proof of Proposition 7.4, replacing F (k) defined in (7.8) by F̂ (k) = F (k) + 1

3k log δ, and H
in (7.9) by Ĥ = H + 1

3 log δ. Note that F̂ is still convex.
For ε > εc, the sum is dominated by k = kmax, and yields the same bound as forC1,1,1

0 (ε, ρ) =
C0(ε, ρ), up to an additional factor

gσ2

γ
δkmax =

(
g2σ2

γ3

)kmax gσ2

γ
.

For ε < εc, the sum is dominated by the term k = 0, which has the same scaling behaviour as
C0(ε, ρ), up to an additional factor gσ2γ−1. An analogous argument applies to the expression (2.11)
for Cγ,g,σ1 (ε, ρ).
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