
HAL Id: hal-02199310
https://hal.science/hal-02199310v7

Preprint submitted on 3 Nov 2019 (v7), last revised 28 Dec 2020 (v14)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logarithmic Space Verifiers on NP-complete
Frank Vega

To cite this version:

Frank Vega. Logarithmic Space Verifiers on NP-complete. 2019. �hal-02199310v7�

https://hal.science/hal-02199310v7
https://hal.archives-ouvertes.fr

Logarithmic Space Verifiers on NP-complete
Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? A precise statement
of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin.
Since that date, all efforts to find a proof for this problem have failed. NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language in P.
Another major complexity classes are L and NL. The certificate-based definition of NL is based on
logarithmic space Turing machine with an additional special read-once input tape: This is called
a logarithmic space verifier. NL is the complexity class of languages defined by logarithmic space
verifiers M such that when the input is an element of the language with its certificate, then M
outputs 1. To attack the P versus NP problem, the NP-completeness is a useful concept. We
demonstrate there is an NP-complete language defined by a logarithmic space verifier M such that
when the input is an element of the language with its certificate, then M outputs a string which
belongs to a single language in L. In this way, we obtain if L is not equal to NL, then P = NP. In
addition, we show that L is not equal to NL. Hence, we prove the complexity class P is equal to NP.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, verifier, reduction, polynomial time, logar-
ithmic space

1 Introduction

In previous years there has been great interest in the verification or checking of computations
[15]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi can be viewed
as a model of the verification process [15]. Dwork and Stockmeyer and Condon have studied
interactive proofs where the verifier is a space bounded computation instead of the original
model where the verifer is a time bounded computation [15]. In addition, Blum and Kannan
has studied another model where the goal is to check a computation based solely on the
final answer [15]. More about probabilistic logarithmic space verifiers have been shown on a
technique of Lipton [15]. In this work, we show some results about the logarithmic space
verifiers applied to the class NP which solve one of the most important open problems in
computer science, that is P versus NP .

2 Motivation

The P versus NP problem is a major unsolved problem in computer science [5]. This is
considered by many to be the most important open problem in the field [5]. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution [5]. It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security Agency [1]. However,
the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in
a seminal paper [5]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the
answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com

2 Logarithmic Space Verifiers on NP-complete

independent of the currently accepted axioms and therefore impossible to prove or disprove,
8 (5%) said either do not know or do not care or don’t want the answer to be yes nor the
problem to be resolved [10]. It is fully expected that P 6= NP [19]. Indeed, if P = NP then
there are stunning practical consequences [19]. For that reason, P = NP is considered as
a very unlikely event [19]. Certainly, P versus NP is one of the greatest open problems in
science and a correct solution for this incognita will have a great impact not only in computer
science, but for many other fields as well [1]. Whether P = NP or not is still a controversial
and unsolved problem [1]. We show some results that prove this outstanding problem with
the unexpected solution of P = NP .

3 Preliminaries

In 1936, Turing developed his theoretical computational model [21]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [21]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [21]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [21].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each
string w in Σ∗ there is a computation associated with M on input w [3]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = 1 (when
M outputs 1 on the input w) [3]. Note that M fails to accept w either if this computation
ends in the rejecting state, that is M(w) = 0, or if the computation fails to terminate, or
the computation ends in the halting state with some output, that is M(w) = y (when M
outputs the string y on the input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [6].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [6]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = 1}.

We denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [6]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = 1 for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,

F. Vega 3

represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [19].

I Lemma 1. Given a language L1 ∈ P , a language L2 is in NP if there is a deterministic
Turing machine M , where:

L2 = {w : M(w, c) = y for some string c such that y ∈ L1}

and M runs in polynomial time in the length of w. In this way, NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element
of the language with its certificate, then M outputs a string which belongs to a single language
in P .

Proof. If L1 can be decided by the Turing machine M ′ in polynomial time, then the determ-
inistic Turing machine M ′′(w, c) = M ′(M(w, c)) will output 1 when w ∈ L2. Consequently,
M ′′ is a polynomial time verifier of L2 and thus, L2 is in NP . J

4 Hypothesis

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[21]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [11]. A language L1 ⊆ {0, 1}∗ is NP–complete
if:

L1 ∈ NP , and
L′ ≤p L1 for every L′ ∈ NP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard
[6]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [6]. A principal NP–complete problem is
SAT [9]. An instance of SAT is a Boolean formula φ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A
satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A
formula with a satisfying truth assignment is a satisfiable formula. The problem SAT asks
whether a given Boolean formula is satisfiable [9]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [6].

4 Logarithmic Space Verifiers on NP-complete

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is 3CNF satisfiability,
or 3SAT [6]. In 3SAT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [21]. The work tapes may contain at most O(logn) symbols
[21]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [19].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [19].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [21]. The work tapes must contain at most
O(logn) symbols [21]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [21]. We call f a logarithmic space computable function [21]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is frequently used for L and NL [19]. On the one hand, we
call the deterministic logarithmic space reduction as L-reduction. On the other hand, we call
the nondeterministic logarithmic space reduction as NL-reduction.

A Boolean formula is in 2-conjunctive normal form, or 2CNF , if it is in CNF and each
clause has exactly two distinct literals. There is a problem called 2SAT , where we asked
whether a given Boolean formula φ in 2CNF is satisfiable. 2SAT is complete for NL [19].
Another special case is the class of problems where each clause contains XOR (i.e. exclusive
or) rather than (plain) OR operators. This is in P , since an XOR SAT formula can also be
viewed as a system of linear equations mod 2, and can be solved in cubic time by Gaussian
elimination [17]. We denote the XOR function as ⊕. The XOR 2SAT problem will be
equivalent to XOR SAT, but the clauses in the formula have exactly two distinct literals.
XOR 2SAT is in L [2], [20].

We can give a certificate-based definition for NL [3]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[3]. On each step of the machine the machine’s head on that tape can either stay in place or
move to the right [3]. In particular, it cannot reread any bit to the left of where the head
currently is [3]. For that reason this kind of special tape is called “read once" [3].

I Definition 2. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗,

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1

where by M(x, u) we denote the computation of M where x is placed on its input tape and u
is placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write
tapes for every input x where | . . . | is the bit-length function [3]. M is called a logarithmic
space verifier [3].

F. Vega 5

We state the following Hypothesis:

B Hypothesis 3. Given a language L1 ∈ L, there is a language L2 in NP–complete with a
deterministic Turing machine M , where:

L2 = {w : M(w, u) = y for some string u such that y ∈ L1}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w. In this way, there is an NP–complete
language defined by a logarithmic space verifier M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language
in L.

5 Consequences

From the early days of automata and complexity theory, two different models of Turing
machines are considered, the offline and online machines [14]. Each model has a read-only
input tape and some work tapes [14]. The offline machines may read their input two-way
while the online machines are not allowed to move the input head to the left [14]. In the
terminology of the (generalized) Turing machine models are called two-way and one-way
Turing machines, respectively [14].

Hartmanis and Mahaney have investigated the classes 1L and 1NL of languages recogniz-
able by deterministic one-way logarithmic space Turing machine and nondeterministic one-way
logarithmic space Turing machine, respectively [12]. They have shown that 1L 6= 1NL (by
looking at a uniform variant of the string non-equality problem from communication com-
plexity theory) and have defined a natural complete problem for 1NL under deterministic
one-way logarithmic space reductions [12]. Furthermore, they have proven that 1NL ⊆ L if
and only if L = NL [12].

I Theorem 4. If the Hypothesis 3 is true, therefore if L 6= NL, then P = NP .

Proof. We can simulate the computation M(w, u) = y in the Hypothesis 3 by a nondetermin-
istic logarithmic space Turing machineN , such thatN(w) = y since we can read the certificate
string u within the read-once tape by a work tape in a nondeterministic logarithmic space
generation of symbols contained in u [19]. Certainly, we can simulate the reading of one
symbol from the string u into the read-once tape just nondeterministically generating the
same symbol in the work tapes using a logarithmic space [19].

If we suppose that L ⊂ 1NL, then we can accept the elements of the language L1 ∈ L by
a nondeterministic one-way logarithmic space Turing machine M ′. In this way, there is a
nondeterministic logarithmic space Turing machine M ′′(w) = M ′(N(w)) which will output 1
when w ∈ L2. Consequently, M ′′ is a nondeterministic logarithmic space Turing machine
which decides the language L2. The reason is because we can simulate the output string of
N(w) within a read-once tape and thus, we can compute in a nondeterministic logarithmic
space the logarithmic space composition using the same techniques of the logarithmic space
composition reduction, but without any reset of the computation [19]. Certainly, we do not
need to reset the computation of N(w) for the reading at once of a symbol in the output string
of N(w) by the nondeterministic one-way logarithmic space Turing machine M ′. Therefore,
L2 is in NL and thus, L2 ∈ P due to NL ⊆ P [19]. If any single NP–complete problem can
be solved in polynomial time, then P = NP [6]. Since L2 ∈ P and L2 ∈ NP–complete, then
we obtain the complexity class P is equal to NP under the assumption that L ⊂ 1NL.

6 Logarithmic Space Verifiers on NP-complete

Hartmanis and Mahaney have also shown with their result that if 1NL ⊆ L or even
1NL ⊂ L, then L = NL, because they proved there is a complete problem for both 1NL
and NL at the same time [12]. If this way, if L 6= NL, then L ⊂ 1NL by contraposition [19].
Since we already obtained that P = NP under the assumption that L ⊂ 1NL, therefore if
L 6= NL, then P = NP . J

Now, we define two classes defined under L-reduction and NL-reduction, respectively.

I Definition 5. The class 2L contains those languages that are deterministic logarithmic
space reduced to a language in 1L. The class 2NL consists in those languages that are
nondeterministic logarithmic space reduced to a language in 1NL.

I Theorem 6. L 6= NL.

Proof. We obtain that 2L ⊆ L and 2NL ⊆ NL by the definition of L and NL under the
L-reduction and NL-reduction, respectively. Certainly, since the output string will be in 1L
or 1NL, then we do not need to reset the computation of the L-reduction or NL-reduction in
order to be decided by a deterministic or nondeterministic logarithmic space Turing machine
under logarithmic space composition, respectively.

On the one hand, every language in L1 ∈ L which is decided by a deterministic logarithmic
space Turing machine M could be L–reduced to a language in 1L. The reason is simple,
because the Turing machineM could output the sequence of symbols that is read continuously
in the input tape during the whole computation in case of acceptance. Indeed, for every
read symbol in the input tape in M , then this is written to the output tape in a sequential
way. In this way, the output string could be accepted by a deterministic one-way logarithmic
space Turing machine, that would be the same Turing machine M where this one will always
read on the input tape from left-to-right. Certainly, when M tries to move the head of the
input tape to the left into the output string, then this will move contiguously to the right.
Consequently, M in case of acceptance will output the strings that consist in a language in
1L. Hence, we obtain that L ⊆ 2L. Since we already know that 2L ⊆ L, then L = 2L.

On the other hand, every language in L2 ∈ NL which is decided by a nondeterministic
logarithmic space Turing machine N could be NL–reduced to a language in 1NL. The reason
is simple, because the Turing machine N could output the sequence of symbols that is read
continuously in the input tape during the whole computation in case of acceptance. Indeed,
for every read symbol in the input tape in N , then this is written to the output tape in
a sequential way. In this way, the output string could be accepted by a nondeterministic
one-way logarithmic space Turing machine, that would be the same Turing machine N where
this one will always read on the input tape from left-to-right. Certainly, when N tries to
move the head of the input tape to the left into the output string, then this will move
contiguously to the right. Consequently, N in case of acceptance will output the strings that
consist in a language in 1NL. Hence, we obtain that NL ⊆ 2NL. Since we already know
that 2NL ⊆ NL, then NL = 2NL.

In this way, if L = NL then 2L = 2NL. However, we know that 2L 6= 2NL because of
1L 6= 1NL [12]. Therefore, we prove the complexity class L is not equal to NL. J

I Theorem 7. If the Hypothesis 3 is true, then P = NP .

Proof. This is a direct consequence of Theorems 4 and 6. J

F. Vega 7

6 Results

We show a previous known NP–complete problem:

I Definition 8. NAE 3SAT
INSTANCE: A Boolean formula φ in 3CNF .
QUESTION: Is there a truth assignment for φ such that each clause has at least one true

literal and at least one false literal?
REMARKS: NAE 3SAT ∈ NP–complete [9].

We define a new problem:

I Definition 9. MINIMUM EXCLUSIVE-OR 2-SATISFIABILITY
INSTANCE: A positive integer K and a Boolean formula φ that is an instance of

XOR 2SAT.
QUESTION: Is there a truth assignment in φ such that at most K clauses are unsatis-

fiable?
REMARKS: We denote this problem as MIN ⊕ 2SAT .

I Theorem 10. MIN ⊕ 2SAT ∈ NP–complete.

Proof. It is trivial to see MIN ⊕ 2SAT ∈ NP [19]. Given a Boolean formula φ in 3CNF
with n variables and m clauses, we create three new variables aci

, bci
and dci

for each clause
ci = (x ∨ y ∨ z) in φ, where x, y and z are literals, in the following formula:

Pi = (aci ⊕ bci) ∧ (bci ⊕ dci) ∧ (aci ⊕ dci) ∧ (x⊕ aci) ∧ (y ⊕ bci) ∧ (z ⊕ dci).

We can see Pi has at most one unsatisfiable clause for some truth assignment if and only if
at least one member of {x, y, z} is true and at least one member of {x, y, z} is false for the
same truth assignment. Hence, we can create the Boolean formula ψ as the conjunction of
the Pi formulas for every clause ci in φ, such that ψ = P1 ∧ . . .∧Pm. Finally, we obtain that

φ ∈ NAE 3SAT if and only if (ψ,m) ∈MIN ⊕ 2SAT.

Consequently, we prove NAE 3SAT ≤p MIN ⊕ 2SAT where we already know the language
NAE 3SAT ∈ NP–complete [9]. To sum up, we show MIN ⊕ 2SAT ∈ NP–hard and
MIN ⊕ 2SAT ∈ NP and thus, MIN ⊕ 2SAT ∈ NP–complete. J

I Theorem 11. There is a deterministic Turing machine M , where:

MIN ⊕ 2SAT = {w : M(w, u) = y for some string u such that y ∈ XOR 2SAT}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w.

Proof. Given a valid instance (ψ,K) for MIN ⊕ 2SAT when ψ has m clauses, we can create
a certificate array A which contains K different natural numbers in ascending order which
represents the indexes of the clauses in ψ that we are going to remove from the instance. We
read at once the elements of the array A and we reject whether this is not a valid certificate:
That is when the numbers are not sorted in ascending order, or the array A does not contain
exactly K elements, or the array A contains a number that is not between 1 and m. While
we read the elements of the array A, we remove the clauses from the instance (ψ,K) for
MIN ⊕ 2SAT just creating another instance φ for XOR 2SAT where the Boolean formula

8 Logarithmic Space Verifiers on NP-complete

φ does not contain the K different indexed clauses ψ represented by the numbers in A.
Therefore, we obtain the array A should be valid according to the Theorem 11 when:

(ψ,K) ∈MIN ⊕ 2SAT if and only if φ ∈ XOR 2SAT.

Furthermore, we can make this verification in logarithmic space such that the array A is
placed on the special read-once tape, because we read at once the elements in the array A
and we assume the clauses in the input ψ are indexed from left to right. Hence, we only need
to iterate from the elements of the array A to verify whether the array is a valid certificate
and also remove the K different clauses from the Boolean formula ψ when we write the
final clauses to the output. This logarithmic space verification will be the Algorithm 1. We
assume whether a value does not exist in the array A into the cell of some position i when
A[i] = undefined. In addition, we reject immediately when the following comparisons

A[i] ≤ max ∨A[i] < 1 ∨A[i] > m

hold at least into one single binary digit. Note, in the loop j from min to max− 1, we do
not output any clause when max− 1 < min.

Algorithm 1 Logarithmic space verifier
1: /*A valid instance for MIN ⊕ 2SAT with its certificate*/
2: procedure VERIFIER((ψ,K), A)
3: /*Initialize minimum and maximum values*/
4: min← 1
5: max← 0
6: /*Iterate for the elements of the certificate array A*/
7: for i ← 1 to K + 1 do
8: if i = K + 1 then
9: /*There exists a K + 1 element in the array*/
10: if A[i] 6= undefined then
11: /*Reject the certificate*/
12: return 0
13: end if
14: /*m is the number of clauses in ψ*/
15: max← m+ 1
16: else if A[i] = undefined ∨A[i] ≤ max ∨A[i] < 1 ∨A[i] > m then
17: /*Reject the certificate*/
18: return 0
19: else
20: max← A[i]
21: end if
22: /*Iterate for the clauses of the Boolean formula ψ*/
23: for j ← min to max− 1 do
24: /*Output the indexed j clause in ψ*/
25: output “ ∧ cj”
26: end for
27: min← max+ 1
28: end for
29: end procedure

F. Vega 9

J

I Theorem 12. The Hypothesis 3 is true.

Proof. This is a consequence of Theorems 10 and 11. J

I Theorem 13. P = NP .

Proof. This is a direct consequence of Theorems 7 and 12. J

7 Materials and Methods

This work is implemented into a Project programmed in Scala [22]. In this Project, we
use the Assertion on the properties of the instances of each problem and the Unit Test for
checking the correctness of every reduction [22]. We need to install JDK 8 in order to test
the Scala Project [18]. In addition, we need to install SBT to run the unit test (we could run
the unit test with the sbt test command) [18].

8 Conclusion

No one has been able to find a polynomial time algorithm for any of more than 300
important known NP–complete problems [9]. A proof of P = NP will have stunning
practical consequences, because it leads to efficient methods for solving some of the important
problems in NP [5]. The consequences, both positive and negative, arise since various
NP–complete problems are fundamental in many fields [5]. All the following consequences
are assuming that we have a practical solution for the NP–complete problems where such
existence was proven with our result:

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as 3SAT will break most existing
cryptosystems including: Public-key cryptography [13], symmetric ciphers [16] and one-way
functions used in cryptographic hashing [7]. These would need to be modified or replaced by
information-theoretically secure solutions not inherently based on P–NP equivalence.

There are enormous positive consequences that will follow from rendering tractable many
currently mathematically intractable problems. For instance, many problems in operations
research are NP–complete, such as some types of integer programming and the traveling
salesman problem [9]. Efficient solutions to these problems have enormous implications for
logistics [5]. Many other important problems, such as some problems in protein structure
prediction, are also NP–complete, so this will spur considerable advances in biology [4].

Moreover, Learning becomes easy by using the principle of Occam’s razor: We simply find
the smallest program consistent with the data [8]. Near perfect vision recognition, language
comprehension and translation and all other learning tasks become trivial [8]. We will also
have much better predictions of weather and earthquakes and other natural phenomenon [8].

But such changes may pale in significance compared to the revolution an efficient method
for solving NP–complete problems will cause in mathematics itself. Research mathematicians
spend their careers trying to prove theorems, and some proofs have taken decades or even
centuries to find after problems have been stated. For instance, Fermat’s Last Theorem
took over three centuries to prove. A method that is guaranteed to find proofs to theorems,
should one exist of a “reasonable” size, would essentially end this struggle [5].

10 Logarithmic Space Verifiers on NP-complete

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

2 Carme Álvarez and Raymond Greenlaw. A Compendium of Problems Complete for Symmetric
Logarithmic Space. Computational Complexity, 9(2):123–145, 2000. doi:10.1007/PL00001603.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

4 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model
is NP-complete. Journal of Computational Biology, 5(1):27–40, 1998. doi:10.1145/279069.
279080.

5 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at
http://www.claymath.org/sites/default/files/pvsnp.pdf.

6 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

7 Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
attacks on secure hash functions using SAT solvers. In International Conference on Theory
and Applications of Satisfiability Testing, pages 377–382. Springer, 2007.

8 Lance Fortnow. The Status of the P Versus NP Problem. Commun. ACM, 52(9):78–86,
September 2009. doi:10.1145/1562164.1562186.

9 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

10 William I. Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–77,
2012.

11 Oded Goldreich. P, NP, and NP-Completeness: The basics of computational complexity.
Cambridge University Press, 2010.

12 Juris Hartmanis and S Mahaney. Languages Simultaneously Complete for One-Way and
Two-Way Log-Tape automata. SIAM Journal on Computing, 10(2):383–390, 1981.

13 Satoshi Horie and Osamu Watanabe. Hard instance generation for SAT. Algorithms and
Computation, pages 22–31, 1997. doi:10.1007/3-540-63890-3_4.

14 Martin Kutrib, Julien Provillard, György Vaszil, and Matthias Wendlandt. Deterministic
One-Way Turing Machines with Sublinear Space. Fundamenta Informaticae, 136(1-2):139–155,
2015.

15 Richard J. Lipton. Efficient checking of computations. In STACS 90, pages 207–215. Springer
Berlin Heidelberg, 1990. doi:10.1007/3-540-52282-4_44.

16 Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning, 24(1):165–203, 2000. doi:10.1023/A:1006326723002.

17 Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press,
2011.

18 Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: Updated for Scala 2.12.
Artima Incorporation, USA, 3rd edition, 2016.

19 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
20 Omer Reingold. Undirected Connectivity in Log-space. J. ACM, 55(4):1–24, September 2008.

doi:10.1145/1391289.1391291.
21 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.
22 Frank Vega. VerifyReduction, August 2019. In a GitHub repository at https://github.com/

frankvegadelgado/VerifyReduction.

http://dx.doi.org/10.1007/PL00001603
http://dx.doi.org/10.1145/279069.279080
http://dx.doi.org/10.1145/279069.279080
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://dx.doi.org/10.1145/1562164.1562186
http://dx.doi.org/10.1007/3-540-63890-3_4
http://dx.doi.org/10.1007/3-540-52282-4_44
http://dx.doi.org/10.1023/A:1006326723002
http://dx.doi.org/10.1145/1391289.1391291
https://github.com/frankvegadelgado/VerifyReduction
https://github.com/frankvegadelgado/VerifyReduction

	Introduction
	Motivation
	Preliminaries
	Hypothesis
	Consequences
	Results
	Materials and Methods
	Conclusion

